FLAME TREATMENT FLAME TREATMENT TECHNOLOGY AND …€¦ · AIMCAL FALL CONFERENCE - MYRTLE BEACH -...

Preview:

Citation preview

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20051

FLAME TREATMENT FLAME TREATMENT TECHNOLOGY AND ITS TECHNOLOGY AND ITS

APPLICATIONSAPPLICATIONS

Stefano MancinelliesseCI SRL Process Engineer

esse CIflame treaters®

Via Flaminia Ternana no.386

05035 – Narni (TR) - ITALY

www.essecinet.com

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20052

SUMMARYSUMMARY

1. Laminar flame profile

2. Flame chemistry

3. PP surface flame oxidation mechanism

4. Flame treatment main process parameters

5. Flame treatment applications

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20053

1.1.11 LAMINAR FLAME LAMINAR FLAME PROFILEPROFILE

1) Preheating zone;

2) Luminous zone;

3) Recombination zone

Temp. profile

Radicals gradient

Unburned gases

convective flows

+

Radicals diffusion

REDUCING ZONENO TREATMENTEXCESS GAS

OXIDIZING ZONETREATMENT AREAEXCESS O2

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20054

1.1.22 LAMINAR FLAME LAMINAR FLAME PROFILEPROFILE

FLAME SPEEDMallard-LeChatelier Theory

SL ~ (b ´ RR)1/2

b = Thermal Diffusivity = l/rcp

FLAME = Dynamic balance between flame speed and

mixture speed ÞMixt. Flow vs. Air Gap

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20055

1.1.33 LAMINAR FLAME LAMINAR FLAME PROFILEPROFILE

Flame speed and mixture speed in premixed laminar flame

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20056

1.1.44 LAMINAR FLAME LAMINAR FLAME PROFILEPROFILE

FLAMMABILITY LIMITS (FUEL VOL. %)

551022C3H8

611555CH4

79281515NH3

94741612CO

947544H2

O2AIRO2AIR

GAS RICHGAS LEAN

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20057

2.2.11 FLAME CHEMISTRYFLAME CHEMISTRY

Chain/Radical reactions:l M Þ R ; Initiating step – k1

l R+M Þ aR+M’ ; Chain Branching – k2

l R+M Þ R+P ; Propagating step – k3

l R+M Þ P’ ;Terminating/Production – k4

l R Þ P’’ ; Wall destruction – k5M = reactants; P,P’,P’’ = reaction products

Multiplication factor a = 1 + [(k4 + k5) / k2]

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20058

2.2.22 HH22 -- 0022

COMBUSTION SYSTEMCOMBUSTION SYSTEMChain Branching Þ RADICAL POOL

H+O2 Þ OH+O;

OH+H2 Þ H+H2O;

O+H2 Þ OH+H;

O+H2O Þ 2OH.

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 20059

2.2.33 METHANE OXIDATIONMETHANE OXIDATION

CH4 + M Þ CH3 + H + MCH4 + X Þ CH3 + XHa) methyl radicals oxidation Þ CH3O;CH2O

b) C2H6 formation and its oxidation

Þ H2O and CO2 production (passing through CO).

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200510

3.3.11 PP PP surface flame oxidation surface flame oxidation

mechanismmechanism

l C-H link breaking vs. C-C link breaking;l OH > O > H >> HO2

RH+OH Þ R°+H2O; Initiating stepRH+H Þ R°+H2

R°+OH Þ ROH;

R°+HO2 Þ ROOH; Propagating stepR°+O2 Þ ROO;R°+H2O2 Þ ROO+OHR°+O Þ RO

R°+H Þ RH; Terminating step

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200511

3.3.22 PP PP surface flame oxidation surface flame oxidation

mechanismmechanism

b-scission reaction:

-C-C-C- Þ -C=O + C

ô

O

O Þ alkoxy radicals RO° Þ LMWOM.

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200512

3.3.33 PP PP surface flame oxidation surface flame oxidation

mechanismmechanism

l O/C RATIO

l IMWOM vs. LMWOM

INCREASED SURFACE ENERGY

l Chain Scission behaviour

l “Aging” behaviour

l Metallizing barrier effect & Improved surface properties

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200513

3.3.44 PP PP surface flame oxidation surface flame oxidation

mechanismmechanism

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200514

TREATED

3.3.55 PP PP surface flame oxidation surface flame oxidation

mechanismmechanism

UNTREATED

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200515

4.4.11 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200516

4.4.2 2 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

A) MIXTURE FLOW

Q1 Q2

MIXTURE FLOW (m3/h)

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200517

4.4.3 3 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERSTREATMENT LEVEL vs. MIXTURE FLOW CURVES

(AT DIFFERENT LINE SPEEDS)

38

40

42

44

46

48

50

52

54

10 20 30 40 50 60 70 80 90 100

MIXTURE FLOW [Nmc/h per burner meter]

v 150m/min

v 200m/min

v 250m/min

v 300m/min

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200518

4.4.44 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

TREATMENT LEVEL vs. MIXTURE FLOW CURVES

(AT DIFFERENT LINE SPEEDS)

38

40

42

44

46

48

50

52

54

40 50 60 70 80 90 100 110 120 130 140

MIXTURE FLOW [Nmc/h per burner meter]

v 350m/min

v 400m/min

v 450m/min

v 500m/min

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200519

4.4.55 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

f = EQUIVALENCE

RATIO

B) MIXTURE COMPOSITION

l = LAMBDA =

= 1 / f

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200520

4.4.66 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200521

4.4.77 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

TREATMENT LEVEL vs. JONO TEMPERATURE CURVE (Qmix = 48m3/h*m; gap

4.0mm; s 160m/min; H2O roll = 27°C)

303540455055

810 820 830 840

Jono temperature [°C]

Tre

atm

en

t L

ev

el

[d

yn

es/c

m]

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200522

4.4.88 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

Lambda value vs. Room Temperature

at different relative humidity values.Natural Gas combustion (d=0.59).

Stoichiometric at 20°C; H% = 0

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 10 20 30 40 50 60 70 80 90 100

Room Temperature [°C]

RH 0%

RH 25%

RH 50%

RH 75%

RH 100%

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200523

4.4.99 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

C) AIR GAP

AIR GAP OPTIMIZATION CURVE (METHANE 2.5 GAS;

MIXTURE LAMBDA 1.028; GRID TYPE 0)

2,5

3

3,5

4

4,5

5

1000 1500 2000 2500 3000

OUTPUT MIXTURE SPEED [m/h]

AIR

GA

P [

mm

]

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200524

4.4.1010 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

FLAME TEMPERATURE vs. AIR GAP at different mixture compositions

1290

1300

1310

1320

1330

1340

1350

2 3 4 5 6 7 8

AIR GAP [mm]

LAMBDA 1.000LAMBDA 1.050LAMBDA 0.950

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200525

4.4.1111 FLAME TREATMENT MAIN FLAME TREATMENT MAIN PROCESS PARAMETERSPROCESS PARAMETERS

D) TREATER ROLL TEMPERATURE

P =KA DT ; [W/m]

K [W/(m2/°C)]

A [m2] ; DT [°C]

1/K =S / (A´lm) + 1/h +Rd

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200526

5.5.11 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

••

•••

••

•••

••

•••

•• • • •• • •• ••• • • •• • •• ••

• • • •• • •• ••• • • •• • •• ••

••

• • • •

• • • •

Anti-blocking particles (mineral or polymer)

Slip agents – Amides

Anti-static – Tertiary Ethoxilated Amines

Anti-static – GMS

Layer “C” – Heat Seal

Layer “A” – Heat Seal / Conversion

Layer “B” – PP Structural

BOPP Films for Printing and Lamination

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200527

5.5.22 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

Flame treated. Slow peeling.

Corona treated. Fast peeling. Flame treated. Fast peeling.

NO ADHESION PROMOTERCorona treated. Slow peeling.

BOPP Films for Printing and Lamination

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200528

5.5.33 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

CORONA TREATED

BOPP Films for Printing and Lamination

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200529

5.5.44 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

FLAME TREATED

BOPP Films for Printing and Lamination

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200530

5.5.55 FLAME TREATMENT APPLICATIONS FLAME TREATMENT APPLICATIONS

•• • •Anti-blocking particles

Layer “C” – Heat Seal

Layer “A” – Al deposition receptive

Layer “B” –PP Structural

Al layer (deposition under vacuum)

Metallized Coex films

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200531

5.5.6 6 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

Metallized Coex films

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200532

5.5.77 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

Metallized Coex films

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200533

5.5.88 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

TargetsEffective treatment at high line speeds, with little impact in heat seal initiation temperature (SIT),

on optical properties and flatness

Results Treated film UT/UT sealing temp= Untreat UT/UT;UT/T and T/T sealing temp. max 10°C > UT/UT .

UT = untreated; T = treated .

Sealable Coex films

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200534

5.5.99 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

363.977.587.1147414.8454.8Seal Str.[N]

NYYv.littleNNCurling

NYYLightNNFilm aspect

(stripes)

424443424141Dynes/cm

192619261919Roll Temp.[°C]

325325325325325325Speed [m/min]

815825815815815815T Jono [°C]

2.532.82.52.52.5Gap [mm]

283936282725Mixt. [m3/h*m]

654321

Sealable Coex films

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200535

5.5.10 10 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

SEALING STRENGHT vs. FLAME TREATMENT PARAMETERS

454,8414,8

14787,1 77,5

363,9

0

50

100

150

200

250

300

350

400

450

500

45 48 50 65 70 50

Mixture flow values [Nm3/h]

Sealable Coex films

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200536

5.5.11 11 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

White Opaque films / Synthetic Paper

Targets

Effective treatment at high line speeds, with little on optical properties and flatness

ResultsTreatment level up to 44 dynes/cm at 450m/min without problems as stripes along film width and

curling effect

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200537

5.5.1212 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

0/10/11/211/2Curling

10/121/22/3 Film aspect

(stripes)

44 42 46 4250Dynes/cm

1616202020Roll Temp.[°C]

280280280280280Speed [m/min]

820820815815815T Jono [°C]

2.82.52.82.53.3Gap [mm]

3530403550Mixt. [m3/h*m]

54321

White Opaque films / Synthetic Paper

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200538

5.5.1313 FLAME TREATMENT APPLICATIONSFLAME TREATMENT APPLICATIONS

esseCI SRL PILOT PLANT

11/10/2005AIMCAL FALL CONFERENCE - MYRTLE BEACH - SC - USA - 19 October 200539

BACK TO LIST

Recommended