H. HogenEsch, 2005 Antibody structure and function Parham – Chapter 2

Preview:

Citation preview

H. HogenEsch, 2005

Antibody structure and function

Parham – Chapter 2

H. HogenEsch, 2005

Outline

• Antibody structure• Antigens• Antigen-antibody interactions• Generation of antibody diversity• Isotype switching• Applications - immunoassays

H. HogenEsch, 2005

Immunoglobulins – membrane-bound and soluble receptors

H. HogenEsch, 2005

Basic structure of immunoglobulins

Fig. 2.2

H. HogenEsch, 2005

Basic structure of immunoglobulins

Fig. 2.2Fig. 2.2

H. HogenEsch, 2005

Antigen-binding Fragment

Crystallizable Fragment

H. HogenEsch, 2005

H. HogenEsch, 2005

Immunoglobulin classes (isotypes)

H:

L-chain: or

H. HogenEsch, 2005

Structure of immunoglobulins

H. HogenEsch, 2005

Structure of immunoglobulins

H. HogenEsch, 2005

Hypervariable and framework regions

CDR = complementarity-determining region

Fig. 2.7Fig. 2.7

H. HogenEsch, 2005

Differences between immunoglobulins

H. HogenEsch, 2005

Epitopes

• Epitope (antigenic determinant) is the part of an antigen to which an antibody binds.

• Most antigens have multiple epitopes (multivalent)

• Usually carbohydrate or peptide.

Fig. 2.9

H. HogenEsch, 2005

Immunoglobulin epitopes are usually located at the antigen’s surface.

Fig. 2.8

H. HogenEsch, 2005

Conformational vs. linear epitopes

Fig. 2.11

H. HogenEsch, 2005

Epitopes

Conformational epitopes - destroyed by denaturationLinear epitopes - unaffected by denaturation

heat, acid

H. HogenEsch, 2005

Epitope recognition

Conformational epitope

Linear epitope

B cell

T cell

H. HogenEsch, 2005

Haptens

Small molecules that are not immunogenic by themselves, but can bind immunoglobulins or TCRs. Haptens can induce an immune response when linkedto a larger protein.

H. HogenEsch, 2005

Hapten

ParhamFig. 10.25

H. HogenEsch, 2005

Hapten

ParhamFig. 10.26

H. HogenEsch, 2005

Antibody-antigen interaction

Fig. 2.10

H. HogenEsch, 2005

Antibody-antigen interaction

• Non-covalent binding:– Electrostatic– Hydrogen bonds– Van der Waals forces– Hydrophobic forces

• Affinity: Strength of interaction between epitope and one antigen-binding site

• Avidity: Strength of the sum of interactions between antibody and antigen

Short range

H. HogenEsch, 2005

Crossreactivity

Antiserum raised against antigen A reacts also with antigen B

Antigen A and B share epitopes Antigen A and B have similar(but not identical) epitopes

H. HogenEsch, 2005

Crossreactivity

A B

H. HogenEsch, 2005

Immunoglobulin genes

Fig. 2.13

H. HogenEsch, 2005

Somatic recombination – light chain

Fig. 2.14

H. HogenEsch, 2005

Somatic recombination – Heavy chain

Fig. 2.14

H. HogenEsch, 2005

Number of gene segments

Fig. 2.15

H. HogenEsch, 2005

Recombination Signal Sequences

Fig. 2.16

H. HogenEsch, 2005

Recombination

V(D)J – recombinase

Fig. 2.17

H. HogenEsch, 2005

5’ // 3’

V

1 2 3 4 5 n 1 2 3 4 5

J C

5’ 3’

5’ 3’

V C

germline DNA

B cell DNA

primary RNA transcript

mRNA

chain polypeptide

rearrangement

transcription

splicing

translation

V2J3

V2J3C

H. HogenEsch, 2005

Generation of diversity

chain: 40 V x 5 J = 200 V chain: 30 V x 4 J = 120 VH chain: 65 V x 27D x 6 J = 10,530 VH

(200 + 120) x 10,530 = 3.4 x 106 combinations

H. HogenEsch, 2005

Mechanisms for additional diversity in immunoglobulins

• Imprecise joining of gene segments• Random nucleotide addition at joining regions

– terminal deoxynucleotidyl transferase (TdT)

Fig. 2.17

H. HogenEsch, 2005

Generation of diversity

• Multiple gene segments: chain: 40 V x 5 J = 200 V

chain: 30 V x 4 J = 120 V

H chain: 65 V x 27D x 6 J = 10,530 VH

• Combination of H and L chain:(200 + 120) x 10,530 = 3.4 x 106 combinations

• Imprecise joining and nucleotide addition

> 108 different specificities

H. HogenEsch, 2005

Organization of CH genes

Fig. 2.19

H. HogenEsch, 2005

Naïve mature B cells express IgM and IgD

Fig. 2.20

H. HogenEsch, 2005

Allelic exclusionAllelic exclusion ensures that the B lymphocyte expressesimmunoglobulin molecules with only one specificity.Mechanism: Successful rearrangement of immunoglobulin gene segmentsone allele shuts down the rearrangement processof the other allele.

16 6 12

H. HogenEsch, 2005

B cell receptor complex

Fig. 2.21

H. HogenEsch, 2005

Changes in B cells after activation by antigen

• Somatic mutation – additional diversity

• Isotype switching

H. HogenEsch, 2005

Somatic hypermutation

Fig. 2.24

H. HogenEsch, 2005

Hypervariable and framework regions

CDR = complementarity-determining region

Fig. 2.7

H. HogenEsch, 2005

Isotype switching

IgM+/IgD+

IgG3

IgA2

IgE

IgG1

IgG2

IgG4

IgA1

H. HogenEsch, 2005

Organization of CH genes

Fig. 2.19

H. HogenEsch, 2005

Isotype switching

H. HogenEsch, 2005

Physical properties of immunoglobulins

H. HogenEsch, 2005

IgM

• Membrane-bound monomer and secreted pentamer.• First immunoglobulin to be synthesized during

ontogeny and in the immune response.• Activates complement pathway; agglutination.• Can be transported into mucosal secretions.

H. HogenEsch, 2005

IgG

• Highest concentration in serum.• Four subclasses: IgG1 - 4• Activates complement• Binds to Fc -receptors on neutrophils, macrophages

and NK cells

H. HogenEsch, 2005

IgA

• Usually dimer• Secretory IgA is a dimer with a secretory component.• Two subclasses: IgA1 and IgA2• Major immunoglobulin in mucosal secretions• Neutralization; Prevents binding of micro-organisms

to receptors• Not effective activator of complement

H. HogenEsch, 2005

IgE

• Very low serum concentration in healthy individuals.• Concentration is higher in patients with helminth

infections and often in patients with allergies.

• Lacks hinge region; extra CH domain

• Binds to Fc receptor on mast cells and basophils. Cross-linking results in degranulation and release of pro-inflammatory mediators.

H. HogenEsch, 2005

IgD

• Very low concentration in serum• Primarily found with IgM on naïve mature B cells• Function is unknown

H. HogenEsch, 2005

Functions of immunoglobulins

H. HogenEsch, 2005

Functions of immunoglobulins

H. HogenEsch, 2005

H. HogenEsch, 2005

Polyclonal vs. monoclonal antibodies

• Polyclonal antibodies– purified from serum of immunized animals, often goats or

rabbits.– Multiple specificities and affinities– Variation from batch to batch

• Monoclonal antibodies– Produced by immortalized plasma cells, usually mouse

origin.– Single specificity and affinity– Unlimited supply of identical antibody molecules

H. HogenEsch, 2005

Monoclonal antibodies

H. HogenEsch, 2005

Immunoassays

• Precipitation assay• Agglutination assay• Enzyme-linked immunosorbent assay (ELISA)• Radioimmunoassay (RIA)• Western blotting• Immunofluorescence• Flow cytometry

H. HogenEsch, 2005

Sensitivity of immunoassays

precipitation - 30 g/ml

agglutination - 1 g/ml

radioimmunoassays, ELISA - 1 pg/ml

H. HogenEsch, 2005

Precipitation reactionAggregates formed by interaction of multivalent antibodies and multivalentmacromolecular antigens.

H. HogenEsch, 2005

Antigens have multiple epitopes

H. HogenEsch, 2005

Hemagglutination

H. HogenEsch, 2005

Coombs test

• Direct: Add anti-human immunoglobulin antibodies (Coombs’ reagent) to red blood cells. Agglutination occurs if the red blood cells are coated with antibodies.

• Indirect: Incubate test serum with red blood cells. Wash red blood cells. Add anti-human immunoglobulin antibodies.

H. HogenEsch, 2005

Rhesus factor

H. HogenEsch, 2005

Principle of ELISA/RIAEnzyme-linked immunosorbent assay (ELISA)

H. HogenEsch, 2005

Western blottingWestern blot

H. HogenEsch, 2005

Immunofluorescence

H. HogenEsch, 2005

Flow cytometry

Recommended