Improper Integrals I. Improper Integrals I by Mika Seppälä Improper Integrals An integral is...

Preview:

Citation preview

Improper Integrals I

Improper Integrals I

Improper Integrals I by Mika Seppälä

Improper Integrals

• An integral is improper if either:

• the interval of integration is infinitely long or

• if the function has singularities in the interval of integration (or both).

DefinitionDefinition

f x( )dx

a

b

Improper Integrals I by Mika Seppälä

Improper Integrals

• Improper integrals cannot be

defined as limits of Riemann sums. Neither

can one approximate them numerically

using methods based on evaluating

Riemann sums.

f x( )dx

a

b

Improper Integrals I by Mika Seppälä

The integral is improper because

the interval of integration is infinitely long.

e−x dx0

∫1

IMPROPER INTEGRALS

ExamplesExamples

Improper Integrals I by Mika Seppälä

is improper because the integrand has a singularity.

dx

x20

1

ExamplesExamples

2

IMPROPER INTEGRALS

Improper Integrals I by Mika Seppälä

is improper because the integrand has a singularity and the interval of integration is infinitely long.

ExamplesExamples

3

e−x

xdx

0

IMPROPER INTEGRALS

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f takes finite values on the interval [a, ∞).

If the limit exists and is finite, the improper integral converges, and

limb→ ∞

f x( )dxa

b

f x( )dx

a

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

e−x dx0

∫ =limb→ ∞

e−x dx0

b

=lim

b→ ∞−e−x⎡

⎣⎤⎦0

b

=lim

b→ ∞−e−b − −e0

( )( ) =1.

Hence the integral converges.

e−x dx0

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f takes finite values on the interval [a, ∞).

If the limit does not exists or is not finite, the improper integral diverges

limb→ ∞

f x( )dxa

b

f x( )dx

a

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

ex dx0

∫ =limb→ ∞

ex dx0

b

=lim

b→ ∞ex⎡

⎣⎤⎦0

b

=lim

b→ ∞eb −e0

( ) =∞.

Hence the integral diverges.

ex dx0

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f has a singularity at x = a. If the limit exists and is finite, the improper integral converges, and

limα→ a+

f x( )dxα

b

f x( )dx

a

b

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

dx

x0

1

∫ = limα→ 0 +

dx

1

= limα→ 0 +

x

2

⎣⎢⎢

⎦⎥⎥α

1

= limα→ 0 +

12

−α2

⎝⎜

⎠⎟

=

12

.

Hence the integral converges.

dx

x0

1

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

Assume that the function f has a singularity at x = a.

If the limit does not exist or is not finite, the improper integral diverges.

limα→ a+

f x( )dxα

b

f x( )dx

a

b

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

dx

x0

1

∫ = limα→ 0 +

dx

1

= lim

α→ 0 +ln x⎡

⎣⎤⎦α

1

= lim

α→ 0 +ln1 −lnα( ) =∞.

Hence the integral diverges.

dx

x0

1

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

If the function f has a singularity at a point c,

a < c < b, then the improper integral

converges if and only if both improper

integrals and converge.

f x( )dx

a

b

f x( )dx

a

c

f x( )dxc

b

In this case

f x( )dxa

b

∫ = f x( )dxa

c

∫ + f x( )dxc

b

∫ .

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

dx

x3−1

1

∫ =dx

x3−1

0

∫ +dx

x30

1

= lim

β→ 0 −

dx

x3−1

β

∫ + limα→ 0 +

dx

x3α

1

= limβ→ 0 −

32

x23

⎣⎢⎢

⎦⎥⎥−1

β

+ limα→ 0 +

32

x23

⎣⎢⎢

⎦⎥⎥α

1

= lim

β→ 0 −

32

β23 −

32

⎝⎜⎞

⎠⎟⎛

⎝⎜

⎠⎟ + lim

α→ 0 +

32

−32

α23

⎝⎜

⎠⎟

=−

32

+32

=0 .

Hence the integral converges.

dx

x3−1

1

Improper Integrals I by Mika Seppälä

Improper Integrals

DefinitionDefinition

If the function f has a singularity at a point c,

a < c < b, then the improper integral

diverges if either or diverges.

f x( )dx

a

b

f x( )dx

a

c

f x( )dxc

b

Improper Integrals I by Mika Seppälä

Improper Integrals

ExampleExample

= lim

β→ 0 −

dx

x3−1

β

∫ + limα→ 0 +

dx

x3α

1

∫ = lim

β→ 0 −

1−2

x−2⎡

⎣⎢

⎦⎥−1

β

+ limα→ 0 +

1−2

x−2⎡

⎣⎢

⎦⎥α

1

= lim

β→ 0 −−

12

β−2 − −12

⎝⎜⎞

⎠⎟⎛

⎝⎜

⎠⎟ + lim

α→ 0 +−

12

− −12

α−2⎛

⎝⎜⎞

⎠⎟⎛

⎝⎜

⎠⎟.

Neither limits exists. The integral diverges.

dx

x3−1

1

Improper Integrals I by Mika Seppälä

Improper Integrals

WarningWarning The integral diverges.

dx

x3−1

1

Trying to compute that integral by the Fundamental Theorem of Calculus, one gets

dx

x3−1

1

∫ =1−2

x−2

−1

1

=−

12

− −12

⎝⎜⎞

⎠⎟=0.

This is an incorrect computation.

Improper Integrals I by Mika Seppälä

Summary

• An integral is improper if either: the interval of integration is infinitely long or if the function has singularities in the interval of integration (or both). Such integrals cannot be defined as limits of Riemann sums. They must be defined as limits of integrals over finite intervals where the function takes only finite values.

Recommended