Gabriela Marinoschi Institute of Mathematical Statistics and...

Preview:

Citation preview

A stochastic population dynamics equation

Gabriela MarinoschiInstitute of Mathematical Statistics and Applied Mathematics of the

Romanian Academy, Bucharest

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 1 / 42

Problem presentation

dp(t, a, x) + (pa(t, a, x)− ∆p(t, a, x) + µS (t, a, x ;U(p))p(t, a, x))dt

= p(t, a, x)dW (t, a, x) in (0,T )× (0, a+)×O

−∇p(t, a, x) · ν = α0(t, a, x)p(t, a, x)+ k0(t, a, x) on (0,T )× (0, a+)× ∂O

p(t, 0, x) =∫ a+

0m0(a, x ;U(p))p(t, a, x)da in (0,T )×O

p(0, a, x) = p0(a, x) in (0, a+)×O

p(t, a, x) is the population density

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 2 / 42

Problem presentation

dp(t, a, x) + (pa(t, a, x)− ∆p(t, a, x) + µS (t, a, x ;U(p))p(t, a, x))dt

= p(t, a, x)dW (t, a, x) in (0,T )× (0, a+)×O

−∇p(t, a, x) · ν = α0(t, a, x)p(t, a, x)+ k0(t, a, x) on (0,T )× (0, a+)× ∂O

p(t, 0, x) =∫ a+

0m0(a, x ;U(p))p(t, a, x)da in (0,T )×O

p(0, a, x) = p0(a, x) in (0, a+)×O

µS (t, a, x ;U(p)) is the incidental mortality rate

U(p) =∫ a+

0

∫OU

γ(a, x)p(t, a, x)dxda

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 3 / 42

Problem presentation

dp(t, a, x) + (pa(t, a, x)− ∆p(t, a, x) + µS (t, a, x ;U(p))p(t, a, x))dt

= p(t, a, x)dW (t, a, x) in (0,T )× (0, a+)×O

−∇p(t, a, x) · ν = α0(t, a, x)p(t, a, x)+ k0(t, a, x) on (0,T )× (0, a+)× ∂O

p(t, 0, x) =∫ a+

0m0(a, x ;U(p))p(t, a, x)da in (0,T )×O

p(0, a, x) = p0(a, x) in (0, a+)×O

m0(a, x ;U(p)) is the fertility rate

U(p) =∫ a+

0

∫OU

γ(a, x)p(t, a, x)dxda

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 4 / 42

Problem presentation

µS (t, a, x ; r), m0(a, x ; r) are positive bounded, local Lipschitz on R

∀R > 0, there exists Lµ(R) and Lm(R) such that, if |r | ≤ R, |r | ≤ R,

|µS (t, a, x ; r)− µS (t, a, x ; r)| ≤ Lµ(R) |r − r ||m0(a, x ; r)−m0(a, x ; r)| ≤ Lm(R) |r − r |

Existence, uniqueness and properties of the solution to thedeterministic nonlinear population dynamics modelM. Iannelli, F. Milner, Springer, 2017C. Cusulin, M. Iannelli, G. M., Nonlinear Anal. Real World Appl. 6(2005)C. Cusulin, M. Iannelli, G. M. Nonlinear Anal. Real World Appl. 8(2007)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 5 / 42

Problem presentation

µS (t, a, x ; r), m0(a, x ; r) are positive bounded, local Lipschitz on R

∀R > 0, there exists Lµ(R) and Lm(R) such that, if |r | ≤ R, |r | ≤ R,

|µS (t, a, x ; r)− µS (t, a, x ; r)| ≤ Lµ(R) |r − r ||m0(a, x ; r)−m0(a, x ; r)| ≤ Lm(R) |r − r |

Existence, uniqueness and properties of the solution to thedeterministic nonlinear population dynamics modelM. Iannelli, F. Milner, Springer, 2017C. Cusulin, M. Iannelli, G. M., Nonlinear Anal. Real World Appl. 6(2005)C. Cusulin, M. Iannelli, G. M. Nonlinear Anal. Real World Appl. 8(2007)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 5 / 42

Problem presentation

A deterministic model cannot reproduce or explain the effects ofrandom fluctuations which come from the intrinsic stochastic natureof open systems.

Such effects may be induced by the interplay between nonlinearinteractions specific for natural systems and random fluctuationsgenerated by the the environment.

Demographic events are basically represented by statistical averagesand a pure stochastic contribution should be taken into account inthe equation.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 6 / 42

Problem presentation

A deterministic model cannot reproduce or explain the effects ofrandom fluctuations which come from the intrinsic stochastic natureof open systems.

Such effects may be induced by the interplay between nonlinearinteractions specific for natural systems and random fluctuationsgenerated by the the environment.

Demographic events are basically represented by statistical averagesand a pure stochastic contribution should be taken into account inthe equation.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 6 / 42

Problem presentation

A deterministic model cannot reproduce or explain the effects ofrandom fluctuations which come from the intrinsic stochastic natureof open systems.

Such effects may be induced by the interplay between nonlinearinteractions specific for natural systems and random fluctuationsgenerated by the the environment.

Demographic events are basically represented by statistical averagesand a pure stochastic contribution should be taken into account inthe equation.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 6 / 42

Problem presentation

dp(t, a, x) + (pa(t, a, x)− ∆p(t, a, x) + µS (t, a, x ;U(p))p(t, a, x))dt

= p(t, a, x)dW (t, a, x) in (0,T )× (0, a+)×O

Let (Ω,F ,P) be a probability space with the natural filtration Ft .Let W be a stochastic Gaussian process

W (t, x) =N

∑j=1

µj (a, x)βj (t)

βjNj=1 is an independent system of real-valued Brownian motions,

µj ∈ C 2([0, a+]×O), ∇µj · ν = 0 on (0, a+)× ∂O.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 7 / 42

Problem presentation

dp(t, a, x) + (pa(t, a, x)− ∆p(t, a, x) + µS (t, a, x ;U(p))p(t, a, x))dt

= p(t, a, x)dW (t, a, x) in (0,T )× (0, a+)×O

Let (Ω,F ,P) be a probability space with the natural filtration Ft .Let W be a stochastic Gaussian process

W (t, a, x) =N

∑j=1

µj (a, x)βj (t)

βjNj=1 is an independent system of real-valued Brownian motions,

µj ∈ C 2([0, a+]×O), ∇µj · ν = 0 on (0, a+)× ∂O.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 8 / 42

Problem presentation

Stochastic equations

dp(t) + B(t)p(t)dt + F (t)p(t)dt = p(t)dW (t)

p(0) = p0

If B is time independent and F is Lipschitz ⇐= G. Da Prato, J.Zabczyk, Cambridge University Press 2014, for Lipschitz nonlinearitiesfor the stochastic equations with multiplicative noise

If B is time independent, Fv = µS (U(v)) is locally Lipschitz ⇐= G.Da Prato, J. Zabczyk, 2014, Section 7.2 for locally Lipschitznonlinearities for the stochastic equations with an additive noise

If B is time dependent nonlinear monotone, demicontinuous andcoercive between two dual spaces ⇐= V. Barbu, M. Röckner, J. Eur.Math. Soc. 17 (2015)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 9 / 42

Problem presentation

Stochastic equations

dp(t) + B(t)p(t)dt + F (t)p(t)dt = p(t)dW (t)

p(0) = p0

If B is time independent and F is Lipschitz ⇐= G. Da Prato, J.Zabczyk, Cambridge University Press 2014, for Lipschitz nonlinearitiesfor the stochastic equations with multiplicative noise

If B is time independent, Fv = µS (U(v)) is locally Lipschitz ⇐= G.Da Prato, J. Zabczyk, 2014, Section 7.2 for locally Lipschitznonlinearities for the stochastic equations with an additive noise

If B is time dependent nonlinear monotone, demicontinuous andcoercive between two dual spaces ⇐= V. Barbu, M. Röckner, J. Eur.Math. Soc. 17 (2015)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 9 / 42

Problem presentation

Stochastic equations

dp(t) + B(t)p(t)dt + F (t)p(t)dt = p(t)dW (t)

p(0) = p0

If B is time independent and F is Lipschitz ⇐= G. Da Prato, J.Zabczyk, Cambridge University Press 2014, for Lipschitz nonlinearitiesfor the stochastic equations with multiplicative noise

If B is time independent, Fv = µS (U(v)) is locally Lipschitz ⇐= G.Da Prato, J. Zabczyk, 2014, Section 7.2 for locally Lipschitznonlinearities for the stochastic equations with an additive noise

If B is time dependent nonlinear monotone, demicontinuous andcoercive between two dual spaces ⇐= V. Barbu, M. Röckner, J. Eur.Math. Soc. 17 (2015)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 9 / 42

Hypotheses

k0, and p0 are random functions

p0(·, a, x) is measurable with respect to F0, a.a. (a, x)

k0(·, t, a, x) is Ft -adapted, a.a. (t, a, x)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 10 / 42

Notation

H = L2(O), V = H1(O), V ′ = (H1(O))′

H = L2(0, a+;H), V = L2(0, a+;V ), V ′ = L2(0, a+;V ′)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 11 / 42

DefinitionA solution p is an Ft -adapted process,

p ∈ C ([0,T ];H) ∩ L2(0,T ;V) ∩ C ([0, a+]; L2(0,T ;H)), P-a.s.,

(p(t),ψ)H

+∫ t

0

∫Op(τ, a+, x)ψ(a+, x)dxdτ −

∫ t

0

∫ a+

0

∫Opψadxdadτ

−∫ t

0

∫ a+

0

∫Om0(a, x ;U(p))pψ(0, x)dxdadτ

+∫ t

0

∫ a+

0

∫O(∇p · ∇ψ+ µS (τ, a, x ;U(p))pψ)dxdadτ

+∫ t

0

∫ a+

0

∫O(α0p + k0)ψdσdadτ

= (p0,ψ)H +∫ t

0(p(τ)dW (τ),ψ)H , for all ψ ∈ V , with ψa ∈ V ′.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 12 / 42

Presentation outline

1 Rescalling transformation (V. Barbu, M. Röckner, 2015)

p(t, a, x) = eW (t ,a,x )y(t, a, x)

system in y and intermediate results

2 Proof that the random system in y has a unique solution for allω ∈ Ω

3 Proof that the stochastic system in p has a unique solution.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 13 / 42

Presentation outline

1 Rescalling transformation (V. Barbu, M. Röckner, 2015)

p(t, a, x) = eW (t ,a,x )y(t, a, x)

system in y and intermediate results2 Proof that the random system in y has a unique solution for all

ω ∈ Ω

3 Proof that the stochastic system in p has a unique solution.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 13 / 42

Presentation outline

1 Rescalling transformation (V. Barbu, M. Röckner, 2015)

p(t, a, x) = eW (t ,a,x )y(t, a, x)

system in y and intermediate results2 Proof that the random system in y has a unique solution for all

ω ∈ Ω3 Proof that the stochastic system in p has a unique solution.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 13 / 42

1. Rescalling transformation

yt + ya − ∆y + g1y + g2 · ∇y + µS (t, a, x ;U(eW y))y = 0 (y)

in (0,T )× (0, a+)×O

−∇y · ν = α(t, a, x)y + k(t, a, x) in (0,T )× (0, a+)× ∂O

y(t, 0, x) =∫ a+

0m(t, a, x ;U(eW y))y(t, a, x)da in (0,T )×O

y(0, a, x) = y0(a, x) = p0(a, x) in (0, a+)×Owhere

g1 = Wa − ∆W − |∇W |2 + µ, g2 = −2∇W , µ =12

N

∑j=1

µ2j (a, x)

α = α0, k = k0e−W , m(t, a, x) = m0(a, x ;U(eW y))eW (t ,a,x )−W (t ,0,x )

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 14 / 42

1. Intermediate results

Yt + Ya − ∆Y + f1Y + f2 · ∇Y + E1(t, a, x ;Y ) = f (Y )

in (0,T )× (0, a+)×O

−∇Y · ν = YfΓ + f 0Γ in (0,T )× (0, a+)× ∂O

Y (t, 0, x) =∫ a+

0E2(t, a, x ;Y )da in (0,T )×O

Y (0, a, x) = Y0(a, x) in (0, a+)×O

Ei (t, a, x ; ·) : (0,T )× (0, a+)×O ×H → H Lipschitz on H.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 15 / 42

1. Intermediate results

LemmaSystem (Y ) has a unique solution

Y ∈ C ([0,T ];H) ∩ C ([0, a+]; L2(0,T ;H)) ∩ L2(0,T ;V).

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 16 / 42

1. Intermediate results

Yt + Ya − ∆Y + f1Y + f2 · ∇Y = f (Y )

in (0,T )× (0, a+)×O

−∇Y · ν = YfΓ in (0,T )× (0, a+)× ∂O

Y (t, 0, x) = 0 in (0,T )×OY (0, a, x) = Y0(a, x) in (0, a+)×O

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 17 / 42

1. Intermediate results

Proof.Introduce A(t) : D(A(t)) ⊂ H → H

D(A(t)) = v ∈ V ; va ∈ V ′, v(0, x) = 0, A(t)v ∈ H

〈A(t)v ,ψ〉V ′,V =∫ a+

0〈va(a),ψ(a)〉V ′,V da+

∫ a+

0

∫O∇v · ∇ψdxda

+∫ a+

0

∫∂OvfΓ(t, a, x)ψdσda

+∫ a+

0

∫O(f1v +∇v · f2)ψdxdadt, for all ψ ∈ V .

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 18 / 42

1. Intermediate results

Proof.Introduce the Cauchy problem

dYdt(t) + A(t)Y (t) = f (t), a.e. t ∈ (0,T ), (CY )

Y (0) = Y0

(i) D(A(t)) is independent of t (D(A(t)) = H)(ii) A(t) is quasi monotone on H for all t ∈ [0,T ](iii) For each u ∈ H, t → Jλ(t)u is Lipschitz

Let f ∈ W 1,1(0,T ;H), Y0 ∈ D(A(t)) =⇒ (CY ) has a unique strongsolution

Y ∈ W 1,∞(0,T ;H) ∩ C ([0,T ];H) ∩ L∞(0,T ;D(A(t)).

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 19 / 42

1. Intermediate results

Yt + Ya − ∆Y + f1Y + f2 · ∇Y = f (Y )

in (0,T )× (0, a+)×O

−∇Y · ν = YfΓ + f 0Γ in (0,T )× (0, a+)× ∂O

Y (t, 0, x) = F (t, x) ∈ L2(0,T ;H) in (0,T )×O

Y (0, a, x) = Y0(a, x) in (0, a+)×O

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 20 / 42

1. Intermediate results

Proof.Let f ∈ L2(0,T ;H), Y0 ∈ H .Define FΓ(t) ∈ V ′ by

〈FΓ(t),ψ〉V ′,V = −∫ a+

0

∫∂Of 0Γ (t, s, σ)ψ(a, σ)dσda,

for all ψ ∈ V , a.e. t ∈ (0,T ).

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 21 / 42

1. Intermediate results

Proof.Regularize all functions.

f n ∈ W 1,1(0,T ;H), f n → f strongly in L2(0,T ;H)F nΓ ∈ W 1,1(0,T ;H), F nΓ → FΓ strongly in L2(0,T ;V ′)Y n0 ∈ D(A(t)), Y n0 → Y0 strongly in HF n ∈ C ([0,T ]×O), F n → F strongly in L2(0,T ;H)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 22 / 42

1. Intermediate results

Proof.

Homogenize the b.c. at a = 0 by setting Y n = Y n − F n

dY n

dt(t) + A(t)Y n(t) = f n(t), a.e. t ∈ (0,T ), (CY )

Y (0) = Y0

Y nn is Cauchy in C ([0,T ];H) ∩ L2(0,T ;V) ∩ C ([0, a+]; L2(0,T ;H))Y n → Y strongly as n→ ∞

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 23 / 42

1. Intermediate results

Yt + Ya − ∆Y + f1Y + f2 · ∇Y + E1(t, a, x ;Y ) = f (Y )

in (0,T )× (0, a+)×O

−∇Y · ν = YfΓ + f 0Γ in (0,T )× (0, a+)× ∂O

Y (t, 0, x) =∫ a+

0E2(t, a, x ;Y )da in (0,T )×O

Y (0, a, x) = Y0(a, x) in (0, a+)×O

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 24 / 42

1. Intermediate results

Yt + Ya − ∆Y + f1Y + f2 · ∇Y + E1(t, a, x ; ζ) = f (Y )

in (0,T )× (0, a+)×O

−∇Y · ν = YfΓ + f 0Γ in (0,T )× (0, a+)× ∂O

Y (t, 0, x) =∫ a+

0E2(t, a, x ; ζ)da in (0,T )×O

Y (0, a, x) = Y0(a, x) in (0, a+)×OFixed point ζ ∈ C ([0,T ];H)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 25 / 42

2. Main results: system (y)

TheoremFor each fixed ω ∈ Ω, system (y) has a unique solution

y ∈ C ([0,T ];H) ∩ L2(0,T ;V) ∩ C ([0, a+]; L2(0,T ;H)),

which is Ft -adapted. The solution satisfies the estimate

‖y(t)‖2H + ‖y(a)‖2L2(0,T ;H ) +

∫ t

0‖y(t)‖2V dτ

≤ Cest

(‖y0‖2H +

∫ t

0‖k(τ)‖2L2(0,a+;L2(∂O )) dτ

)Cest = c0ec1(1+‖g1‖∞+‖g2‖

2∞+a

+m2∞+µ∞)T .

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 26 / 42

2. Main results: system (y)

−∫ T

0

∫ a+

0

∫Oyψtdxdadt −

∫ a+

0

∫Oy0ψ(0, a, x)dxda

+∫ T

0

∫Oy(t, a+, x)ψ(t, a+, x)dxdt −

∫ T

0

∫ a+

0

∫Oyψadxdadt

−∫ T

0

∫O

(∫ a+

0m(t, a, x ;U(eW y))da

)ψ(t, 0, x)dxdt

+∫ T

0

∫ a+

0

∫∂O(αyψ+ kψ)dσdadt +

∫ T

0

∫ a+

0

∫O∇y · ∇ψdxdadt

+∫ T

0

∫ a+

0

∫O

(yg1ψ+ ψg2 · ∇y + µS (t, a, x ;U(e

W y))yψ)dxdadt

= 0,

for all ψ ∈ W 1,2(0,T ;H) ∩ L2(0,T ;V), ψa ∈ L2(0,T ;V ′),ψ(T , a, x) = 0.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 27 / 42

2. Main results: system (y)

Proof.Step 1. Consider a mollifier ρε and define

Wε(t, a, x) =∫ T

0W (t, a, x)ρε(t − s)ds.

Wε → W strongly in C ([0,T ];C 2([0, a+]×O)) as ε→ 0.

Replace (y) by (yε)

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 28 / 42

2. Main results: system (y)

yt + ya − ∆y + g1ε(t, a, x)y + g2ε(t, a, x) · ∇y + S1(t, a, x ; y) = 0 (yε)

−∇y · ν = αε(t, a, x)y + kε(t, a, x) in (0,T )× (0, a+)× ∂O

y(t, 0, x) =∫ a+

0S2(t, a, x ; y)da in (0,T )×O

y(0, a, x) = y0(a, x) in (0, a+)×O

S1(t, a, x ; y) = µS (t, a, x ;U(eWεy))y , S2(a, x ; y) = m(t, a, x ;U(eWεy))y

Si are local Lipschitz on H !!!

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 29 / 42

2. Main results: system (y)

Truncation approximation: replace S1 and S2 by

SNi (t, a, x ; u) =

Si (t, a, x ; u), ‖u‖H ≤ NSi(t, a, x ; Nu

‖u‖H

), ‖u‖H > N

SNi (t, a, x ; u) are Lipschitz continuous on H

Problem (yNε ) has a unique solution∥∥∥yNε (t)∥∥∥2H ≤ c0ec1(1+‖g1‖∞+‖g2‖2∞+a

+m2∞+µ∞)T ×(‖y0‖2H + ‖k‖

2L2(0,T ;L2(0,a+;L2(∂O )))

):= R20

Set ∥∥∥yNε (t)∥∥∥H ≤ R0 < [R0] + 1 := N0

Choose N ≥ N0,∥∥yNε (t)∥∥H ≤ N0 < N, SNi (t, a, x ; y) = Si (t, a, x ; y)

=⇒ yN0ε = yε.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 30 / 42

2. Main results: system (y)

Truncation approximation: replace S1 and S2 by

SNi (t, a, x ; u) =

Si (t, a, x ; u), ‖u‖H ≤ NSi(t, a, x ; Nu

‖u‖H

), ‖u‖H > N

SNi (t, a, x ; u) are Lipschitz continuous on HProblem (yNε ) has a unique solution∥∥∥yNε (t)∥∥∥2H ≤ c0ec1(1+‖g1‖∞+‖g2‖

2∞+a

+m2∞+µ∞)T ×(‖y0‖2H + ‖k‖

2L2(0,T ;L2(0,a+;L2(∂O )))

):= R20

Set ∥∥∥yNε (t)∥∥∥H ≤ R0 < [R0] + 1 := N0

Choose N ≥ N0,∥∥yNε (t)∥∥H ≤ N0 < N, SNi (t, a, x ; y) = Si (t, a, x ; y)

=⇒ yN0ε = yε.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 30 / 42

2. Main results: system (y)

Truncation approximation: replace S1 and S2 by

SNi (t, a, x ; u) =

Si (t, a, x ; u), ‖u‖H ≤ NSi(t, a, x ; Nu

‖u‖H

), ‖u‖H > N

SNi (t, a, x ; u) are Lipschitz continuous on HProblem (yNε ) has a unique solution∥∥∥yNε (t)∥∥∥2H ≤ c0ec1(1+‖g1‖∞+‖g2‖

2∞+a

+m2∞+µ∞)T ×(‖y0‖2H + ‖k‖

2L2(0,T ;L2(0,a+;L2(∂O )))

):= R20

Set ∥∥∥yNε (t)∥∥∥H ≤ R0 < [R0] + 1 := N0

Choose N ≥ N0,∥∥yNε (t)∥∥H ≤ N0 < N, SNi (t, a, x ; y) = Si (t, a, x ; y)

=⇒ yN0ε = yε.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 30 / 42

2. Main results: system (y)

Truncation approximation: replace S1 and S2 by

SNi (t, a, x ; u) =

Si (t, a, x ; u), ‖u‖H ≤ NSi(t, a, x ; Nu

‖u‖H

), ‖u‖H > N

SNi (t, a, x ; u) are Lipschitz continuous on HProblem (yNε ) has a unique solution∥∥∥yNε (t)∥∥∥2H ≤ c0ec1(1+‖g1‖∞+‖g2‖

2∞+a

+m2∞+µ∞)T ×(‖y0‖2H + ‖k‖

2L2(0,T ;L2(0,a+;L2(∂O )))

):= R20

Set ∥∥∥yNε (t)∥∥∥H ≤ R0 < [R0] + 1 := N0

Choose N ≥ N0,∥∥yNε (t)∥∥H ≤ N0 < N, SNi (t, a, x ; y) = Si (t, a, x ; y)

=⇒ yN0ε = yε.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 30 / 42

2. Main results: system (y)

Proof.Step 2. Some estimates imply that yεε is CauchyPass to the limit as ε→ 0, and get that y is a solution.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 31 / 42

2. Main results: system (y)

−∫ T

0

∫ a+

0

∫Oyψtdxdadt −

∫ a+

0

∫Oy0ψ(0, a, x)dxda

+∫ T

0

∫Oy(t, a+, x)ψ(t, a+, x)dxdt −

∫ T

0

∫ a+

0

∫Oyψadxdadt

−∫ T

0

∫O

(∫ a+

0m(t, a, x ;U(eW y))da

)ψ(t, 0, x)dxdt

+∫ T

0

∫ a+

0

∫∂O(αyψ+ kψ)dσdadt +

∫ T

0

∫ a+

0

∫O∇y · ∇ψdxdadt

+∫ T

0

∫ a+

0

∫O

(yg1ψ+ ψg2 · ∇y + µS (t, a, x ;U(e

W y))yψ)dxdadt

= 0,

for all ψ ∈ W 1,2(0,T ;H) ∩ L2(0,T ;V), ψa ∈ L2(0,T ;V ′),ψ(T , a, x) = 0.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 32 / 42

2. Main results: system (y)

Define X = u ∈ V ; ua ∈ V ′, A(t) : V ∩ C([0, a+];H)→ X ′

⟨A(t)v ,ψ0

⟩X ′,X

=∫Ov(a+, x)ψ0(a

+, x)dx −∫ a+

0

∫Ov(ψ0)adxda

−∫O

(∫ a+

0m(t, a, x ;U(v))vda

)ψ0(0, x)dx

+∫ a+

0

∫O

µS (t, a, x ;U(v))vψ0dxda

+∫ a+

0

∫O(∇v · ∇ψ0 + vg1ψ0 + ψ0g2 · ∇v)dxda

+∫ a+

0

∫∂O(αv + k)ψ0dσda

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 33 / 42

2. Main results: system (y)

dydt+ A(t)y = 0, in D′(0,T ;X ′)

∥∥∥∥dydt (ϕ)∥∥∥∥X ′≤ C ‖ϕ‖L2(0,T )

dydt∈ L2(0,T ;X ′).

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 34 / 42

3. Main results: system (p)

TheoremUnder the initial assumptions the stochastic problem (p) has a uniquesolution Ft -adapted

p ∈ C ([0,T ]; L2(H)) ∩ L2(0,T ;V)) ∩ C ([0, a+]; L2(0,T ;H)).

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 35 / 42

3. Main results: system (p)

Proof.

dydt(t) + A(t)y(t) = 0, a.e. t ∈ (0,T ),

y(0) = y0

Consider a mollifier ρε and define

yε(t) = (y ∗ ρε)(t) =∫ T

0y(t − s)ρε(s)ds

Obviously, yε → y strongly inC ([0,T ];H) ∩ C ([0, a+]; L2(0,T ;H)) ∩ L2(0,T ;V).

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 36 / 42

3. Main results: system (p)

Proof.dyε

dt(t) + (ρε ∗ A(t)y)(t) = 0,

eWdyε

dt(t) + eW (ρε ∗ A(t)y)(t) = 0

Denote pε := eW yε,

pε → eW y := p strongly inC ([0,T ];H) ∩ C ([0, a+]; L2(0,T ;H)) ∩ L2(0,T ;V)

pε(t)− pε(0)−∫ t

0µpεdτ −

∫ t

0pεdW (τ)

+∫ t

0eW (τ)(ρε ∗ A(τ)y)(τ)dτ = 0

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 37 / 42

3. Main results: system (p)

Proof.Then, test at ψ0 ∈ X , and pass to the limit as ε→ 0

(p(t),ψ0)H − (p(0),ψ0)H −∫ t

0(µp(τ),ψ0)H dτ

−N

∑k=1

∫ t

0

∫ a+

0

∫O

µkψ0p(τ)dxdadβk (τ)

+∫ t

0

⟨A(τ)y(τ), eW (τ)ψ0

⟩X ′,X

dτ = 0.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 38 / 42

3. Main results: system (p)

(p(t),ψ)H

+∫ t

0

∫Op(τ, a+, x)ψ(a+, x)dxdτ −

∫ t

0

∫ a+

0

∫Opψadxdadτ

−∫ t

0

∫ a+

0

∫Om0(a, x ;U(p))pψ(0, x)dxdadτ

+∫ t

0

∫ a+

0

∫O(∇p · ∇ψ+ µS (τ, a, x ;U(p))pψ)dxdadτ

+∫ t

0

∫ a+

0

∫O(α0p + k0)ψdσdadτ

= (p0,ψ)H +∫ t

0

∫ a+

0

∫OpψdxdadW (τ), for all ψ ∈ V , with ψa ∈ V ′.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 39 / 42

3. Main results: system (p)

Proof.

p is Ft -adapted because it is a limit of Ft -adapted processes.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 40 / 42

References

V. Barbu, M. Röckner, Stochastic variational inequalities and applications tothe total variation flow perturbed by linear multiplicative noise, Arch.Rational Mech. Anal. 209 (2013), 797—834.

V. Barbu, M. Röckner, An operatorial approach to stochastic partialdifferential equations driven by linear multiplicative noise, J. Eur. Math. Soc.17 (2015), 1789-1815.

C. Cusulin, M. Iannelli, G. Marinoschi, Convergence in a multi-layerpopulation model with age-structure, Nonlinear Anal. Real World Appl. 8(2007), 887-902.

G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions,Second Edition, Series: Encyclopedia of Mathematics and its Applications152, Cambridge University Press, 2014.

C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial DifferentialEquations, Springer LN in Math. 1905, Berlin, 2007.

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 41 / 42

Thank you for your attention

Gabriela Marinoschi, ISMMA () Atelier de travail, 13-14.09.2017, Bucarest 42 / 42

Recommended