GR@99: Revisiting the Classical Tests with Compact...

Preview:

Citation preview

GR@99: Revisiting the Classical Tests withCompact Binaries

Alexandre Le Tiec

Laboratoire Univers et TheoriesObservatoire de Paris / CNRS

aLIGO, aVirgo,KAGRA, eLISA,DECIGO, ET,...

( (

Source modelling Gravitational redshift Spin precession Periastron advance

Outline

À Gravitational wave source modelling

Á Gravitational redshift

 Geodetic spin precession

à Relativistic periastron advance

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Outline

À Gravitational wave source modelling

Á Gravitational redshift

 Geodetic spin precession

à Relativistic periastron advance

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Main sources of gravitational waves (GW)

LIGO/VirgoeLISA

• Binary neutron stars (2ˆ „ 1.4Md)• Stellar mass black hole binaries (2ˆ „ 10Md)• Supermassive black hole binaries (2ˆ „ 106Md)• Extreme mass ratio inspirals („ 10Md` „ 106Md)

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Need for highly accurate template waveforms

0 0.1 0.2 0.3 0.4 0.5

-2×10-19

-1×10-19

0

1×10-19

2×10-19

t (sec.)

n(t)

h(t)

10 100 1000 1000010-24

10-23

10-22

10-21

f (Hz)

h(f)

S1/2(f)

If the expected signal is known in advance then nptq can be filteredand hptq recovered by matched filtering ÝÑ template waveforms

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

(Credit: L. Lindblom)

Source modelling Gravitational redshift Spin precession Periastron advance

Need for highly accurate template waveforms

0 0.1 0.2 0.3 0.4 0.5

-2×10-19

-1×10-19

0

1×10-19

2×10-19

t (sec.)

n(t)

h(t)

100 h(t)

10 100 1000 1000010-24

10-23

10-22

10-21

f (Hz)

h(f)

S1/2(f)

If the expected signal is known in advance then nptq can be filteredand hptq recovered by matched filtering ÝÑ template waveforms

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

(Credit: L. Lindblom)

Source modelling Gravitational redshift Spin precession Periastron advance

Methods to compute GW templates for compact binaries

Numerical Relativity

Post­Newtonian Theory

log10

(m2 /m

1)

0 1 2 3

0

1

2

3

4

4

log10

(r /m)

Perturbation Theory

(Com

pact

ness

)

Mass Ratio

−1

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Methods to compute GW templates for compact binaries

Numerical Relativity

Post­Newtonian Theory

log10

(m2 /m

1)

0 1 2 3

0

1

2

3

4

4

log10

(r /m)

Perturbation Theory

(Com

pact

ness

)

Mass Ratio

−1m

1

m2

r

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

v2

c2„

Gm

c2r! 1

Source modelling Gravitational redshift Spin precession Periastron advance

Methods to compute GW templates for compact binaries

Numerical Relativity

Post­Newtonian Theory

log10

(m2 /m

1)

0 1 2 3

0

1

2

3

4

4

log10

(r /m)

Perturbation Theory

(Com

pact

ness

)

Mass Ratio

−1 m1

m2

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

q ”m1

m2! 1

Source modelling Gravitational redshift Spin precession Periastron advance

Methods to compute GW templates for compact binaries

Numerical Relativity

Post­Newtonian Theory

log10

(m2 /m

1)

0 1 2 3

0

1

2

3

4

4

log10

(r /m)

Perturbation Theory

(Com

pact

ness

)

Mass Ratio

−1

m1

m2

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Methods to compute GW templates for compact binaries

Numerical Relativity

Post­Newtonian Theory

log10

(m2 /m

1)

0 1 2 3

0

1

2

3

4

4

log10

(r /m)

(Com

pact

ness

)

Mass Ratio

−1

Perturbation Theory

m2

m = m1 + m

2

EOB

m1

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Comparing the predictions from these various methods

Why?

• Independent checks of long and complicated calculations

• Identify domains of validity of approximation schemes

• Extract information inaccessible to other methods

• Develop a universal model for compact binaries

How?

8 Use the same coordinate system in all calculations

4 Using coordinate-invariant relationships

What?

• Gravitational waveforms at null infinity

• Conservative effects on the orbital dynamics

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Comparing the predictions from these various methods

Why?

• Independent checks of long and complicated calculations

• Identify domains of validity of approximation schemes

• Extract information inaccessible to other methods

• Develop a universal model for compact binaries

How?

8 Use the same coordinate system in all calculations

4 Using coordinate-invariant relationships

What?

• Gravitational waveforms at null infinity

• Conservative effects on the orbital dynamics

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Comparing the predictions from these various methods

Why?

• Independent checks of long and complicated calculations

• Identify domains of validity of approximation schemes

• Extract information inaccessible to other methods

• Develop a universal model for compact binaries

How?

8 Use the same coordinate system in all calculations

4 Using coordinate-invariant relationships

What?

• Gravitational waveforms at null infinity

• Conservative effects on the orbital dynamics

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Comparing the predictions from these various methods

Paper Year Methods Observable Orbit Spin

Baker et al. 2007 NR/PN waveformBoyle et al. 2007 NR/PN waveformHannam et al. 2007 NR/PN waveformBoyle et al. 2008 NR/PN/EOB energy fluxDamour & Nagar 2008 NR/EOB waveformHannam et al. 2008 NR/PN waveform 3Pan et al. 2008 NR/PN/EOB waveformCampanelli et al. 2009 NR/PN waveform 3Hannam et al. 2010 NR/PN waveform 3Hinder et al. 2010 NR/PN waveform eccentricLousto et al. 2010 NR/BHP waveformSperhake et al. 2011 NR/PN waveformSperhake et al. 2011 NR/BHP waveform head-onLousto & Zlochower 2011 NR/BHP waveformNakano et al. 2011 NR/BHP waveformLousto & Zlochower 2013 NR/PN waveformNagar 2013 NR/BHP recoil velocityHinder et al. 2014 NR/PN/EOB waveform 3

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Comparing the predictions from these various methods

Paper Year Methods Observable Spin

Detweiler 2008 BHP/PN redshift observableBlanchet et al. 2010 BHP/PN redshift observableDamour 2010 BHP/EOB ISCO frequencyMroue et al. 2010 NR/PN periastron advanceBarack et al. 2010 BHP/EOB periastron advanceFavata 2011 BHP/PN/EOB ISCO frequencyLe Tiec et al. 2011 NR/BHP/PN/EOB periastron advanceDamour et al. 2012 NR/EOB binding energyLe Tiec et al. 2012 NR/BHP/PN/EOB binding energyAkcay et al. 2012 BHP/EOB redshift observableHinderer et al. 2013 NR/EOB periastron advance 3Le Tiec et al. 2013 NR/BHP/PN periastron advance 3Bini & DamourShah et al.Blanchet et al.

+

2014 BHP/PN redshift observable

Dolan et al.Bini & Damour

)

2014 BHP/PN precession angle 3

Isoyama et al. 2014 BHP/PN/EOB ISCO frequency 3

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Revisiting the classical tests of General Relativity

• Gravitational redshift of light

∆τ

∆t“ 1´

G

c2

MdRd

• Perihelion advance of Mercury

∆Φ “G

c2

6πMda p1´ e2q

• Precession of Earth-Moon spin

Ωprec “G

c2v ˆ∇

ˆ

3Md2r

˙

M⊙

τ t

M⊙

R⊙

rM⊙

R

s

prec

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Outline

À Gravitational wave source modelling

Á Gravitational redshift

 Geodetic spin precession

à Relativistic periastron advance

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Post-Newtonian expansions and black hole perturbations

Numerical Relativity

Post­Newtonian Theory

log10

(m2 /m

1)

0 1 2 3

0

1

2

3

4

4

log10

(r /m)

(Com

pact

ness

)

Mass Ratio

−1m

1

m2

r

Post­Newtonian Theory

&Perturbation

Theory

Perturbation Theory

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

The “redshift observable” for circular orbits

• It measures the redshift of light emittedfrom the point particle:

Eobs

Eem“ppauaqobs

ppauaqem

“ z

• It is a constant of the motion associatedwith the helical Killing field ka:

z “ ´kaua

• In coordinates adapted to the symmetry:

z “dτ

dt“

1

utx

t

ua

m2

m1

x

particle observer

em

uaobs

pa

pa

dt

obsE

emE

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs orbital separation[Blanchet, Detweiler, Le Tiec & Whiting, PRD (2010)]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

(1/z1)GSF

rΩ / m2

N1PN2PN3PN4PN5PN6PN7PNExact

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs orbital separation[Blanchet, Detweiler, Le Tiec & Whiting, PRD (2010)]

0.1

0.2

0.3

0.4

0.5

5 6 7 8 9 10

GSF

rΩ / m2

N1PN2PN3PN4PN5PN6PN7PNExact(1

/z1)

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs orbital separation[Blanchet, Detweiler, Le Tiec & Whiting, PRD (2010)]

0.1

0.2

0.3

0.4

0.5

5 6 7 8 9 10

GSF

rΩ / m2

N1PN2PN3PN4PN5PN6PN7PNExact(1

/z1)

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Cfit3PN “ 27.6879035p4q

C3PN “ 27.68790269 ¨ ¨ ¨

Source modelling Gravitational redshift Spin precession Periastron advance

Averaged “redshift observable” for eccentric orbits

• Generic eccentric orbit parametrizedby the two invariant frequencies

Ωr “2π

P, Ωϕ “

1

P

ż P

09ϕptq dt

• Average of 1z with respect to propertime τ over one radial period:

x1zy ”1

T

ż T

0

zpτq“

P

T

m2

m1

t = 0 = 0

t = P = T

• Relation x1zypΩr ,Ωϕq well defined in both PN and GSFframeworks, and coordinate invariant

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs semi-latus rectum[Akcay, Le Tiec, Barack, Sago & Warburton (preliminary)]

0

0.1

0.2

0.3

6 8 10 12 14 16 18 20 22

⟨1/z

⟩ GS

F

p

e = 0.1

N

1PN

2PN

3PN

Exact

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs semi-latus rectum[Akcay, Le Tiec, Barack, Sago & Warburton (preliminary)]

0

0.1

0.2

0.3

6 8 10 12 14 16 18 20 22

⟨1/z

⟩ GS

F

p

e = 0.2

N

1PN

2PN

3PN

Exact

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs semi-latus rectum[Akcay, Le Tiec, Barack, Sago & Warburton (preliminary)]

0

0.1

0.2

0.3

6 8 10 12 14 16 18 20 22

⟨1/z

⟩ GS

F

p

e = 0.3

N

1PN

2PN

3PN

Exact

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs semi-latus rectum[Akcay, Le Tiec, Barack, Sago & Warburton (preliminary)]

0

0.1

0.2

0.3

6 8 10 12 14 16 18 20 22

⟨1/z

⟩ GS

F

p

e = 0.4

N

1PN

2PN

3PN

Exact

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Redshift observable vs semi-latus rectum[Akcay, Le Tiec, Barack, Sago & Warburton (preliminary)]

0

0.1

0.2

0.3

6 8 10 12 14 16 18 20 22

⟨1/z

⟩ GS

F

p

e = 0.5

N

1PN

2PN

3PN

Exact

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Outline

À Gravitational wave source modelling

Á Gravitational redshift

 Geodetic spin precession

à Relativistic periastron advance

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

De Sitter’s spin precession, or geodetic effect

• In 1916 de Sitter showed that, to leadingorder, a test spin s precesses at

Ωprec »3

2v ˆ∇Φ , Φ ”

GM

c2r! 1

• Precession of Earth-Moon spin axis of„ 1.9”cent. confirmed using LLR data

• Precession of test gyro on polar Earthorbit of „ 6.6”yr confirmed by GPB

• Geodetic spin precession of „ 5˝yrmeasured in the double pulsar

r

s

prec

r

prec

v

s

v

rs

prec

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Geodetic precession in black hole binaries

• A test spin sa is parallel-transported alonga geodesic γ with unit tangent ua:

ub∇bsa “ 0 ðñds

dτ“ ωprec ˆ s

• For a circular orbit with a helical Killingfield ka such that ka|γ “ ua,

ω2prec “

1

2p∇akb∇akbq|γ

• Compute ψ ” 1´ ωprecuφ, the angle of

spin precession per radian of revolutionspace

time ka

s

s

prec

m2

m1

a

ka

sa

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Precession angle vs orbital separation[Dolan, Warburton et al., PRD (2014)]

-0.008

-0.004

0

0.004

0.008

5 10 15 20 25 30 35

ψG

SF

rΩ / m2

2PN

3PN

(4PN)

Exact

-8

-7.8

-7.6

-7.4

40 60 80 100 120 140 160 180

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Outline

À Gravitational wave source modelling

Á Gravitational redshift

 Geodetic spin precession

à Relativistic periastron advance

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Relativistic perihelion advance of Mercury

• Observed anomalous advance ofMercury’s perihelion of „ 43”cent.

• Accounted for by the leading-orderrelativistic angular advance per orbit

∆Φ “6πGMd

c2a p1´ e2q

• Periastron advance of „ 4˝yr nowmeasured in binary pulsars

M⊙

Mercury

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Periastron advance in black hole binaries

• Generic eccentric orbit parametrized bythe two invariant frequencies

Ωr “2π

P, Ωϕ “

1

P

ż P

09ϕptq dt

• Periastron advance per radial period

K ”Ωϕ

Ωr“ 1`

∆Φ

• In the circular orbit limit e Ñ 0, therelation K pΩϕq is coordinate-invariant

m2

m1

t=0 t=P

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Periastron advance vs orbital frequency[Le Tiec, Mroue et al., PRL (2011)]

1.2

1.3

1.4

1.5

SchwEOBGSFνPNGSFq

0.01 0.02 0.03

-0.01

0

0.01

mΩϕ

KδK/K

1:1

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Periastron advance vs orbital frequency[Le Tiec, Mroue et al., PRL (2011)]

1.2

1.3

1.4

1.5

SchwEOBGSFνPNGSFq

0.01 0.02 0.03

-0.01

0

0.01

mΩϕ

KδK/K

q = m1/m2

= m1m2 /m2ν1:1

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Periastron advance vs mass ratio[Le Tiec, Mroue et al., PRL (2011)]

0 0.2 0.4 0.6 0.8 1

-0.024

-0.018

-0.012

-0.006

0

EOB

GSFνPN

0 0.5 1

-0.08

-0.04

0

0.04

Schw

GSFq

q

δK

/K

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Symmetric background and ν-expansion

m1

m2

S2Ωφ

S1

• Consider W ” 1K 2 “ f pΩϕ;ma,Saq for quasicircular orbits

• Impose symmetry by exchange 1 Ø 2 on perturbative resultë construct symmetric background W

• Expansion in powers of symmetric mass ratio ν “ m1m2m2:

W “W ` νWp1q ` ν2 Wp2q `Opν3q

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Gravitational self-force from numerical relativity[Le Tiec, Buonanno et al., PRD (2013)]

0.01 0.02 0.03 0.04

mΩϕ

0.02

0.04

0.06

WN

R-W

q = 1.5

q = 1

q = 3

q = 8

q = 5

χ1 = χ

2 = 0

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Gravitational self-force from numerical relativity[Le Tiec, Buonanno et al., PRD (2013)]

0.1

0.2

0.3(W

NR-W

) /

ν

0.01 0.02 0.03 0.04mΩ

ϕ

0.1

0.2

0.3

(WNR-W

) /

ν χ1 = χ

2 = 0

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Gravitational self-force from numerical relativity[Le Tiec, Buonanno et al., PRD (2013)]

0.1

0.2

0.3(W

NR-W

) /

ν

0.01 0.02 0.03 0.04mΩ

ϕ

0.1

0.2

0.3

(WNR-W

) /

ν χ1 = χ

2 = 0

GSF

GSF

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Gravitational self-force from numerical relativity[Le Tiec, Buonanno et al., PRD (2013)]

0.015 0.02 0.025 0.03 0.035

mΩϕ

0.01

0.02

0.03

0.04W

NR-W

q = 1.5

q = 5

q = 3

q = 8

χ1 = −0.5, χ

2 = 0

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Gravitational self-force from numerical relativity[Le Tiec, Buonanno et al., PRD (2013)]

0.08

0.16

0.24(W

NR-W

) /

ν

0.01 0.015 0.02 0.025 0.03 0.035mΩ

ϕ

0.08

0.16

0.24

(WNR-W

) /

ν χ1 = −0.5, χ

2 = 0

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Binding energy vs angular momentum[Le Tiec, Barausse & Buonanno, PRL (2012)]

3 3.2 3.4 3.6 3.8

J/(mμ)

-10-4

0

10-4

δE/μ

GSFν

3PN EOB(3PN) Schw

-0.12

-0.10

-0.08

-0.06

-0.04E/μ GSFν

NR

EOB(3PN)

3PN

Schw

GSFq

GSFν

GSFq

NR

3PN

3.1 3.15 3.2 3.25

-0.078

-0.072

-0.066

-0.060

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

1 : 1

Source modelling Gravitational redshift Spin precession Periastron advance

Using perturbation theory for comparable-mass binaries

Numerical Relativity

Post­Newtonian Theory

log10

(m2 /m

1)

0 1 2 3

0

1

2

3

4

4

log10

(r /m)

Perturbation Theory

(Com

pact

ness

)

Mass Ratio

−1

m1

m2

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Main shortcoming of current template waveforms

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−0.2

−0.1

0

0.1

0.2

0.3

h

Jena (η = 0.25)PNNR

Time [M]

[Ajith et al., PRD (2008)]

• PN breaks down during late inspiral

• Modelling error ą statistical error

• Bias on parameter estimation

• Science limited by templates!

-2 -1 0 1 2- 3

-2

-1

0

1

2

3

DMM @%DD

ΗΗ@%

D

modelling bias

[Ohme, CQG (2012)]

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Main shortcoming of current template waveforms

−2000 −1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−0.2

−0.1

0

0.1

0.2

0.3

h

Jena (η = 0.25)PNNRHybrid

Time [M]

[Ajith et al., PRD (2008)]

• PN breaks down during late inspiral

• Modelling error ą statistical error

• Bias on parameter estimation

• Science limited by templates!

-2 -1 0 1 2- 3

-2

-1

0

1

2

3

DMM @%DD

ΗΗ@%

D

modelling bias

[Ohme, CQG (2012)]

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Summary and prospects

• Observing GWs will open a new window on the Universe

• Highly accurate template waveforms are a prerequisite fordoing science with GW observations

• It is crucial to compare the predictions from PN theory,perturbation theory and numerical relativity

• Perturbation theory may prove useful to build templatesfor IMRIs and even comparable-mass binaries

aLIGO, aVirgo,KAGRA, eLISA,DECIGO, ET,...

( (

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Additional Material

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Gravitational waveform for head-on collisions[Sperhake, Cardoso et al., PRD (2011)]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

ψ 20/η

PP limitL/M = 9.58L/M = 18.53

-50 0 50 100t / M

-0.04

-0.02

0

0.02

0.04

ψ 30/η

PP limitL/M = 9.58L/M = 18.53

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

1 : 100

Source modelling Gravitational redshift Spin precession Periastron advance

Gravitational waveform for head-on collisions[Sperhake, Cardoso et al., PRD (2011)]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

ψ 20/η

PP limitL/M = 16.28L/M = 24.76

-50 0 50 100t / M

-0.04

-0.02

0

0.02

0.04

ψ 30/η

PP limitL/M = 16.28L/M = 24.76

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

1 : 10

Source modelling Gravitational redshift Spin precession Periastron advance

Recoil velocity for non-spinning binaries[Nagar, PRD (2013)]

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec

Source modelling Gravitational redshift Spin precession Periastron advance

Why does perturbation theory perform so well?

• In perturbation theory, one traditionally expands as

kmaxÿ

k“0

Akpm2Ωϕq qk where q ” m1m2 P r0, 1s

• However, the relations E pΩϕ;maq, JpΩϕ;maq, K pΩϕ;maq

must be symmetric under exchange m1 ÐÑ m2

• Hence, a better-motivated expansion is

kmaxÿ

k“0

BkpmΩϕq νk where ν ” m1m2m

2 P r0, 14s

• In a PN expansion, we have Bn “ O`

1c2n˘

“ nPN` ¨ ¨ ¨

UWM CGCA Seminar — May 16, 2014 Alexandre Le Tiec