Load Calculation for Trough Idler Rolls - MHEA · Idler Rolls Load Analysis •Cross-section...

Preview:

Citation preview

1 Challenge the future

Load Calculation for Trough Idler Rolls

MSc. Xiangwei Liu

Delft University of Technology

--Stress Discontinuity Model

BULK 2014 CONFERENCE

2 Challenge the future

Outline

Introduction

Methodology

Idler Rolls Load Analysis

Result

Conclusion

BULK 2014 CONFERENCE

3 Challenge the future

Introduction Self-intro

• Born in Rizhao, China

• PhD at TU Delft (2012/09- )

• Research Topic Sustainable Design of Idlers for Large

-scale Belt Conveyor Systems

CSC Scholarship

BULK 2014 CONFERENCE

4 Challenge the future

Introduction

• Belt conveyor

Background

[2]

[1]

[1] Workplace Health & Safety Policy and Legislation. Quebec. 2003

[2] DSMAC Group.

• Large-scale belt conveyor system Large capacity

High speed

Long distance

BULK 2014 CONFERENCE

5 Challenge the future

Introduction

• Idlers

Background

[3]

[3] USA Mining, 2013.

[4] Saimh.co.za, “Idler Basics.”

[4]

BULK 2014 CONFERENCE

6 Challenge the future

Introduction Challenge 1

• Stress profile on loaded conveyor belt

BULK 2014 CONFERENCE

7 Challenge the future

Introduction Challenge 2

• Potential high cost of idler failure

[5] L. Nordell, 1995

[5]

• Unbalanced load distribution

• Large design margin

BULK 2014 CONFERENCE

8 Challenge the future

Methodology

• Theoretical research • Coulomb earth pressure theory, Krause & Hettler, 1974

• Numerical modelling method, Wheeler, 2003

Literature Survey

• Experimental research • Trough conveyor, Grabner, 1993

• Garland conveyor, Geesmann, 2001

• Conclusion: 1. More precise theoretical method needed

2. No load analysis regarding varying roll lengths

BULK 2014 CONFERENCE

9 Challenge the future

Methodology

• Stress Discontinuity Method

Stress Discontinuity model (SD model)

[6]

[6] W. Powrie, 2004

• Stress Field Analysis

BULK 2014 CONFERENCE

10 Challenge the future

Idler Rolls Load Analysis

• Cross-section simplification

Analysis of Forces on Idler Rolls

[7] [7] C. A. Wheeler, 2004

• Three-dimensional forces

• Active and passive stress statuses

BULK 2014 CONFERENCE

11 Challenge the future

Idler Rolls Load Analysis

Dividing bulk material into two zones

SD model

• Active stress status analysis

Stress field analysis in zone 1

2cos

cos sin

b

b

gz

gz

(1) [8]

[8] K. Terzaghi, 1943

Stress field analysis in zone 2

BULK 2014 CONFERENCE

12 Challenge the future

Idler Rolls Load Analysis

SD analysis from zone 1 to zone 2

SD model

• Active stress status analysis

2 tan

2 1a i

OC OC e (2)

Calculating the stress on the belt

,

,tan

w a a

w a a w

gzK

gzK

(3)

where

2

2 tan

2

1

cos1 sin cos( )

1 sin cos( )a i

a i w

i

K e

(4)

BULK 2014 CONFERENCE

13 Challenge the future

Idler Rolls Load Analysis

Obtain the normal and frictional force on the wing belt

section

SD model

• Active stress status analysis

2

2

, , 12

',

1 coscos tan sin

2 4 cosNG bulk a aw a

lF glK L

(5) Normal force

2

2

, , 12

',

1 coscos tan sin tan

2 4 cosNA bulk a a ww a

lF glK L

Frictional force (6)

BULK 2014 CONFERENCE

14 Challenge the future

Idler Rolls Load Analysis

Same procedures with the active

Different directions and magnitudes of effective stress

SD model

• Passive stress status analysis

Obtain the normal and frictional force on the wing belt section

BULK 2014 CONFERENCE

15 Challenge the future

Idler Rolls Load Analysis

The normal and axial force on the wing roll

Load distribution among rolls

(7) Normal force

Axial force (8)

(9)

, , , , , , ,cos

NG w NG bulk a NG bulk p G belt wF F F F

, , , , ,, ,sin

NA w NA bulk a NA bulk pG belt wF F F F

The normal and axial force on the centre roll

' '

, , ,2 cos 2 sin

NG c bulk belt NG w NA wF m m ga F F Normal force

Axial force , 0NA CF (10)

BULK 2014 CONFERENCE

16 Challenge the future

Result

parameter value parameter value

material coal belt speed ( ) 5

capacity ( ) 6000 idler spacing (m) 3

density ( ) 850 belt width (m) 2

surcharge angle (°) 15 belt line load ( ) 53

wall friction angle (°) 20 gravity acceleration ( ) 9.81

internal friction angle (°) 30

Case Study

/t h

/m s

3/kg m

/kg m

2/m s

parameter Configuration for Result 1 Configuration for Result 2

trough angle (°) varying 35

centre roll length ( ) 0.75 varying

wing roll length ( ) 0.75 varying m

m

BULK 2014 CONFERENCE

17 Challenge the future

Result Result 1

Result 1 Forces on wing and centre rolls with varying trough angle

BULK 2014 CONFERENCE

18 Challenge the future

Result Result 2

Result 2 Forces on wing and centre rolls with varying roll length

BULK 2014 CONFERENCE

19 Challenge the future

Conclusion

• The applicability of stress discontinuity method

Application

• Optimum idler design – varying roll length and/or trough angle is

potential success

• Basis for the physical modelling of idler

Conclusion

BULK 2014 CONFERENCE

20 Challenge the future

Any questions?

Delft University of Technology

Section Transport Engineering and Logistics

Room: 34 B-3-330

T +31 (0) 15 278 6573

E X.LIU-4@tudelft.nl

Thank you!

BULK 2014 CONFERENCE

Recommended