23
2012/12/24 1 Introduction to Laplace Transforms Introduction Definition of the Laplace Transform Properties of the Laplace Transform The Inverse Laplace Transform The Convolution Integral Application to Integrodifferential Equations Summary Introduction A very powerful tool for analyzing circuits Differential equations are converted into algebraic equations Laplace transform method Transformation from time domain to frequency domain Obtain the solution Transformation from frequency domain to time domain by applying inverse Laplace transform It provides the total response (natural/forced) in one single operation

Introduction to Laplace Transforms2012/12/24 1 Introduction to Laplace Transforms •Introduction •Definition of the Laplace Transform •Properties of the Laplace Transform •The

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • 2012/12/24

    1

    Introduction to Laplace Transforms•Introduction•Definition of the Laplace Transform•Properties of the Laplace Transform•The Inverse Laplace Transform•The Convolution Integral•Application to Integrodifferential Equations•Summary

    Introduction•A very powerful tool for analyzing circuits•Differential equations are converted into

    algebraic equations•Laplace transform method

    –Transformation from time domain to frequencydomain

    –Obtain the solution–Transformation from frequency domain to time

    domain by applying inverse Laplace transform

    •It provides the total response (natural/forced)in one single operation

  • 2012/12/24

    2

    Definition of the Laplace Transform

    dtetfsF

    js

    tutftfdtetfsFtfL

    tf

    st

    st

    )()(

    bygivenistransformLaplacesided-twoThe

    )sunit(where

    )()()(,)()()(

    bygivenissided)-(onetransformLaplaceits,)(functiongivenaFor

    1

    0

    Existence of Laplace Transform

    Convergenceregion(>c)

    ct

    t

    ct

    t

    c

    t

    t

    tjttjt

    stst

    tfe

    tfe

    tfe

    tfttf

    edttfedttfee

    jsdttfedtetfsF

    if)(lim

    if0)(lim

    e.convergencofabscissathecalledis

    0)(lim

    such thatexistsconstantpositivereal,aif

    orderlexponentiaofbetosaidis)(.asorderlexponentiaofis)(ifconvergesintegralThe

    1)()(

    )()()()(

    converges.integraltheifexiststransformLaplaceThe

    00

    00

  • 2012/12/24

    3

    Cont’d

    exists.transformLaplacethe

    ,0for0)(0for)(For*

    exist.tdon'stransformLaplacethe,)(For*

    sin,,)(For*

    0sin,sin,)(For*

    2

    22

    tTttfTtetf

    teetf

    cteteetf

    tttttf

    t

    tt

    cctctct

    c

    Determine L[u(t)]

    sss

    es

    dte

    dtetutuL

    stst

    st

    1)1(

    1)0(

    1

    11

    )()(

    00

    0

  • 2012/12/24

    4

    Determine L[e-atu(t)]

    as

    asas

    eas

    dtee

    dtetuetueL

    tas

    stat

    statat

    1

    )1(1

    )0(1

    1

    )()(

    0

    )(

    0

    0

    Determine L[(t)]

    1)()0()()0(

    )()0(

    )()(But

    )()(

    0

    0

    0

    0

    0

    0

    0

    0

    etL

    fdttf

    dttf

    dtttf

    dtettL st

  • 2012/12/24

    5

    Properties of the Laplace Transform

    22

    2211

    2021012211

    1121

    21

    21

    21

    )(cos

    :Example

    )()(

    )()()()(

    :PropertyLinearity

    ss

    jsjs

    eLeLeeLtutL

    sFasFa

    dtetfadtetfatfatfaL

    tjtjtjtj

    stst

    Scaling Property

    2222

    22

    )(

    0

    )(

    00

    42

    )2(21

    )(2sin

    )(sin

    :Example

    1

    )(1

    )(Let)()()(

    sstutL

    stutL

    as

    Fa

    dxexfa

    atxadx

    exfdteatfatfL

    asx

    asxst

  • 2012/12/24

    6

    Time Shift Property

    22

    22

    0

    )(

    0

    0

    )()(cos

    )(cos

    :Example

    )(

    )(Let)()(

    )()()()()(

    :ShiftTime

    ss

    eatuatL

    ss

    tutL

    sFe

    atxdxexfedxexf

    dteatfdteatuatfatuatfL

    as

    as

    sxasaxs

    st

    a

    st

    Frequency Shift Property

    22

    22

    2222

    )(

    00

    )(sin

    )(cos

    )(sin,)(cos

    :Example

    )()()()(

    :ShiftFrequency

    ωasu(t)ωteL

    ωasas

    u(t)ωteL

    ωstuωt

    ωss

    tuωt

    asF

    dtetfdtetfetutfeL

    at

    at

    tasstatat

  • 2012/12/24

    7

    Time Differentiation Property

    )0()()()(

    )()(

    )(

    )(

    )(

    '

    0

    000

    0

    |

    fssFtfLtudtdf

    L

    ssFtudtdf

    Lfe

    dtfesdtedtdf

    dtdtfed

    fesedtdf

    dtde

    fedtdf

    dtfed

    dtdx

    ydtdy

    xdtxyd

    dtedtdf

    tudtdf

    L

    st

    ststst

    ststst

    stst

    st

    (Cont’d)

    )0()0()0()(

    )0()0()(

    )0()0()()0()(

    )1(0'21

    '2

    '''2

    2

    nnnn

    n

    n

    fsfsfssFs

    dtfd

    L

    fsfsFs

    ffssFsftfsLdt

    fdL

  • 2012/12/24

    8

    Time Integration Property

    )(1

    )0(1

    )(11

    )(1

    )(

    )()(

    )(

    )(,)(Let

    )()(

    |

    |

    00

    0

    000

    0

    000

    sFs

    us

    sFs

    ues

    sFs

    dttfL

    dttfsLsF

    dtuesdtfeue

    dtuesdueudedueued

    dttfdudxxfu

    dtedxxfdttfL

    stt

    t

    ststst

    ststststst

    t

    sttt

    (Cont’d)

    13232

    2

    0

    20

    01

    1

    !,

    2

    1112

    111)(

    1)(,)()(Let:Examples

    )()0(where

    )0(1

    )(1

    )(

    nn

    t

    t

    t

    sn

    tLs

    tL

    ssst

    LtdtL

    ssstLdttfL

    ssFtutf

    dttff

    fs

    sFs

    dttfL

  • 2012/12/24

    9

    Frequency Differentiation Property

    2

    00

    0

    )(11

    )(

    :Example

    )()1()(

    )()(

    )(

    ))(())(()(

    )()(

    asasdsd

    tuteL

    dssFd

    tftL

    dssdF

    ttfL

    ttfL

    dtettfdttetfds

    sdF

    dtetfsF

    at

    n

    nnn

    stst

    st

    Time Periodicity Property

    )2()2()()()(

    )()()()(

    1

    11

    321

    TtuTtfTtuTtftf

    tftftftf

    +

    +

  • 2012/12/24

    10

    (Cont’d)

    Ts

    Ts

    TsTs

    TsTs

    as

    esF

    sF

    se

    eesF

    esFesFsFsF

    sFeatuatfL

    1)(

    )(

    .0)Re(is,that,1If

    1)(

    )()()()(

    )()()(

    givespropertyshifttimeThe

    1

    21

    2111

    Initial-Value Theorem

    )(lim)0(

    0)0()(lim

    0,Let

    )0()(

    givespropertyationdifferentiThe

    0

    0

    ssFf

    fssF

    dtedtdf

    s

    dtedtdf

    dtdf

    LfssF

    s

    s

    st

    st

  • 2012/12/24

    11

    Final-Value Theorem

    )(01

    lim)(lim)(

    11

    )()(sin)(:2Example

    )(1)(lim)(1

    )()()(:1Example

    0.)ifonlyandifvalidis(It)(lim)(

    )0()()0()(lim

    ,0Let

    )0()(

    givespropertyationdifferentiThe

    200

    2

    0

    c0

    0

    0

    00

    0

    ss

    ssFf

    ssFtuttf

    ssFfs

    sFtutf

    ssFf

    ffdfdtedtdf

    fssF

    s

    dtedtdf

    dtdf

    LfssF

    ss

    s

    s

    s

    st

    Summary

    )0(

    )0(

    )0()(

    )0()0()(

    )0()(ationdifferentiTime

    )()(shiftFrequency)()()(shiftTime

    1)(caling

    )()()()(Linearity)()(Property

    )1(

    '2

    1

    '22

    2

    22112211

    n

    n

    nn

    n

    n

    at

    as

    f

    fs

    fssFs

    dtfd

    fsfsFsdt

    fd

    fssFdtdf

    asFtfesFeatuatf

    as

    Fa

    atfS

    sFasFatfatfasFtf

  • 2012/12/24

    12

    Summary

    )()()()(nConvolutio)(lim)(valueFinal

    )(lim)0(valueInitial1

    )()()(yperiodicitTime

    )()(

    nintegratioFrequency

    )(ationdifferentiFrequency

    )(1

    )(nintegratioTime

    )()(Property

    2121

    0

    1

    0

    sFsFtftfssFf

    ssFfesF

    nTtftf

    dssFttf

    sFdsd

    ttf

    sFs

    dttf

    sFtf

    s

    s

    sT

    s

    Summary

    1

    2

    1

    2

    )(!

    )(1

    !

    1

    1

    1)(

    1)()()(

    natn

    at

    nn

    at

    asn

    et

    aste

    sn

    t

    st

    ase

    stu

    tsFtf

    22

    22

    22

    22

    22

    22

    )(cos

    )(sin

    sincos)cos(

    cossin)sin(

    cos

    sin

    )()(

    asas

    te

    aste

    ss

    t

    ss

    t

    ss

    t

    st

    sFtf

    at

    at

  • 2012/12/24

    13

    The Inverse Laplace Transform

    •Zeros: the roots of N(s) = 0•Poles: the roots of D(s) = 0•Steps to find the inverse Laplace transform.

    –Decompose F(s) into simple terms using partialfraction expansion.

    –Find the inverse of each term.

    )()(

    )(sDsN

    sF

    Case 1: Simple Poles

    n

    n

    n

    ji

    n

    n

    kkk

    psk

    psk

    psk

    sF

    sDsN

    jipp

    ppps

    pspspssN

    sF

    ...,,,:Residues

    )(

    ,)(thanlessis)(ofdegreetheAssuming

    forand

    ...,,,:Poles

    )())(()(

    )(

    21

    2

    2

    1

    1

    21

    21

  • 2012/12/24

    14

    Simple Poles (Cont’d)

    )()(

    )()(

    |)()(s

    |)()(ssSet

    )()()()(s

    :findingformethodResidue

    )(

    21

    1

    21

    1

    111

    1

    2

    2111

    1

    2

    2

    1

    1

    tuekekektf

    tukeaskL

    sFpk

    ksFpp

    pskps

    pskps

    ksFp

    k

    psk

    psk

    psk

    sF

    tpn

    tptp

    at

    psii

    ps

    n

    n

    n

    n

    n

    i

    Case 2: Repeated Poles

    ||

    ||

    )()(!

    1)()(

    !21

    )()()()(

    bydeterminedis

    .atpoleahavetdoesn'that)(ofpartremainingtheiss)(where

    )()()(

    )(

    ,atpolesrepeatednhas)(Suppose

    2

    2

    2

    1

    1

    11

    11

    ps

    nm

    m

    mnps

    nn

    ps

    nnps

    nn

    i

    nn

    nn

    sFpsdsd

    mksFps

    dsd

    k

    sFpsdsd

    ksFpsk

    k

    pssFF

    sFps

    kps

    kps

    ksF

    pssF

  • 2012/12/24

    15

    Repeated Poles (Cont’d)

    )()(

    )!1(

    !2)(

    )()!1()(

    1

    11

    2321

    11

    tftuet

    nk

    etk

    tekektf

    tun

    etas

    L

    ptnn

    ptptpt

    atn

    n

    Case 3: Complex Poles

    )()(sincos)()(

    )()()(

    )(

    )(and)(2Let

    .polescomplexofpairthishavetdoesn'that)(ofpartremainingtheiss)(where

    )()(

    111

    1221

    221

    1121

    222222

    1

    1221

    tftuteBteAtf

    sFs

    Bs

    sAsF

    BsAAsAsssbass

    sFF

    sFbass

    AsAsF

    tt

  • 2012/12/24

    16

    Example 1

    )(782)(7

    )1()3(129

    )2(12

    )()3(

    8)1)(2(

    124)3(

    12)()2(

    2)3)(2(

    12)3)(2(

    12)(

    givesmethodresidueApplying32

    )(Let:Sol

    )3)(2(12

    )(if)(Find

    32

    3

    2

    3

    2

    2

    2

    0

    2

    0

    2

    ||

    ||

    ||

    tueetf

    sss

    sFsC

    sss

    sFsB

    sss

    ssFA

    sC

    sB

    sA

    sF

    ssss

    sFtf

    tt

    ss

    ss

    ss

    Example 2

    )(2213141)(

    134

    52)1(410

    )()2(

    22)1()2(

    44)1(410

    )()2(

    14)1)(1(

    14)2(410

    )()1(

    1)2)(1(

    4)2)(1(

    410)(

    givesmethodresiduetheApplying2)2(1

    )(Let:Sol

    )2)(1(410

    )(if)(Find

    22

    2

    2

    2

    2

    2

    2

    2

    2

    212

    2

    1

    202

    2

    0

    2

    2

    2

    ||

    ||

    ||

    ||

    tuteeetf

    sss

    dsd

    sVsdsd

    D

    sss

    sVsC

    sss

    sVsB

    sss

    ssVA

    sD

    sC

    sB

    sA

    sV

    ssss

    sVtv

    ttt

    ss

    ss

    ss

    ss

  • 2012/12/24

    17

    Example 3

    102

    344)34)(4(20

    2537520

    10Set

    2258

    20)()3(

    givesmethodresiduetheApplying2583

    )(Let:Sol

    )258)(3(20

    )(if)(Find

    ||323

    2

    2

    CB

    CBA

    CA

    ,sss

    sHsA

    ssCBs

    sA

    sH

    ssssHth

    ss)(

    3sin32

    3cos22)(

    9)4(3

    32

    9)4()4(2

    32

    258102

    32

    )(

    4

    43

    22

    2

    tute

    teetf

    sss

    s

    sss

    ssH

    t

    tt

    The Convolution Integral•Useful in finding the response y(t) of a system to an

    excitation x(t) when the system impulse response h(t)is defined.

    )()()(or

    )()()(

    thtxty

    dthxty

    dthxdtHx

    dtxHtxHty

    thtHdtxtx

    )()()()(

    )()()]([)(

    )()(,)()()(

    system,linearaofpropertylinearityApply the

  • 2012/12/24

    18

    dtxtx

    txtx

    txtx

    dtttdutdt

    tdu

    tutuxtx

    txtxtxtx

    ii

    iiii

    i

    )()()(or

    )()()()(

    )()()(

    )()(),()(

    )()()()(

    )()()()(

    0

    11

    00

    10

    (Cont’d)

    (Cont’d)

    )()(

    )()()(

    )()(

    )()(lim

    )()()()(

    )()()(

    )()()()(

    )()()(

    0

    0

    00

    11

    00

    11

    00

    thtx

    dthxty

    dthx

    thx

    thxthx

    thxty

    txtx

    txtx

    iii

    ii

    ii

  • 2012/12/24

    19

    (Cont’d)

    dthx

    dthx

    thtxtyttth

    tth

    dthxdthxty

    ttx

    t)()(

    )()(

    )()()(.or0for0)(then

    ,0for0)(i.e.causal,isresponseimpulestheifSecond,

    )()()()()(

    ,0for0)(ifFirst,

    0

    0

    0

    Properties of Convolution Integral

    dfdtuftutf

    tfdtfttf

    ttftttf

    tfdtfttf

    tytxtftytxtf

    tytftxtftytxtf

    txththtx

    t)()()()()(.7

    )()()()()(.6

    )()()(.5

    )()()()()(.4

    )()()()()()(:eAssociativ.3

    )()()()()()()(:veDistributi.2

    )()()()(:eCommutativ.1

    '''

    00

  • 2012/12/24

    20

    )()()()(

    )()()(

    )()()()()(

    )()()()()(

    givespropertyshifttimeThe

    )()()()()()(

    )()(,)()(

    )0for0)()(()()()()(

    21

    2100

    2100

    201021

    2022

    21010221

    202101

    2121021

    tftfL

    dtedtff

    dtdetutff

    ddtetutffsFsF

    dtetutftutfLesF

    desFfdefsFsFsF

    defsFdefsF

    ttftfdtfftftf

    stt

    st

    st

    sts

    ss

    ss

    t

    )()()]()([ 2121 sFsFtftfL

    0,202

    201

    201

    42

    5

    )()()()(

    5)(,4)(If

    2

    11

    1

    2

    tee

    ssL

    ssL

    sXsHLtxth

    ethetx

    tt

    tt

    Example

  • 2012/12/24

    21

    • Folding: Take the mirror image of h() about theordinate axis to obtain h().

    • Displacement: Shift or delay h() by t to obtainh(t).

    • Multiplication: Find the product of h(t) and x().• Integration: For a given time t, calculate the area

    under the product h(t) x() for 0

  • 2012/12/24

    22

    Example 1 (Cont’d)

    0 < t < 1 1 < t < 2 2 < t < 3

    3 < t < 4 t > 4

    Step 3

    )()( 21 txtx

    Solving Linear, Time-Invariant,Differential Equations

    •Steps–By taking the Laplace transform, the time-

    domain differential equation is converted into ans-domain algebraic equation.

    –Obtain the solution of the s-domain algebraicequation.

    –The time-domain solution is obtained byapplying inverse Laplace transform.

    )0()0()0()( )1(0'21

    nnnnn

    n

    fsfsfssFsdt

    fdL

  • 2012/12/24

    23

    Example

    42)4)(2(24

    )(

    2)0(,1)0(

    2)(8)0()0(6

    )0()0()(

    )(2)(8)(

    6)(

    :Sol2)0(,1)0(

    )(2)(8)(

    6)(

    equationaldifferentitheSolve:Q

    2

    '

    '2

    2

    2

    '

    2

    2

    sC

    sB

    sA

    sssss

    sV

    vvs

    sVvsv

    vsvsVs

    tuLtvdt

    tdvdt

    tvdL

    vv

    tutvdt

    tdvdt

    tvd

    )(2141

    )(

    41

    ,21

    ,41

    method,residuetheUsing

    42 tueetv

    CBA

    tt