Mathematics Behind the Rubik’s Cube Mathematical Modeling Bihan Zhang and Trachelle McDonald C.E....

Preview:

Citation preview

Mathematics Behind the Rubik’s Cube

Mathematical Modeling

Bihan Zhang and Trachelle McDonald

C.E. Jordan High School and Pamlico High School

2008

Problem

Explore the mathematics behind Rubik’s cube using simulations in VPythonExplain how permutation relate to the Rubik’s

cubeExplain how group theory relate to the Rubik’s

cube

http://upload.wikimedia.org/wikipedia/commons/6/67/Rubiks_revenge_scrambled.jpg

Outline

History Permutations Operations with Groups Triangle Operations Rubik’s Cube Operations Conclusion

http://www.smh.com.au/ffximage/2007/10/04/cube_narrowweb__300x392,0.jpg

Inventor: Ernö Rubik

http://pics.livejournal.com/sullenfish/pic/0000801h/s640x480

-Born in Budapest, Hungary

-Architect

-Founder of Rubik Studio

History Invented by Ernő Rubik

in 1974

“No arrangement of the

3x3x3 Rubik's Cube

requires more than 20

moves to solve.”

“The Current World

Record is 7.08

Seconds."

http://upload.wikimedia.org/wikipedia/en/thumb/1/1e/Pocket_cube.jpg/200px-Pocket_cube.jpg

http://www.smh.com.au/ffximage/2007/10/04/cube_narrowweb__300x392,0.jpg

Permutations

“A permutation  is an arrangement of objects in different orders.”1 2 31 3 22 1 32 3 13 1 2 3 2 1

Permutations

123

123

231

123

312

123

1 1 2 2 3 3

1 2 2 3 3 1

1 3 2 1 3 2

t =

t (1) = 2 t (2) = 3 t (3) = 1

u =

u (1) = 3 u (2) = 1 u (3) = 2

Original

Permuted

Permutations for a Rubik’s Cube

43,252,003,274,489,856,000

3,674,160

107 2!123!8

63!7

http://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Solved_2x2x2.jpg/600px-Solved_2x2x2.jpg

http://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Rubik's_cube.svg/480px-Rubik's_cube.svg.png

What is a Group?

A set of elements plus a binary operation A group has the following properties:

Closure 1+2 = 3 Identity element 1+0 = 1 Inverse 1+(-1) = 0Associativity 1+(2+3) = (1+2)+3

Commutative 1+2 = 2+1

Operations with Groups

123

123

231

123

312

123

213

123

321

123

1 = v =

t = w =

u = x =

132

123

1. tx=?

2. t(x(1))=?3. x(1)=14. t(1)=2

5. t(x(2))=?6. x(2)=37. t(3)=1

8. t(x(3))=?9. x(3)=210. t(2)=3

tx=(213)=v

Operations with Groups

123

123

231

123

312

123

213

123

321

123

1 = v =

t = w =

u = x =

132

123

1. xt=?

2. x(t(1))=?3. t(1)=24. x(2)=3

5. x(t(2))=?6. t(2)=37. x(3)=2

8. x(t(3))=?9. t(3)=110. x(1)=1

xt=(321)=w

Operations with Groups

123

123

231

123

312

123

213

123

321

123

1 = v = X 1 t u v w x

1 1 t u v w x

t = w = t t u 1 w x v

u u 1 t x v w

u = x = v v x w 1 u t

w w v x t 1 u

x x w v u t 1

132

123

tx xt

Operations with Groups

123

123

231

123

312

123

213

123

321

123

1 = v = X 1 t u v w x

1 1 t u v w x

t = w = t t u 1 w x v

u u 1 t x v w

u = x = v v x w 1 u t

w w v x t 1 u

x x w v u t 1

132

123

Symmetry Group of Triangles

Identity =

Rotation

Symmetry Group of Triangles

Identity =

Reflection

Symmetry Group of Triangles

Symmetry Group of Triangles

Rubik’s Cube Groups

F = Front B = Back R = Right

L = Left U = Up D = Down

Rubik’s Cube Groups

FF =

FFFF = = I

F = Front

B = Back

L = Left

= F2

R =Right

U = Up

D = Down

Singmaster Notation

FFF = = F3

Our Simulation

Pretty Patterns

Green Mamba

RDRFrfBDrubUDD

Anaconda

LBBDRbFdlRdUfRRu

Christmas Cross

uFFUUlRFFUUFFLru

Conclusion

- Group theory is an integral part of the Rubik’s cube

- It is possible to solve a Rubik’s cube by reversing the operations done

Work Cited

http://cubeland.free.fr/infos/ernorubik.htm Christopher Goudey 2001-2003

http://regentsprep.org/Regents/math/permut/Lperm.htm 1999-2008 http://regentsprep.org

Oswego City School District Regents Exam Prep Center http://www.wikipedia.org http://www.daniweb.com/code/snippet459.html http://www.cs.princeton.edu/courses/archive/fall06/cos402/papers/korfrubik.pdf http://www.dougmair.blogspot.com/ http://match.stanford.edu/bump/newcube.pdf http://www.geometer.org/rubik/group.pdf Joyner, David. Adventures in Group Theory. Baltimore: John Hopkins U P, 2002.

Acknowledgments

Dr. Russell L. Herman Mr. David B. Glasier Mr. Nathaniel Jones Mr. Doug Mair Mr. Ernö Rubik The SVSM Staff

Recommended