Fluctuating forces in plasmadynamics

Preview:

Citation preview

Volume71A, number4 PHYSICSLETTERS 14 May 1979

FLUCTUATING FORCES IN PLASMADYNAMICS

W. ROZMUS a andLA. TURSKI b, 1aInstituteof NuclearResearch,00-681 Warsaw,Polandbinstitutesof GeophysicsandTheoreticalPhysics,WarsawUniversity, 00-681 Warsaw,Poland

Received29 December1978

Using theconceptof theVlasov—Landau—Langevinequationwe discussthestructureoffluctuating forcesa la LandauandLifshitz in plasmadynamicalequationsfor weakly coupledonecomponentplasma.Explicit expressionsfor stresstensorandheatcurrentvectorcomponentscorrelationfunctionsarederiveddisplayingnon-markovianbehaviour.

The origin andstructureof fluctuating forcesadded from the Chapman—Enskogin the derivationof theto thehydrodynamicalequationsby LandauandLif- plasmadynamicalequationsfrom the kinetic equation.shitz [1] attractnow a greatdealof attention[2,31. Thispointwas fully discussedby Baus [7]. FromhisTheseforcesplay an importantrole in variouspractical analysis(cf. also ref. [8]) it follows that correctplasma-applicationsfor examplein hydrodynamicalinstabil- dynamicalequationsfor the OCPare non-localin timeitiesandturbulencephenomena[4,5]. i.e. haveexplicitly time dependenttransportcoefficients

Themicroscopicderivationof the LandauandLif- [8]. In ref. [8] we havederivedthesenon-localequa-shitzexpressionsfor the correlationfunctionsof the tions,startingfrom the linearizedVlasov—Landaukineticfluctuatingforceswaspresentedfor the first timeby equation,usingthe projectionoperatorstechniqueBixon andZwanzig[6]. Theyhaveusedthe socalled combinedwith the Grad’s 13 momentsexpansion.TheBoltzmann—Langevinequationandconventional Grad’stechniqueis beingusedhere to studythepredic-Chapman—Enskogprocedure. tionsof the Vlasov—Landau—Langevinequationwritten

In this notewe follow the line of argumentsfrom below,wherethe Fourier transformwith respecttoref. [61 in studyingthe natureof fluctuatingforces~ spacevariableswas performed,plasmadynamicalequationsdescribingthe long-wave- - -

- a~h(k,u,t)+ik.uh(kvt)+V(h)—c(h)lengthevolutionof a onecomponentweakly coupled kplasmaOCP.To thebestof our knowledgethis hasnot = F(k, ~, t~- (1)

beendiscussedin the literature.The essentialdifferencebetweenthelong-wavelength In theaboveh(k,u, t) is the dimensionlessdeviationof

behaviourof the OCP and thatof neutralsystemsstems the exactone.particledistribution functionfrom itsfrom thefact that the OCP supportsthe fastmodeof equilibrium value~fB (lB beingthe Boltzmanndistribu-excitations(plasmamode)down to thezero-wavevec- tion andn themeanparticledensity)~k andC standtor. This rendersapplicationsof conventionalkinetic for linearizedVlasovandLandaucollision operators,theoryconcepts— like the local equilibriumdistribution respectively.Notice that in contrastto the neutralpar-— invalid and forcesusto adopta proceduredifferent tide casethe operator~‘k= Vk C containssingular

k-dependencein its Vlasov term.This leadsto the exis-1 tenceof thefast modeat k = 0.

Researchsupportedin partby the Polish Ministry of ScienceHigherEducationandTechnologyGrantNo. MR.1.7 andby The F(k, u, t) on the RHSof eq.(1) representsthethegrantfrom NationalBureauof Standardsmadeavailable fluctuatingsourceaddedhere in accordwith ideasofvia theMaria Sklodowska-CurieFoundation. ref. [6]. Since thewhole operatoron the LHS of eq.(1)

344

VolumehA, number4 PHYSICSLETTERS 14 May 1979

is local in time, then recallingbasicpropertiesof the We adoptheretheGrad’s 13 momentstechnique.InMon formulationvia which eq.(1) canpresumablybe practicethis meansthat we haveto insertunit opera-justifiedoneconcludesthat the randomsourceFhasto torsspannedby the Hermitepolynomialsin thevelocitybe deltacorrelatedin time, i.e. space,betweenall the operatorsoccurringin eq.(4)

andthenrestrictthenumberof allowedpolynomials(F(k1,U1, t1) F(k2,~2’ r2)) to thefirst 13. To completecalculationswe also need

= E(k1,u1 k2,u2) 6(t1 — t2), (2) eigenfunctionsandeigenvaluesof theL-operator.Itsufficesto calculatethemby perturbationandwith

whereC..) denotesaveragingoverthe initial equilibrium accuracyup to thesquareof the wavevectork. Theensemble, resultingexpressionsfor correlationfunctionsbetween

The apriori unknowncoefficientE canbeinferred variouscomponentsof the stresstensorP,1 andfrom the requirementthat thevelocity-spacecorrelation betweencomponentsof theheatcurrentvector arefunction written belowdisplayingclearlynon-markovian

character:C’(k1,u1,t1k2,o2’ t2) = (h(k1,u1,t1)h(k2,u2,t2))be timetranslationinvariant.E is givenentirelyin terms <~i1(”i,ti)Pim(k2, t2)) = kBTh(kl+ k2)of equilibriumcorrelation functions.Assumingfor thelattera lowest order approximationwithrespectto the X(&iit

5jm +6im6jl_(2I3)~5ijt5lm)plasma-parameterwe obtain x {O(t

1 — r2)fl(t1 — t2)+ o~(t2— t1) ~(t2 — t1)} , (5)

E(k uk u)1’ 1 2’ 2 (q1(k1,t1)qJ(k2,t2))k~T26(k

1+k2)61J

= —2C(ul)(nfB(u2))’ 6(u1 — u2) 6(k1+ k2). (3)x {8(t1—t2)K(t1—t2)+0(t2—r1)K(t2—r1)} . (6)

Havingthis, onecanwrite down the formalexpressionfor the correlationfunction C. Fourier transformingin Here8(t) is thestep functionand~(t) andic(t) aretimetimewe have dependentshearviscosityandthermalconductivity,

respectively.Both thesequantitieswereevaluatedin2irC(k u1,w1k2,u2,w.,)

1 ref. [8] andare expressedin termsof matrix elements= 6(k1 +k2)6(~o1+ w2)(—iw1 +L1)~ of the operatorC(u) in the nonhydrodynamicalpart

i of the Gradbasis.Explicitly we haveX(iw2 +L~)— E(k1u1k2,u2). (4)

In theaboveLa = ik Da — ~k and * denotescomplex ~(t) = nkB T exp(—C1t),conjugation. ,c(t) = nkBT

2(5/2m)exp(—C2t), (7)

It is possiblenow to checkthat thedynamicalstructurefactorS(k,w) obtainedfrom eq.(4) after wherethe velocity spaceintegrationfulfills two first mo- ~~/1 1

- C1 —(IOir ‘ ) w,,~ln~g) C2=(2/3)C1,mentsrelationsfor OCPas it should.

The fluctuatingforcesin theplasmadynamical and is the plasmafrequencyandg is the plasmaequationsare recognizedasusual asthe divergences parameter(g ~ 1).of fluctuatingpartsof thestresstensor andthe Eqs. (5) and(6) are our main result.Theytell usheatcurrentvector~ Thesefluctuating partsare thateventhougheq.(1) was clearlymarkovianthelinear functionalsof the distributionh(k,u, t) thus fluctuatingforcesin plasmadynamicalequationsaretheir correspondingcorrelationfunctionsare expressed non-markovian.This is in accordwith thefact thatentirelyin termsof Cfrom eq.(4). Thishowever plasmadynamicalequationsareby itself non-localinrequiresexplicit evaluationof the inverseoperators time andthat simpleminded“localization” of theseoccurringin eq.(4). In the processof doingso, due equationsis inconsistent[7,8]. Forneutralparticlesto thereasonsoutlinedin theintroductorypart,we onecanevaluatecorrelationfunctionslike eqs.(5)haveto departfrom the argumentationof ref. [6]. and(6) also usingthe Grad’s 13 momentsmethod.

345

Volume71A, number4 PHYSICSLETTERS 14 May 1979

Now the localizationof thetransportcoefficientsis in hydrodynamicsandthepossibility of regardingthepossibleresultingin replacementof the curly brackets non-hydrodynamicalpart of the initial value for thein eqs.(5), (6) by 26(t1—t2) timestransportcoefficient, linearizedkinetic equationas randomquantity.WehopeTheseareoriginal LandauandLifshitz formulae(cf. to returnto theseproblemsin a separatepublication.also ref. [3]).

It is possibleto understandeqs.(5), (6) on thebasis Referencesof theMon formulation.Indeed,we know from thisgeneraltheorythat the correlationfunction of the [11L.D. LandauandE.M. Lifshitz, Soy.Phys.JETP 32

generalizedLangevinforcesoccurring in the Mon equa- (1957)618.tionhaveto be equal(modulostaticcorrelationfac- [2] K.T. MashiyamaandH. Mori, J. Stat.Phys.18 (1978)385.

tors)to the memoryfunctionappearingin thesame [3] C.P.Enzand L.A. Turski, submittedfor publication.[4] For a reviewcf. H. Haken,Synergetics(Springer,Berlin,equation.Adding the fluctuatingforcesto theplasma- 1977).

dynamicalequationsfrom ref. [8] it is easyto seethat [5] S.A. Orszag,in: Fluid dynamics,ed.R. Balian(Gordon

this is really thecase,i.e. the correlationfunctionseqs. and Breach,New York, 1973),LesHouchesproceedings.

(5), (6) determinethememoryfunctionsin ref. [8]. [6] M. Bixon and R.W.Zwanzig,Phys.Rev. 187 (1969)267.

We haveconcludedthatonecanmakemuchmore [7] M. Baus,Physica79A (1975)377.[8] W. Rozmus,submittedfor publicationin J. PlasmaPhys.

generalstatementsconcerningthenatureof fluctuating (1979).

forcesin hydrodynamicalequations,memoryfunctions

346

Recommended