116
Lecture 14: Spin glasses Outline: • the EA and SK models • heuristic theory • dynamics I: using random matrices • dynamics II: using MSR

Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Embed Size (px)

Citation preview

Page 1: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Lecture 14: Spin glasses

Outline:• the EA and SK models• heuristic theory• dynamics I: using random matrices• dynamics II: using MSR

Page 2: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

Page 3: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

Page 4: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

We want to know the average of physical quantities (thermodynamicfunctions, correlation functions, etc) over the distribution of Jij’s.

Page 5: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

We want to know the average of physical quantities (thermodynamicfunctions, correlation functions, etc) over the distribution of Jij’s.

Today: a simple model with <Jij> = 0

Page 6: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Random Ising model

So far we dealt with “uniform systems” Jij was the same for all pairs of neighbours.

What if every Jij is picked (independently) from some distribution?

We want to know the average of physical quantities (thermodynamicfunctions, correlation functions, etc) over the distribution of Jij’s.

Today: a simple model with <Jij> = 0: spin glass

Page 7: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

Page 8: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

note averages over different “samples” (1 sample = 1 realization of choices of Jij’s for all pairs (ij) indicated by [ … ]av

Page 9: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

note averages over different “samples” (1 sample = 1 realization of choices of Jij’s for all pairs (ij) indicated by [ … ]av

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si

Page 10: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Simple model (Edwards-Anderson)

Jij[ ]av

= 0, Jij2

[ ]av

=J 2

z(Jij = J ji)

Nearest-neighbour model with z neighbours

note averages over different “samples” (1 sample = 1 realization of choices of Jij’s for all pairs (ij) indicated by [ … ]av

E = − JijSi

ij

∑ S j − hi

i

∑ Si

= − 12 JijSi

ij

∑ S j − hi

i

∑ Si

non-uniform J: anticipate nonuniform magnetization

mi = Si

Page 11: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Page 12: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Jij2

[ ]av

=J 2

N −1≈

J 2

N

Page 13: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Jij2

[ ]av

=J 2

N −1≈

J 2

N

Mean field theory is exact for this model

Page 14: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Sherrington-Kirkpatrick model

Every spin is a neighbour of every other one: z = (N – 1)

Jij2

[ ]av

=J 2

N −1≈

J 2

N

Mean field theory is exact for this model (but it is not simple)

Page 15: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

Page 16: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

H i = JijS j

j

Page 17: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

H i = JijS j

j

∑ (take hi = 0)

Page 18: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its mean

H i = JijS j

j

∑ (take hi = 0)

Page 19: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its mean

H i = JijS j

j

Jijm j

j

∑(take hi = 0)

Page 20: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

∑(take hi = 0)

Page 21: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

(take hi = 0)

Page 22: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0:

(take hi = 0)

Page 23: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0: [mij]av = 0

(take hi = 0)

Page 24: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0: [mij]av = 0

if there are local spontaneous magnetizations mi ≠ 0,measure them by the order parameter (Edwards-Anderson)

(take hi = 0)

Page 25: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Heuristic mean field theoryreplace total field on Si,

by its meanand calculate mi as the average S of a single spin in field H:

H i = JijS j

j

Jijm j

j

mi = tanh β Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

no preference for mi > 0 or <0: [mij]av = 0

if there are local spontaneous magnetizations mi ≠ 0,measure them by the order parameter (Edwards-Anderson)

(take hi = 0)

q = mi2

[ ]av

Page 26: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms

Page 27: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian

Page 28: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

Page 29: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

= [Jij2

j

∑ ]av q ≡ J 2q

Page 30: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

= [Jij2

j

∑ ]av q ≡ J 2q

so

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

Page 31: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

self-consistent calculation of q:

To compute q: Hi is a sum of many (seemingly) independent terms=> Hi is Gaussian with variance

Jijm j

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2 ⎡

⎢ ⎢

⎥ ⎥av

= JijJik

jk

∑ m jmk

⎣ ⎢ ⎢

⎦ ⎥ ⎥av

≈ [Jij2

j

∑ ]av[m j2]

= [Jij2

j

∑ ]av q ≡ J 2q

so

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟ (solve for q)

Page 32: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

Page 33: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

Page 34: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

Page 35: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

Page 36: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

Page 37: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

critical temperature: Tc = J

Page 38: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

critical temperature: Tc = J

below Tc:

β 2J 2 −1( )q ≈ 2q2 ⇒ q ≈ Tc − T

Page 39: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

spin glass transition:

q =dH

2πJ 2q∫ tanh2 βH( )exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

expand in β:

q =dH

2πJ 2q∫ βH − 1

3 (βH)3 +L[ ]2exp −

H 2

2J 2q

⎝ ⎜

⎠ ⎟

=dH

2πJ 2q∫ (βH)2 − 2

3 (βH)4 +L[ ]exp −H 2

2J 2q

⎝ ⎜

⎠ ⎟

= β 2J 2q − 23 ⋅3β 4J 4q2 +L

critical temperature: Tc = J

below Tc:

β 2J 2 −1( )q ≈ 2q2 ⇒ q ≈ Tc − T

This heuristic theory is right up to this point, but wrong below Tc.

Page 40: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

Page 41: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

Page 42: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

Page 43: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z).

Page 44: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z). But here, the average of the 1st term is zero and you have to keep the second order term, the mean of which is of the order of the rms value of the first term.

Page 45: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z). But here, the average of the 1st term is zero and you have to keep the second order term, the mean of which is of the order of the rms value of the first term.

Thouless-Anderson-Palmer (TAP) equations):

mi = tanh β Jijm j

j

∑ − β 2mi Jij2

j

∑ (1− m j2) + βhi

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 46: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

the trouble below Tc

In the ferromagnet, it was safe to approximate

H i = JijS j

j

∑ ≈ Jijm j

j

because the next term in a systematic expansion in β,

H i = JijS j

j

∑ = Jijm j

j

∑ − βmi Jij2

j

∑ (1− m j2) +L

was O(1/z). But here, the average of the 1st term is zero and you have to keep the second order term, the mean of which is of the order of the rms value of the first term.

Thouless-Anderson-Palmer (TAP) equations):

mi = tanh β Jijm j

j

∑ − β 2mi Jij2

j

∑ (1− m j2) + βhi

⎣ ⎢ ⎢

⎦ ⎥ ⎥______________

Onsager correction to mean field

Page 47: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics (I: simple way)

Glauber dynamics:

Page 48: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

Page 49: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

τ 0

d Si(t)

dt= − Si(t) + tanh β JijS j (t)

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

recall we derived from this

Page 50: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

τ 0

d Si(t)

dt= − Si(t) + tanh β JijS j (t)

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

recall we derived from this

mean field:

Page 51: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics (I: simple way)

Glauber dynamics:

τ 0

dP({S},t)

dt= 1

2 1+ Si tanh βhi(t)( )[ ]i

∑ P(S1L − SiL SN )

− 12 1− Si tanh βhi(t)( )[ ]

i

∑ P(S1L SiL SN )

τ 0

d Si(t)

dt= − Si(t) + tanh β JijS j (t)

j

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

recall we derived from this

mean field:

τ 0

dmi

dt= −mi + tanh βH i[ ]

Page 52: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

Page 53: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH ilinearize (above Tc):

Page 54: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

linearize (above Tc):

use TAP:

Page 55: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

Page 56: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

Page 57: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

Page 58: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

susceptibility:

χλ =∂mλ (ω)

∂hλ (ω)=

β

1− iωτ 0 + β 2J 2 − βJλ

Page 59: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

instability (transition) reached when maximum eigenvalue

susceptibility:

χλ =∂mλ (ω)

∂hλ (ω)=

β

1− iωτ 0 + β 2J 2 − βJλ

Page 60: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics I (continued)

τ 0

dmi

dt= −mi + tanh βH i[ ]

= −mi + βH i

≈ −mi + β Jij

j

∑ m j − β 2mi Jij2(1− q

j

∑ ) + βhi

= −mi + β Jij

j

∑ m j − miβ2J 2 + βhi (q = 0, T > Tc )

linearize (above Tc):

use TAP:

In basis where J is diagonal:

τ 0

dmλ

dt= −mλ 1+ β 2J 2 − βJλ[ ] + βhλ

instability (transition) reached when maximum eigenvalue

(Jλ )max =1+ β 2J 2

β

susceptibility:

χλ =∂mλ (ω)

∂hλ (ω)=

β

1− iωτ 0 + β 2J 2 − βJλ

Page 61: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

Page 62: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

Page 63: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

Page 64: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

Page 65: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

Page 66: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

2πJdλ

4J 2 − λ2

1− iωτ 0 + β 2J 2 − βλ−2J

2J

Page 67: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

use

1

πdx

4J 2 − x 2

y − x−2J

2J

∫ = y − y 2 − 4J 2[ ]

2πJdλ

4J 2 − λ2

1− iωτ 0 + β 2J 2 − βλ−2J

2J

Page 68: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

eigenvalue spectrum of a random matrix

For a dense random matrix with mean square element value J2/N,the eigenvalue density is “semicircular”:

ρ(Jλ ) =1

2πJ4J 2 − Jλ

2

(Jλ )max = 2 ⇒ β c =1so

local susceptibility

χ(ω) =1

Nχ ii

i

∑ (ω) =1

Nχ λ

λ

∑ (ω) = dλρ∫ (λ )χ λ (ω)

use

1

πdx

4J 2 − x 2

y − x−2J

2J

∫ = y − y 2 − 4J 2[ ]

y =1− iωτ 0 + β 2J 2, x = βJλwith€

2πJdλ

4J 2 − λ2

1− iωτ 0 + β 2J 2 − βλ−2J

2J

Page 69: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

Page 70: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

(J = 1)

Page 71: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

(J = 1)

Page 72: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ )

(J = 1)

Page 73: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

(J = 1)

Page 74: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

Page 75: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

Page 76: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

Page 77: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

(1− βJ)2 − iωτ 0

Page 78: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

(1− βJ)2 − iωτ 0

so its relaxation time diverges twice as strongly:

Page 79: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing down

⇒ χ(ω) = 12 β T 2(1− iωτ 0) +1− T 2(1− iωτ 0) +1( )

2− 4T 2 ⎧

⎨ ⎩

⎫ ⎬ ⎭

small ω:

χ−1(ω) ≈ T(1− iωτ ), τ ∝1

T − Tc

critical slowing down

(J = 1)

but note: for the softest mode (with eigenvalue 2J)

χλ =β

1− iωτ 0 + β 2J 2 − 2βJ

(1− βJ)2 − iωτ 0

so its relaxation time diverges twice as strongly:

τ ∝ 1

(T − Tc )2

Page 80: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics II: using MSRUse a “soft-spin” SK model:

Page 81: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Page 82: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Page 83: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Page 84: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Generating functional:

Page 85: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Generating functional:

Z[J,h,θ] = DφD ˆ φ exp −S[φ, ˆ φ ,J,h,θ]( )∫

Page 86: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

Dynamics II: using MSRUse a “soft-spin” SK model:

E[φ] = 12 r0φi

2 + 14 u0φi

4( )

i

∑ − 12 Jijφi

ij

∑ φ j − hi

i

∑ φi

Jij2

[ ]av

=J 2

N

Langevin dynamics:

∂φi

∂t= −

∂ E[φ]( )∂φi

+ η i(t) = −r0φi − u0φi3 + Jijφ j

j

∑ + hi + η i(t)

Generating functional:

Z[J,h,θ] = DφD ˆ φ exp −S[φ, ˆ φ ,J,h,θ]( )∫

S[φ, ˆ φ ,J,h,θ] = d∫ t T ˆ φ i2 + i ˆ φ i

∂φi

∂t+ r0φi + u0φi

3 − Jijφ j

j

∑ − hi

⎝ ⎜ ⎜

⎠ ⎟ ⎟− iθ iφi

⎣ ⎢ ⎢

⎦ ⎥ ⎥i

Page 87: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

averaging over the Jij

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp −J 2

2Ndt d ′ t ˆ φ i(t) ˆ φ i(t')φ j (t)φ j (t') + ˆ φ i(t)φi( ′ t )φ j (t) ˆ φ j ( ′ t )( )∫

ij

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 88: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

averaging over the Jij

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp −J 2

2Ndt d ′ t ˆ φ i(t) ˆ φ i(t')φ j (t)φ j (t') + ˆ φ i(t)φi( ′ t )φ j (t) ˆ φ j ( ′ t )( )∫

ij

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

The exponent contains

C(t − ′ t ) =1

Nφi(t)φi(t '), R(t − ′ t )

i

∑ =i

Nφi(t) ˆ φ i(t'),

i

Page 89: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

averaging over the Jij

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp −J 2

2Ndt d ′ t ˆ φ i(t) ˆ φ i(t')φ j (t)φ j (t') + ˆ φ i(t)φi( ′ t )φ j (t) ˆ φ j ( ′ t )( )∫

ij

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

The exponent contains

C(t − ′ t ) =1

Nφi(t)φi(t '), R(t − ′ t )

i

∑ =i

Nφi(t) ˆ φ i(t'),

i

so replace them in the exponent

exp i dt( ˆ φ iφ j + ˆ φ jφi)Jij∫( )ij

= exp − 12 J 2 dt d ′ t ˆ φ i(t) ˆ φ i(t')C(t − ′ t ) − i ˆ φ i(t)φi(t')R(t − ′ t )( )∫

i

∑ ⎡

⎣ ⎢

⎦ ⎥

Page 90: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

decoupling sitesand introduce delta functions

1= DCD ˆ C ∫ exp − dtd ′ t ˆ C (t − ′ t ) NC(t − ′ t ) − φi(t)φi(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

1= DRDCR∫ exp − dtd ′ t ˆ R (t − ′ t ) NR(t − ′ t ) − i φi(t) ˆ φ i(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

Page 91: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

decoupling sitesand introduce delta functions

1= DCD ˆ C ∫ exp − dtd ′ t ˆ C (t − ′ t ) NC(t − ′ t ) − φi(t)φi(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

1= DRDCR∫ exp − dtd ′ t ˆ R (t − ′ t ) NR(t − ′ t ) − i φi(t) ˆ φ i(t ')i

∑ ⎛

⎝ ⎜

⎠ ⎟∫

⎣ ⎢

⎦ ⎥

We are left with

W ≡ Z[0,0,J][ ]av

= DC D ˆ C DR D ˆ R exp −N dt d ′ t ˆ C (t − ′ t )C(t − ′ t ) − ˆ R (t − ′ t )R(t − ′ t )[ ]∫( )∫

×exp N log DφD ˆ φ exp∫ −Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ]( )( )

Page 92: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

Page 93: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

Page 94: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

Page 95: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

wrt C : ˆ C (t − t') = − 12 J 2 ˆ φ (t) ˆ φ ( ′ t )

loc= 0

Page 96: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

wrt C : ˆ C (t − t') = − 12 J 2 ˆ φ (t) ˆ φ ( ′ t )

loc= 0

wrt ˆ R : R(t − t') = i φ(t) ˆ φ ( ′ t )loc

Page 97: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

(almost there)

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t C(t − ′ t ) ˆ φ (t) ˆ φ ( ′ t ) − iR(t − ′ t ) ˆ φ (t)φ( ′ t )[ ]∫

+ dt d ′ t ˆ C (t − ′ t )φ(t)φ( ′ t ) − i ˆ R (t − ′ t )φ(t) ˆ φ ( ′ t )[ ]∫

where

saddle-point equations:

wrt ˆ C : C(t − t') = φ(t)φ( ′ t )loc

wrt C : ˆ C (t − t') = − 12 J 2 ˆ φ (t) ˆ φ ( ′ t )

loc= 0

wrt ˆ R : R(t − t') = i φ(t) ˆ φ ( ′ t )loc

wrt R : ˆ R (t − ′ t ) = 12 iJ 2 ˆ φ (t)φ( ′ t )

loc= 1

2 J 2R( ′ t − t)

Page 98: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Page 99: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

Page 100: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

describing a single spin

Page 101: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

describing a single spin subject tonoise with correlation function 2Tδ(t – t’) +J2C(t - t’)

Page 102: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

effective 1-spin problem:

The average correlation and response functions are equal to those of a self-consistent single-spin problem with action

Sloc[φ, ˆ φ ,C, ˆ C ,R, ˆ R ] = d∫ t T ˆ φ 2 + i ˆ φ ˙ φ + r0φ + u0φ3

( )[ ]

+ 12 J 2 dt d ′ t ˆ φ (t)C(t − ′ t ) ˆ φ ( ′ t )∫

−J 2 dt d ′ t ∫ i ˆ φ (t)R(t − ′ t )φ( ′ t )[ ]

describing a single spin subject tonoise with correlation function 2Tδ(t – t’) +J2C(t - t’)and retarded self-interaction J2R(t - t’)

Page 103: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

local response function

single effective spin obeys

Page 104: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

Page 105: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Page 106: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

Page 107: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

−iωS(ω) = −r0S(ω) + J 2R0(ω)S(ω) + h(ω) + ξ (ω)

Page 108: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

−iωS(ω) = −r0S(ω) + J 2R0(ω)S(ω) + h(ω) + ξ (ω)

response function (susceptibility)

R0(ω) =∂ S(ω)

∂h(ω)=

1

r0 − J 2R0(ω)

Page 109: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

local response function

single effective spin obeys

dS

dt= −r0S − u0S

3 + J 2 d ′ t −∞

t

∫ R(t − ′ t )S( ′ t ) + h(t) + ξ (t)

ξ (t)ξ ( ′ t ) = 2Tδ(t − ′ t ) + J 2C(t − ′ t )

Fourier transform (u0 = 0)

−iωS(ω) = −r0S(ω) + J 2R0(ω)S(ω) + h(ω) + ξ (ω)

response function (susceptibility)

R0(ω) =∂ S(ω)

∂h(ω)=

1

r0 − J 2R0(ω)

(Can solve quadratic equation for R0 to find it explicitly)

Page 110: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

Page 111: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

Page 112: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

Page 113: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

Page 114: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

⇒ τ =1

1− J 2R02(0)

R(0) =1

T

⎝ ⎜

⎠ ⎟

Page 115: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

⇒ τ =1

1− J 2R02(0)

R(0) =1

T

⎝ ⎜

⎠ ⎟ critical slowing down

at Tc = J

Page 116: Lecture 14: Spin glasses Outline: the EA and SK models heuristic theory dynamics I: using random matrices dynamics II: using MSR

critical slowing downat small ω, R0

-1(ω) ~ 1 - iωτ

R0−1(ω) = r0 − J 2R0(ω)from

compute

τ =limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟=1+ J 2R0

2(0) limω →0

∂R0−1(ω)

∂(−iω)

⎝ ⎜

⎠ ⎟

⎣ ⎢

⎦ ⎥

τ =1+ J 2R02(0)τ

⇒ τ =1

1− J 2R02(0)

R(0) =1

T

⎝ ⎜

⎠ ⎟ critical slowing down

at Tc = J

(u0 > 0: perturbation theory does not change this qualitatively)