Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random...

Preview:

Citation preview

Lecture 14: Spin glasses

Outline:• the EA and SK models• heuristic theory• dynamics I: using random matrices• dynamics II: using MSR

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

We want to know the average of physical quantities (thermodynamicfunctions, correlation functions, etc) over the distribution of Jij’s.

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

We want to know the average of physical quantities (thermodynamicfunctions, correlation functions, etc) over the distribution of Jij’s.

Today: a simple model with <Jij> = 0

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

We want to know the average of physical quantities (thermodynamicfunctions, correlation functions, etc) over the distribution of Jij’s.

Today: a simple model with <Jij> = 0: spin glass

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

note averages over different “samples” (1 sample = 1 realization of choices of Jij’s for all pairs (ij) indicated by [ … ]av

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

note averages over different “samples” (1 sample = 1 realization of choices of Jij’s for all pairs (ij) indicated by [ … ]av

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

note averages over different “samples” (1 sample = 1 realization of choices of Jij’s for all pairs (ij) indicated by [ … ]av

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si

non-uniform J: anticipate nonuniform magnetization

mi = Si

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Jij2

[ ]av

=J 2

N −1≈

J 2

N

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Jij2

[ ]av

=J 2

N −1≈

J 2

N

Mean field theory is exact for this model

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Jij2

[ ]av

=J 2

N −1≈

J 2

N

Mean field theory is exact for this model (but it is not simple)

Heuristic mean field theoryreplace total field on Si,

Heuristic mean field theoryreplace total field on Si,

H i = JijS j

j

Heuristic mean field theoryreplace total field on Si,

H i = JijS j

j

∑ (take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its mean

H i = JijS j

j

∑ (take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its mean

H i = JijS j

j

Jijm j

j

∑(take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

∑(take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

(take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0:

(take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0: [mij]av = 0

(take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0: [mij]av = 0

if there are local spontaneous magnetizations mi ≠ 0,measure them by the order parameter (Edwards-Anderson)

(take hi = 0)

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0: [mij]av = 0

if there are local spontaneous magnetizations mi ≠ 0,measure them by the order parameter (Edwards-Anderson)

(take hi = 0)

q = mi2

[ ]av

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

= [Jij2

j

∑ ]av q ≡ J 2q

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

= [Jij2

j

∑ ]av q ≡ J 2q

so

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

= [Jij2

j

∑ ]av q ≡ J 2q

so

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟ (solve for q)

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

critical temperature: Tc = J

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

critical temperature: Tc = J

below Tc:

β 2J 2 −1( )q ≈ 2q2 ⇒ q ≈ Tc − T

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

critical temperature: Tc = J

below Tc:

β 2J 2 −1( )q ≈ 2q2 ⇒ q ≈ Tc − T

This heuristic theory is right up to this point, but wrong below Tc.

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z).

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z). But here, the average of the 1st term is zero and you have to keep the second order term, the mean of which is of the order of the rms value of the first term.

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z). But here, the average of the 1st term is zero and you have to keep the second order term, the mean of which is of the order of the rms value of the first term.

Thouless-Anderson-Palmer (TAP) equations):

mi = tanh β Jijm j

j

∑ − β 2mi Jij2

j

∑ (1− m j2) + βhi

⎣ ⎢ ⎢

⎦ ⎥ ⎥

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z). But here, the average of the 1st term is zero and you have to keep the second order term, the mean of which is of the order of the rms value of the first term.

Thouless-Anderson-Palmer (TAP) equations):

mi = tanh β Jijm j

j

∑ − β 2mi Jij2

j

∑ (1− m j2) + βhi

⎣ ⎢ ⎢

⎦ ⎥ ⎥______________

Onsager correction to mean field

Dynamics (I: simple way)

Glauber dynamics:

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

τ 0

d Si(t)

dt= − Si(t) + tanh β JijS j (t)

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

recall we derived from this

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

τ 0

d Si(t)

dt= − Si(t) + tanh β JijS j (t)

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

recall we derived from this

mean field:

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

τ 0

d Si(t)

dt= − Si(t) + tanh β JijS j (t)

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

recall we derived from this

mean field:

τ 0

dmi

dt= −mi + tanh βH i[ ]

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH ilinearize (above Tc):

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

linearize (above Tc):

use TAP:

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

susceptibility:

χλ =∂mλ (ω)

∂hλ (ω)=

β

1− iωτ 0 + β 2J 2 − βJλ

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

instability (transition) reached when maximum eigenvalue

susceptibility:

χλ =∂mλ (ω)

∂hλ (ω)=

β

1− iωτ 0 + β 2J 2 − βJλ

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

instability (transition) reached when maximum eigenvalue

(Jλ )max =1+ β 2J 2

β

susceptibility:

χλ =∂mλ (ω)

∂hλ (ω)=

β

1− iωτ 0 + β 2J 2 − βJλ

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

2πJdλ

4J 2 − λ2

1− iωτ 0 + β 2J 2 − βλ−2J

2J

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

use

1

πdx

4J 2 − x 2

y − x−2J

2J

∫ = y − y 2 − 4J 2[ ]

2πJdλ

4J 2 − λ2

1− iωτ 0 + β 2J 2 − βλ−2J

2J

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

use

1

πdx

4J 2 − x 2

y − x−2J

2J

∫ = y − y 2 − 4J 2[ ]

y =1− iωτ 0 + β 2J 2, x = βJλwith€

2πJdλ

4J 2 − λ2

1− iωτ 0 + β 2J 2 − βλ−2J

2J

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

(J = 1)

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

(J = 1)

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ )

(J = 1)

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

(J = 1)

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

(1− βJ)2 − iωτ 0

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

(1− βJ)2 − iωτ 0

so its relaxation time diverges twice as strongly:

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

(1− βJ)2 − iωτ 0

so its relaxation time diverges twice as strongly:

τ ∝ 1

(T − Tc )2

Dynamics II: using MSRUse a “soft-spin” SK model:

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Generating functional:

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Generating functional:

Z[J,h,θ] = DφD ˆ φ exp −S[φ, ˆ φ ,J,h,θ]( )∫

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Generating functional:

Z[J,h,θ] = DφD ˆ φ exp −S[φ, ˆ φ ,J,h,θ]( )∫

S[φ, ˆ φ ,J,h,θ] = d∫ t T ˆ φ i2 + i ˆ φ i

∂φi

∂t+ r0φi + u0φi

3 − Jijφ j

j

∑ − hi

⎝ ⎜ ⎜

⎠ ⎟ ⎟− iθ iφi

⎣ ⎢ ⎢

⎦ ⎥ ⎥i

averaging over the Jij

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp −J 2

2Ndt d ′ t ˆ φ i(t) ˆ φ i(t')φ j (t)φ j (t') + ˆ φ i(t)φi( ′ t )φ j (t) ˆ φ j ( ′ t )( )∫

ij

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

averaging over the Jij

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp −J 2

2Ndt d ′ t ˆ φ i(t) ˆ φ i(t')φ j (t)φ j (t') + ˆ φ i(t)φi( ′ t )φ j (t) ˆ φ j ( ′ t )( )∫

ij

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

The exponent contains

C(t − ′ t ) =1

Nφi(t)φi(t '), R(t − ′ t )

i

∑ =i

Nφi(t) ˆ φ i(t'),

i

averaging over the Jij

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp −J 2

2Ndt d ′ t ˆ φ i(t) ˆ φ i(t')φ j (t)φ j (t') + ˆ φ i(t)φi( ′ t )φ j (t) ˆ φ j ( ′ t )( )∫

ij

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

The exponent contains

C(t − ′ t ) =1

Nφi(t)φi(t '), R(t − ′ t )

i

∑ =i

Nφi(t) ˆ φ i(t'),

i

so replace them in the exponent

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp − 12 J 2 dt d ′ t ˆ φ i(t) ˆ φ i(t')C(t − ′ t ) − i ˆ φ i(t)φi(t')R(t − ′ t )( )∫

i

∑ ⎡

⎣ ⎢

⎦ ⎥

decoupling sitesand introduce delta functions

1= DCD ˆ C ∫ exp − dtd ′ t ˆ C (t − ′ t ) NC(t − ′ t ) − φi(t)φi(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

1= DRDCR∫ exp − dtd ′ t ˆ R (t − ′ t ) NR(t − ′ t ) − i φi(t) ˆ φ i(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

decoupling sitesand introduce delta functions

1= DCD ˆ C ∫ exp − dtd ′ t ˆ C (t − ′ t ) NC(t − ′ t ) − φi(t)φi(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

1= DRDCR∫ exp − dtd ′ t ˆ R (t − ′ t ) NR(t − ′ t ) − i φi(t) ˆ φ i(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

We are left with

W ≡ Z[0,0,J][ ]av

= DC D ˆ C DR D ˆ R exp −N dt d ′ t ˆ C (t − ′ t )C(t − ′ t ) − ˆ R (t − ′ t )R(t − ′ t )[ ]∫( )∫

×exp N log DφD ˆ φ exp∫ −Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ]( )( )

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

wrt C : ˆ C (t − t') = − 12 J 2 ˆ φ (t) ˆ φ ( ′ t )

loc= 0

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

wrt C : ˆ C (t − t') = − 12 J 2 ˆ φ (t) ˆ φ ( ′ t )

loc= 0

wrt ˆ R : R(t − t') = i φ(t) ˆ φ ( ′ t )loc

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

wrt C : ˆ C (t − t') = − 12 J 2 ˆ φ (t) ˆ φ ( ′ t )

loc= 0

wrt ˆ R : R(t − t') = i φ(t) ˆ φ ( ′ t )loc

wrt R : ˆ R (t − ′ t ) = 12 iJ 2 ˆ φ (t)φ( ′ t )

loc= 1

2 J 2R( ′ t − t)

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

describing a single spin

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

describing a single spin subject tonoise with correlation function 2Tδ(t – t’) +J2C(t - t’)

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

describing a single spin subject tonoise with correlation function 2Tδ(t – t’) +J2C(t - t’)and retarded self-interaction J2R(t - t’)

local response function

single effective spin obeys

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

−iωS(ω) = −r0S(ω) + J 2R0(ω)S(ω) + h(ω) + ξ (ω)

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

−iωS(ω) = −r0S(ω) + J 2R0(ω)S(ω) + h(ω) + ξ (ω)

response function (susceptibility)

R0(ω) =∂ S(ω)

∂h(ω)=

1

r0 − J 2R0(ω)

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

−iωS(ω) = −r0S(ω) + J 2R0(ω)S(ω) + h(ω) + ξ (ω)

response function (susceptibility)

R0(ω) =∂ S(ω)

∂h(ω)=

1

r0 − J 2R0(ω)

(Can solve quadratic equation for R0 to find it explicitly)

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

⇒ τ =1

1− J 2R02(0)

R(0) =1

T

⎝ ⎜

⎠ ⎟

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

⇒ τ =1

1− J 2R02(0)

R(0) =1

T

⎝ ⎜

⎠ ⎟ critical slowing down

at Tc = J

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

⇒ τ =1

1− J 2R02(0)

R(0) =1

T

⎝ ⎜

⎠ ⎟ critical slowing down

at Tc = J

(u0 > 0: perturbation theory does not change this qualitatively)

Recommended