Image method for the Green’s functions of annulus and half-plane Laplace problems

Preview:

DESCRIPTION

Image method for the Green’s functions of annulus and half-plane Laplace problems. Reporter: Shiang-Chih Shieh Authors: Shiang-Chih Shieh, Ying-Te Lee and Jeng-Tzong Chen Department of Harbor and River Engineering, National Taiwan Ocean University Oct.22, 2008. Outline. Introduction - PowerPoint PPT Presentation

Citation preview

October, 22, 2008 p.1

Image method for the Green’s functions of annulus and half-plane Laplace

problems

Reporter: Shiang-Chih ShiehAuthors: Shiang-Chih Shieh, Ying-Te Lee and

Jeng-Tzong ChenDepartment of Harbor and River Engineering,

National Taiwan Ocean UniversityOct.22, 2008

October, 22, 2008 p.2

Outline

IntroductionProblem statementsAnalytical solution

Method of Fundmental Solution (MFS) Trefftz method

Equivalence of Trefftz method and MFSSemi-analytical solutionNumerical examplesConclusions

October, 22, 2008 p.3

),(

Trefftz method

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

1( )

M

j jj

u x c

j is the jth T-complete function

1, cos sinm mm and mr f r f

Interior problem:

ln , cos sinm mm and m

exterior problem:),(

October, 22, 2008 p.4

Method of Fundamental Solution (MFS)

1( ) ( , )

N

j jj

u x w U x s

( , ) ln , ,jU x s r r x s j N

Interior problem

exterior problem

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.5

Trefftz method and MFS

Method Trefftz method MFS

Definition

Figure caption

Base , (T-complete function) , r=|x-s|

G. E.

Match B. C. Determine cj Determine wj

( , ) lnU x s r

1( ) ( , )

N

j jj

u x w U x s

( )2 0u xÑ = ( )2 0u xÑ =

D

u(x)

~x

s

Du(x)

~x

r

~s

is the number of complete functions MN is the number of source points in the MFS

1( )

M

j jj

u x c

j

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.6

Optimal source location

z

Ä

1z

Ä

2z

e

3z

e

4z

e

5z

e

6z

Ä

7z

ÄK

8z

ÄK

MFS (special case)Image method

Conventional MFS Alves CJS & Antunes PRS

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.7

Problem statements

Case 1 Annular

a

b

Governing equation :

),( R

xxxG ),(),(2

Boundary condition :

Fixed-Free boundary

u2=0t1=0

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.8

Problem statements

),( R

Governing equation :

xxxG ),(),(2

Dirichlet boundary condition :

( , ) 0,G x x Bz = Î

Case 2 half-plane problem

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

u1=0

u2=0

October, 22, 2008 p.9

Problem statements

Case 3 eccentric problem

b

a

e

R

Governing equation :

xxxG ),(),(2

Dirichlet boundary condition :

( , ) 0,G x x Bz = Î

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

u1=0

u2=0

October, 22, 2008 p.10

Present method- MFS (Image method)

z

Ä

1z

Ä

2z

e

3z

e

4z

e

5z

e

6z

Ä

7z

Ä

8z

Ä

2 2

4 4

6 6

8 8

8 6 8 6

8 4 8 4

8 2 8 2

8 8

inside

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

i i

i i

i i

i i

R

R

R

R

R

R

R

R

1 1

3 3

5 5

7 7

8 7 8 7

8 5 8 5

8 3 8 3

8 1 8 1

outside

( , )

( , )

( , )

( , )

( , )

( , )

( , )

( , )

i i

i i

i i

i i

R

R

R

R

R

R

R

R

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.11

MFS-Image group( )

( ) ( )

( )( )

11

1

1

1

m

m

m

mm

RU ,xcos m

n b

aU ,x ln R cos m

m R

R ,

bz

r

z

z

z

z q

z

q

f

q

z

f

¥

=

¥

+=

æ ö÷ç ÷= - -ç ÷ç ÷÷çè

Ä

= -¶

ø

¶+

å

å

1 11 1

1

1

1

1

1

2

1

1

1

1

( , )cos (

( , ) ln cos ( )

(

)

, )m

m

m

mm

R

R b bR

b

U x

aU x R

bm

mm

R

R

R

R

1

3

1 3

3 31 3

3 3

2 2

23 2

3 2

1

( ,

(

)

( , ) ln cos ( )

, )cos ( )

m

m

mm

m

U x

a

R

b R b bR

U x

R

R m

R

bm

R

R

R

b

m

a

2 2

11

2 2

2

2

22

21

( , ) 1

( , )

cos

1( , ) ln )

( )

cos (

m

m

m

m

m

U x Rm

b

R

a R aR

R a R

m

b

RU x a

m a

4 4 4

2 2

44 2

1

4 4

11

44

1

1

( , )

1( , ) ln cos ( )

1cos

( , )

( )m

mm

m

m

U x Rm

b b

R

R a a aR R

a R R

RU x a m

m a

b

1zÄ

2ze

3ze

4ze

5ze

6zÄ

7zÄK

8zÄK

October, 22, 2008 p.12

MFS-Image group

1zÄ

2ze

3ze

4ze

5ze

6zÄ

7zÄK

8zÄK

5 5

2 2 2

45 2

5

1

4

1

5

5

5

5

5

1

( , )c

1( , ) ln cos ( )

(

os ( )

, )

m

m

m

m

m

U x bm

R

b R b b bR

R b R

R

aU x R

a

mR

R

m

66

1

6 6

2 2 2

6 6

11

66 2

3 3

1( , ) ln cos (

( , ) 1c

( , )

)

os ( )m

mm

m

m

U x Rm

R

R a a a a

RU x a m

b

Ra R

b

a

b

m

R R

7 7

22 2

67 2

7 71

2

7

7

6

1

1 7

7

(

1( , )

, )cos ( )

ln cos )

(

(

, )

m

mm

m

m

aU x R m

R

b R

U s x bm

R

m R

b R b bR

R b R a a

8

8 8

42

88 4

5

8

1

8

8

5

11

( , ) 1cos ( )

1( , ) ln c

, )

os ( )

(

m

m

m

m

m

R

a RR a aR

U

RU x b m

m

x R

a

a

b

m

b

R

a

R

2 2 4 2 41

1 9 8 74 4

2 2 4 2 41

2 10 8 64 4

2 2 24 41

3 11 8 52 2 4 2 4

2 2 24 41

4 12 8 42 2 4 2 4

, ............ ( )

, ........... ( )

, ..... ( )

, .... ( )

ii

ii

ii

ii

b b b b bR R R

R R a R a

a a a a aR R R

R R b R b

b R b R b Rb bR R R

a a a a a

a R a R a Ra aR R R

b b b b b

R

4 4 4 4 41

5 13 8 32 2 4 2 4

4 4 4 4 41

6 14 8 22 2 4 2 4

4 4 44 41

7 15 8 14 4 4 4 4

4 4 44 41

8 16 84 4 4 4 4

, ..... ( )

, ...... ( )

, ...... ( )

, ...... ( )

ii

ii

ii

ii

b b b b bR R

a R a R a a R a

a a a a aR R R

b R b R b b R b

b R b R b Rb bR R R

a a a a a

a R a R a Ra aR R R

b b b b b

8 7 8 6 8 5 8 41

8 3 8 2 8 1 8

1( , ) {ln lim[ (ln ln ln ln

2ln ln ln ln )]}

N

m i i i iN i

i i i i

G x x x x x x

x x x x

z z z z z zp

z z z z- - - -®¥ =

- - -

= - + - - - - - - -å

- - + - + - + -

October, 22, 2008 p.13

Analytical derivation

z

Ä

1z

Ä

2z

e

3z

e

4z

eLL

ez

Ä

cz

e

8 7 8 6 8 5 8 41

8 3 8 2 8 1 8

1( , ) {ln lim[ (ln ln ln ln

2ln ln ln ln ) ( )ln ( )]}

N

i i i iN i

i i i i

G x x x x x x

x x x x c N e N

z z z z z zp

z z z z r- - - -®¥ =

- - -

= - + - - - - - - -å

- - + - + - + - + +

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

5z

e

6z

Ä

7z

Ä

8z

Ä

October, 22, 2008 p.14

Numerical solution

8 7 8 6 8 5 8 41

8 3 8 2 8 1

8 7 8 6 8

1( , ) {ln lim [ (ln ln ln ln

2

ln ln ln ln 8 ) ( )ln ( )]} 0

( , ) 1{ln lim [ (ln ln ln

2

a

a

b b

N

i i i ix x N i

i i i x x

i i iNx x x x

G x x x x x x

x x x x i c N x e N

G xx x x x

x x

z z z z z zp

z z z z

zz z z z

p

- - - -= ®¥ =

- - - =

- - -®¥= =

Þ - + - - - - - - -å

- - + - + - + - + + =

¶ ¶Þ - + - - - - -

¶ ¶ 5 8 41

8 3 8 2 8 1

ln

ln ln ln ln 8 ) ( )ln ( )]} 0b

N

ii

i i i x x

x

x x x x i c N x e N

z

z z z z

-=

- - - =

- -å

- - + - + - + - + + =

( )

( )

( )

( )

8 7 81

8 7 81

ln ln ln ln 1( ) 0

( ) 0ln (1)ln ln ln

aa

b

x xb

N

i ix xi x x

N

i i x xi

x s x x xc N

e Nxx s x x x x

x

z z

z z=

-== =

- ==

ì üé ùï ïï ï é ùê ú- - - + -åï ïï ï ê úê úë ûï ï ì ü ìï ï ïê úï ïï ï ï ï+ =í ý í ý íê ú¶ ¶ï ï ï ïì üé ù¶ï ï ê úï ïî þï ïï ïê ú- - - + -ï ïå ê úí ý ¶ ¶ï ïï ïê ú ë û¶ï ïë ûï ïî þï ïï ïî þ

L

L

üïï ïýï ïï ïî þ

( , ) 0

( , ) 0a

b

a G x

b G x

r z

r z

ì = Þ =ïïíï = Þ =ïî

a

b

u2=0

t1=0

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.15

Numerical and analytic ways to determine c(N) and e(N)

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

0 10 20 30 40 50

N

-0 .2

-0.16

-0.12

-0.08

c(N

) an

d e(

N)

an a ly tic e (N )n u m e rica l e (N )an a ly tic c (N )n u m e rica l c (N )

e(N)=-0.1

c(N)=-0.159

October, 22, 2008 p.16

Trefftz Method

( )( )

( )

1

1

1

1

m

m

m

m

ln R cos m ,Rm R

U x,R

ln cos m ,Rm

z z

z

zz

rq f r

z

r q f rr

¥

=

¥

=

ìï æ öï ÷çï ÷- - ³çå ÷ï ç ÷ï ÷çè øï=íï æ öï ÷ï ç- - <÷åï ç ÷ï ç ÷è øïî

( ) ( )

( )

( )

( )

1

1

2

1 1

2

1 1

2

m

m

m

m

u x U x,

ln R cos m , Rm R

u xR

ln cos m , Rm

z zz

zz

p z

rq f r

p

r q f rp r

¥

=

¥

=

=

ì é ùï æ öï ê ú÷çï ÷ç- - ³ï ê ú÷çï ÷÷çê úï è øïï ë û=íï é ùï æ öï ê ú÷çï ÷- - <çê ú÷ï ç ÷çï è øê úï ë ûïî

å

å

PART 1

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.17

Boundary value problem

1 1t t=-2 2u u=-

PART 2

1( , ) ,

TN

T j jj

G x s c F=

= å

mm

mmmm

mm

sin,cos,lnexterior

sin,cos,1interior

0 01

( , ) ln ( cos ( sin ( )m m m mT m m m m

mG x p p p p ) m q q ) m u xz r r r f r r f

¥ - -

=

é ù= + + + + + =-å ê úë û

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

0

0

1 ln ln12

a Rpp

2 2

2 2

cos ( )

2

cos ( ) ( )

2

m m m

m m

m

m m m m m m m

m m

am a R

R

m b app Ra

a b m b aR b

m b a

2 2

2 2

sin ( )

2

sin ( ) ( )

2

m m m

m m

m

m m m m m m m

m m

am a R

R

m b aqq Ra

a b m b aR b

m b a

October, 22, 2008 p.18

1t

2u1 1t t=-

22 uu 1 0t =

2 0u =

PART 1 + PART 2 :

( )

( )

( )

1

1

0 0

( , )

1 1ln cos ,

2

1 1ln cos ,

2

1( ) ln ( cos ( sin

2

m

m

m

m

m m m mm m m m

m

G x u u

R m Rm R

u xR

m Rm

u x p p p p ) m q q ) m

z zz

zz

z

rq f r

p

r q f rp r

r r r f r r fp

¥

=

¥

=

- -

=

= +

ì é ùï æ öï ê ú÷çï ÷ç- - ³ï åê ú÷çï ÷÷ê úçï è øï ê úï ë û=íï é ùï æ öï ê ú÷çï ÷- - <å çê úï ÷ç ÷çï è øê úï ë ûïî

é ù= + + + + +ê úë û1

¥ì üï ïï ïåí ýï ïï ïî þ

{ }0 01

1( , ) ln ln ( cos ( sin

2m m m m

m m m mm

G x x p p p p ) m q q ) mz z r r r f r r fp

¥- -

=

é ù= - + + + + + +å ë û

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.19

Equivalence of solutions derived by using Trefftz method and MFS for annular problem

N

i i iN

i

i i i i i

ζ

G x ζ x ζ x ζ x ζ x ζπ

x ζ x ζ x ζ x ζ x ζ

a R ρ a ρ b

8 7 8 6 8 51

8 4 8 3 8 2 8 1 8

1( , ) l n l i m {l n l n l n

2

l n l n l n l n l n }

l n l n l n ,

0

0

1

12

p lna ln R

pz

p

ì ü é ù-ï ïï ï ê ú=í ý ê úï ï -ë ûï ïî þ

MFS(Image method)

Trefftz method

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

The same

October, 22, 2008 p.20

Trefftz method series expand

( )

( )

2 2

2 2

2

2

m

m m

m m

m

m mm

m m m m

m m

acos m a R

R

m b ap

p Raa b cos m b a

R b

m b a

z

z

z

z

q

p

q

p

é ùé ùæ öê ú÷ê úç ÷-çê ú÷ê úç ÷çè øê úê úë ûê úê úì ü +ï ïï ï ê ú=í ý ê úï ï é ùæ öï ï æ öî þ ê ú÷ê úç ÷ç÷+çê ÷ úç÷ê ú÷ç ç÷ç è øê úè øê úë ûê úê ú+ë û

( )

( )

2 2

2 2

2

2

m

m m

m m

m

m mm

m m m m

m m

asinm a R

R

m b aq

q Raa b sinm b a

R b

m b a

z

z

z

z

q

p

q

p

é ùé ùæ öê ú÷ê úç ÷-çê ú÷ê úç ÷çè øê úê úë ûê úê úì ü +ï ïï ï ê ú=í ý ê úï ï é ùæ öï ï æ öî þ ê ú÷ê úç ÷ç÷+çê ÷ úç÷ê ú÷ç ç÷ç è øê úè øê úë ûê úê ú+ë û

0

2 2 2

2

2 2 2 2 2 2 2 2

( ) ( )

cos( )

m m m m

m m m m m

m m m m m m m m

a b a

R R R a Rm

b a b a b a b a

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

Without loss of generality

October, 22, 2008 p.21

4 2

8 7 2 2 441 9

2

2 2 4 4

8 3 4 4 445 13

2

2 4

8 7 8 34

( )( ) ( ) ( ) ( )

1 ( )

( )( ) ( ) ( ) ( )

1 ( )

( ) ( )

1 ( )

m

m m m m

im

m

m m m m

im

m

i im

RR R a b

aR R b b bb

a Ra R a R a b

aR R b b bb

R a R

b bab

2 2

2 2 2 2 2 24

( )

( )( ) ( )1 ( )

mm m m m m m

m m m m m mm

R b a Ra b a b a b ab

2 2 2

2

2 2 2 2 2 2 2 2

( ) ( )

cos( )

m m m m

m m m m m

m m m m m m m m

a b a

R R R a Rm

b a b a b a b a

Image method series expansion

Trefftz series expansion

z 1zÄ

2ze

3ze

4ze

5ze

6zÄ

7zÄK

8zÄK

October, 22, 2008 p.22

2 2 2

2

2 2 2 2 2 2 2 2

( ) ( )

cos( )

m m m m

m m m m m

m m m m m m m m

a b a

R R R a Rm

b a b a b a b a

2

2 2 4

2 108 6 4

4

4

24 4 4

6 148 2 2 2 4

4

2 4

2

8 6 8 24

( )

( ) ( ) ( ) ( )1 ( )

( )

( ) ( ) ( ) ( )1 ( )

( ) ( )

1 ( )

m

m m m m

im

m

m m m m

im

m

i im

aRR R a a a

aR R bb

ab RR R a a a

ab R b R bb

a aR b R

ab

2 2 2 22 2

2 2 2 2 2 24

( ) ( ) ( )

( )( ) ( )1 ( )

m m m m m

m m m m m mm

a b a bb a

R Ra b a b a b ab

Image method series expansion

Trefftz series expansion

z 1zÄ

2ze

3ze

4ze

5ze

6zÄ

7zÄK

8zÄK

October, 22, 2008 p.23

2

22 2 4

8 5 2 2 443 11

4

44 4 4

8 1 4 4 447 15

2

2

8 5 8 14

( )

( ) ( ) ( ) ( )1 ( )

( )

( ) ( ) ( ) ( )1 ( )

( ) (

1 ( )

m

m m m m

im

m

m m m m

im

m

i im

ab Ra a a

aR R b R b R bb

ab Ra a a

aR R b R b R bb

ab R

ab

4 2 22 2

4

2 2 2 2 2 24

) ( ) ( ) ( )

( )( ) ( )1 ( )

m m m m m

m m m m m mm

a a ab a

b R R Ra b a b a b ab

Image method series expansion

2 2 2

2

2 2 2 2 2 2 2 2

( ) ( )

cos( )

m m m m

m m m m m

m m m m m m m m

a b a

R R R a Rm

b a b a b a b a

Trefftz series expansion

z 1zÄ

2ze

3ze

4ze

5ze

6zÄ

7zÄK

8zÄK

October, 22, 2008 p.24

Image method series expansion

2 2 2

2

2 2 2 2 2 2 2 2

( ) ( )

cos( )

m m m m

m m m m m

m m m m m m m m

a b a

R R R a Rm

b a b a b a b a

Trefftz series expansion

z 1zÄ

2ze

3ze

4ze

5ze

6zÄ

7zÄK

8zÄK

2

2 2 4 24 12

8 4 2 2 44

4

4 4 4 48 16

8 4 4 44

2 4

2

8 4 84

( )( ) ( ) ( ) ( )

1 ( )

( )( ) ( ) ( ) ( )

1 ( )

( ) (

1 ( )

m

m m m m

im

m

m m m m

im

m

i im

a Ra R a RR R a b

ab b bb

a Ra R a RR R a b

ab b bb

a R a R

bab

2 2

2 2

4

2 2 2 2 2 24

) ( ) ( ) ( )

( )( ) ( )1 ( )

m m m m m

m m m m m mm

a R a Rb a

ba b a b a b ab

October, 22, 2008 p.25

Equivalence of solutions derived by Trefftz method and MFS

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

Trefftz method MFS

1, cos , sin

ln , cos , sin

0,1,2,3, ,

m m

m m

m m

m m

m

r f r f

r r f r f- -

= ¥L

ln ,jx s j N- Î

Equivalence

addition theorem

October, 22, 2008 p.26

Semi-analytical solution-case 2

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

a

1

2

3

4

5

6

7

8

b

October, 22, 2008 p.27

MFS-Image group

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

a

1

1

1ln ( ) cos ( ),

1ln ( ) cos ( ),

m

m

m

m

aR m a R

m R

Rm R

m

z z

z

z

z

q f

z

r q f rr

¥

=

¥

=

ìïï - - <åïïïÄ ® íïï - - <ï åïïî

11 1

1

11

1 11

2

11

1ln ( ) cos ( ),

1ln ( ) cos ( ),

m

m

m

m

Ra m a R

m aR

m Rm

R a aR

a R Rz z

q fz

r q f rr

¥

=

¥

=

ìïï - - >åïïï® íïï - - >åïïïî

= Þ =

e

32 3

1

33

2 31

2

33

2 2

1ln ( ) cos ( ),

1ln ( ) cos ( ),

m

m

m

m

Ra m a R

m aR

m Rm

R a aR

a R R

q fz

r q f rr

¥

=

¥

=

ìïï - - >åïïïÄ ® íïï - - >åïïïî

= Þ =

M

2 2 21

2

2

2 2 21

2

1 11

2 2

1 2

1ln ( ) cos ( ),

1ln ( ) cos ( ),

2 sin costan ,

cos cos

m

m

m

m

aR m a R

m R

R m Rm R

b R RR

Rz z

z

q f

zr

q f r

q qq

q q

¥

=

¥

=

-

ìïï - - <åïïï® íïï - - <åïïïî-

= =

e

4 3 41

4

4

4 3 41

4

1 1 1 1 13 4

1 1 3

1ln ( ) cos ( ),

1ln ( ) cos ( ),

2 sin costan ,

cos cos

m

m

m

m

aR m a R

m R

R m Rm R

b R RR

R

q f

zr

q f r

q qq

q q

¥

=

¥

=

-

ìïï - - <åïïïÄ ® íïï - - <åïïïî-

= =

October, 22, 2008 p.28

Frozen image location1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

0 2 4 6

-6

-4

-2

0

Successive images (20 points)

(0,-5.828)(frozen)

(0,-0.171)(frozen)

October, 22, 2008 p.29

Analytical derivation of location for the two frozen points

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

b

ax

y

c

d

cR

2d cR b R 2

1

1ln ( ) cos ( )ln ,m

c c c

cc

d

m

d

cd

Ra mx a R

m

a

a R

a

R aR

R

z yz f¥

=- -® - = >

ß

= Þ =

å

1

1ln ( ) cos ,(n )ld d d

m

d dm

d

aR mx a R

m Ryz fz

¥

=- - å® <-=

2

2

2

6 1 0

3 2 2

c

c

c c

c

aR

b R

R R

R

(0.171 & 5.828)

October, 22, 2008 p.30

Series of images

The final two frozen images

a

b

1

42

3

6

54 1i

4i

lim

4 3

lim

4 2

, ln

, ln

N

N

i c

i d

i N x

i N x

(0, 5.828)d

frozen

frozen

(0, 0.171)c

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.31

Rigid body term

a

b

1

42

3

6

54 1i

4i

11

11 1 1

1

2

1 1

1ln ( ) cos ( ),

1ln ( ) cos ( ),

ln ln ln ln

m

m

m

m

aR m B

m R

Ra m B

m a

aR x s x s R a

R

z

z

z z

z

z y f r

z y f r

¥

=

¥

=

ìïï Ä Þ - - Îåïïïíïïï Þ - - Îåïïî

= \ - - - = -

e

Q

2 2 2 11

2

33 2 1

1

2

3 2 3 2

2

1ln ( ) cos ( ),

1ln ( ) cos ( ),

ln ln ln ln

m

m

m

m

aR m B

m R

Ra m B

m a

aR x s x s a R

R

z y f r

z y f r

¥

=

¥

=

ìïï Þ - - Îåïïïíïï Ä Þ - - Îï åïïî

= \ - - + - = -

e

Q

M

2ln ln ln ln .... ( )R a a R e N

4 3 4 2 4 1 41

1( , ) ln lim ln ln ln ln ( )ln ( )ln ( )

2

N

i i i i c dN iG x x x x x x c N x d N x e N

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.32

1 1 4 3 1 4 2 1 4 1 1 4 1 11

2 2 4 3 2 4 2 2 4 1 2 4 2 21

3

ln lim ln ln ln ln ( )ln ( )ln ( ) 0

1ln lim ln ln ln ln ( )ln ( )ln ( ) 0

2

ln

N

i i i i c dN i

N

i i i i c dN i

x x x x x c N x d N x e N

x x x x x c N x d N x e N

x

3 4 3 3 4 2 3 4 1 3 4 3 31

lim ln ln ln ln ( )ln ( )ln ( ) 0N

i i i i c dN ix x x x c N x d N x e N

1 1 4 3 1 4 2 1 4 1 1 41

1 1

2 2 4 3 2 4 2 2 4 1 2 4 2 21

3 3 4 3 3 4 2 3 4 1 3 41

ln ln ln ln lnln ln 1

ln ln ln ln ln ln ln

ln ln ln ln ln

N

i i i ii

c dN

i i i i ci

N

i i i ii

x x x x xx x

x x x x x x x

x x x x x

3 3

( ) 0

1 ( ) 0

ln ln 1 ( ) 0d

c d

c N

d N

x x e N

1x

2x 3x

Matching BCs to determine three coefficient

October, 22, 2008 p.33

1 2 3 4 5 6 7 8 9 10N

-0 .8

-0 .6

-0 .4

-0 .2

0

0.2

c(N

), d

(N)

and

e(N

)c (N )d (N )e (N )

Numerical approach to determine c(N), d(N) and e(N)

( ) 0-157.9713 10 e N

( )c N -0.26448

( )d N -0.73551

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.34

Semi-analytical solution-case 3

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

e

ba

u1=0

u2=0

1ze

2ze

3zÄ

4zÄ

5ze

6ze

7zÄ

8zÄ x

y

October, 22, 2008 p.35

MFS-Image group1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

11

21

1( , ) ln cos ( )

1( , ) ln cos )

( , )

(

m

m

m

m

R

aU x R m

m R

R e

U x bm b

e

m

1 1 11 1

1 1 11 1

1 1 1

1( , ) ln

1( ,

( ,

) ln c

cos ( )

)

os ( )

m

m

m

m

aU x R m

m R

bU x R m

m R

R

2

22 2 2

1

2

1

2

2 2

2

2

1( , ) ln

( ,

1( , ) ln cos ( )

cos ( )

)m

m

m

m

R

RU x b

RU x a

mb

m a

m

m

4

2

1

2

2

2

3

22

1

bR e

R ea

RR

bR e

e Ra

RR

2

5

42

6

32

7

62

8

5

bR e

e Ra

RR

bR e

R ea

RR

2

9

82

10

72

11

102

12

9

bR e

R ea

RR

bR e

R ea

RR

2

13

122

14

112

15

142

16

13

bR e

R ea

RR

bR e

R ea

RR

October, 22, 2008 p.36

Analytical derivation of location for the two frozen points

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

e

ab

c

d

cR

dR

eeR

bR

Ra

Rc

d

d

c

22

,

0)( 2

2222 a

eReba

R dd

October, 22, 2008 p.37

Numerical approach to determine c(N), d(N) and e(N)

0 10 20 30 40 50N

-1 .2

-0.8

-0.4

0

0.4

c(N

), d

(N)

and

e(N

)

c (N )d (N )e (N )

83.445 10 ( ) 0e N-- ´ Þ @

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

c(N)=-0.8624

d(N)=-0.1375

October, 22, 2008 p.38

Numerical examples-case 1Fixed-Free boundary for annular case

(a) Trefftz method (b) Image method

Contour plot for the analytical solution (m=N).

m=20 N=20

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.39

Numerical examples-case 2

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Present method-image40+2 points

Null-field BIE approach (addition theorem and superposition technique) (M=50)

Dirichlet boundary for half-plane case

October, 22, 2008 p.40

Numerical examples-case 3

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2 2.5 3-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

image method analytical solution

(bi-polar coordinate )

Dirichlet boundary for eccentric case

October, 22, 2008 p.41

Conclusions

The analytical solutions derived by the Trefftz method and MFS were proved to be mathematically equivalent for the annular Green’s functions. We can find final two frozen image points (one at origin and one at infinity). Their singularity strength can be determined numerically and analytically in a consistent manner. The image method can be seen as a special case for method of fundamental solution with optimal locations of sources.

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

October, 22, 2008 p.42

Image method versus MFS

1. Introduction2. Problem statements3. Analytical solution

4. Equivalence of Trefftz method and MFS

5. Semi-analytical solution6. Numerical examples7. Conclusions

N N

Ku p

K

N

large 3 3

Ku p

K

optimal

October, 22, 2008 p.43

Thanks for your kind attentions

You can get more information from our website

http://msvlab.hre.ntou.edu.tw/

垚淼 2008研討會

Recommended