Figure 50.0x Earth from the moon. Figure 50.1 Distribution and abundance of the red kangaroo in...

Preview:

Citation preview

Figure 50.0x Earth from the moon

Figure 50.1 Distribution and abundance of the red kangaroo in Australia, based on aerial surveys

Figure 50.x1 Patterns of distribution in the biosphere

Figure 50.2 Sample questions at different levels of ecology

Figure 50.4 Biogeographic realms

Figure 50.5 Flowchart of factors limiting geographic distribution

Figure 50.6 Set of transplant experiments for a hypothetical species

Figure 50.7 Spread of the African honeybee in the Americas since 1956

Figure 50.8 Expansion of the geographic range of the zebra mussel (Dreissena polymorpha) since its discovery near Detroit in 1988

Figure 55.7x Zebra mussels

Figure 50.9 Predator-removal experiments

Figure 50.10 A climograph for some major kinds of ecosystems (biomes) in North America

Figure 50.11 Solar radiation and latitude

Figure 50.12 What causes the seasons?

Figure 50.13 Global air circulation, precipitation, and winds

Figure 50.14 How mountains affect rainfall

Figure 50.15 Lake stratification and seasonal turnover (Layer 4)

Figure 50.16 Current geographic range and predicted future range for the American beech (Fagus grandifolia) under two climate-change scenarios

Figure 50.17 The distribution of major aquatic biomes

Figure 50.18 Zonation in a lake

Figure 50.19 Freshwater biomes: Oligotrophic lake (left), eutrophic lake (top right), stream flowing into a river (bottom right)

Figure 50.20 Damming the Columbia River Basin

Figure 50.21 Wetlands (top) and estuaries (bottom)

Figure 50.22 Zonation in the marine environment

Figure 50.23 Examples of marine biomes

Figure 50.23cx Black smoker

Figure 50.24 The distribution of major terrestrial biomes

Figure 50.25a Tropical forests

Figure 50.25b Savanna

Figure 50.25bx Savanna

Figure 50.25c Deserts

Figure 50.25d Chaparral

Figure 50.25dx Chaparral

Figure 50.25e Temperate grassland

Figure 20.25f Temperate deciduous forest

Figure 20.25g Coniferous forests

Figure 20.25h Tundra

Figure 50.26 A hierarchy of scales for analyzing the geographic distribution of the moss Tetraphis

Figure 50.27 Most species have small geographic ranges

Figure 52.0 Monarch butterflies

Figure 52.1 Aerial census for African buffalo (Syncerus caffer) in the Serengeti of East Africa

Figure 52.2 Patterns of dispersion within a population’s geographic range

Figure 52.2ax2 Clumped dispersion: buffalo, swans, fish, lupine

Table 52.1 Life Table for Belding Ground Squirrels (Spermophilus beldini) at Tioga Pass, in the Sierra Nevada Mountains of California

Table 52.2 Reproductive Table for Belding Ground Squirrels (Spermophilus beldingi) at Tioga Pass, in the Sierra Nevada Mountains of California

Figure 52.3 Idealized survivorship curves

Figure 52.4 An example of big-bang reproduction: Agave (century plant)

Figure 52.5 Cost of reproduction in female red deer on the island of Rhum, in Scotland

Figure 52.6 Probability of survival over the following year for European kestrels after raising a modified brood

Figure 52.7 Variation in seed crop size in plants: Dandelion and coconut palm

Figure 52.8 Population growth predicted by the exponential model

Figure 52.9 Example of exponential population growth in nature

Figure 52.10 Reduction of population growth rate with increasing population size (N)

Table 52.3 A Hypothetical Example of Logistic Population Growth, Where K=1,000 and rmax=0.05 per Individual per Year

Figure 52.11 Population growth predicted by the logistic model

Figure 52.12 How well do these populations fit the logistic population growth model?

Figure 52.14 Decreased fecundity at high population densities

Figure 52.15 Decreased survivorship at high population densities

Figure 52.16 Decline in the breeding population of the northern pintail (Anas actua) from 1955 to 1998

Figure 52.17 Long-term study of the moose (Alces alces) population of Isle Royale, Michigan

Figure 52.18 Extreme population fluctuations

Figure 52.19 Population cycles in the snowshoe hare and lynx

Figure 52.20 Human population growth

Figure 52.21 Demographic transition in Sweden and Mexico, 1750-1997

Figure 52.22 Age-structure pyramids for the human population of Kenya (growing at 2.1% per year), the United States (growing at 0.6% per year), and Italy (zero growth) for 1995

Figure 52.23 Ecological footprint in relation to available ecological capacity

Figure 53.0 Lion with kill in a grassland community

Figure 53.1 Testing the individualistic and interactive hypotheses of communities

Table 53.1 Interspecific Interactions

Figure 53.2 Testing a competitive exclusion hypothesis in the field

Figure 53.3a Resource partitioning in a group of lizards

Figure 53.3bc Anolis distichus (left) and Anolis insolitus (right)

Figure 53.4 Character displacement: circumstantial evidence for competition in nature

Figure 53.5 Camouflage: Poor-will (left), lizard (right)

Figure 53.6 Aposematic (warning) coloration in a poisonous blue frog

Figure 53.x1 Deceptive coloration: moth with "eyeballs"

Figure 53.7 Batesian mimicry

Figure 53.8 Müllerian mimicry: Cuckoo bee (left), yellow jacket (right)

Figure 53.x2 Parasitic behavior: A female Nasonia vitripennis laying a clutch of eggs into the pupa of a blowfly (Phormia regina)

Figure 53.9 Mutualism between acacia trees and ants

Figure 53.x3 Commensalism between a bird and mammal

Figure 53.10 Examples of terrestrial and marine food chains

Figure 53.11 An antarctic marine food web

Figure 53.12 Partial food web for the Chesapeake Bay estuary on the U.S. Atlantic coast

Figure 53.13 Test of the energetic hypothesis for the restriction on food chain length

Figure 53.14a Testing a keystone predator hypothesis

Figure 53.14b Testing a keystone predator hypothesis

Figure 53.15 Sea otters as keystone predators in the North Pacific

Figure 53.16 Routine disturbance in a grassland community

Figure 53.17 Storm disturbance to coral reef communities: Heron Island Reef in Australia

Figure 53.x4 Environmental patchiness caused by small-scale disturbances: A fallen tree

Figure 53.18x2 Forest fire

Figure 53.18 Patchiness and recovery following a large-scale disturbance

Figure 53.18x1 Large-scale disturbance: Mount St. Helens

Figure 53.19 A glacial retreat in southeastern Alaska

Table 53.2 The Pattern of Succession on Moraines in Glacier Bay

Figure 53.20 Alders and cottonwoods covering the hillsides

Figure 53.20 Spruce coming into the alder and cottonwood forest

Figure 53.20 Spruce and hemlock forest

Figure 53.21 Which forest is more diverse?

Figure 53.22 Relative abundance of Lepidoptera (butterflies and moths) captured in a light trap in Rothamsted, England

Figure 53.24 Energy and species richness

Figure 53.25 Species-area curve for North American birds

Figure 53.26 The hypothesis of island biogeography

Figure 53.27 Number of plant species on the Galápagos Islands in relation to the area of the island

Figure 54.0 A terrarium, an example of an ecosystem

Figure 54.1 An overview of ecosystem dynamics

Figure 54.2 Fungi decomposing a log

Figure 54.3 Primary production of different ecosystems

Figure 54.4 Regional annual net primary production for Earth

Figure 54.5 Vertical distribution of temperature, nutrients, and production in the upper layer of the central North Pacific during summer

Figure 54.6 Experiments on nutrient limitations to phytoplankton production in coastal waters of Long Island

Table 54.1 Nutrient Enrichment Experiments for Sargasso Sea Samples

Figure 54.7 Remote sensing of primary production in oceans

Figure 54.8 The experimental eutrophication of a lake

Figure 54.9 Nutrient addition experiments in a Hudson Bay salt marsh

Figure 54.10 Energy partitioning within a link of the food chain

Figure 54.11 An idealized pyramid of net production

Figure 54.12 Pyramids of biomass (standing crop)

Figure 54.13 A pyramid of numbers

Figure 54.14 Food energy available to the human population at different trophic levels

Figure 54.15 A general model of nutrient cycling

Figure 54.16 The water cycle

Figure 54.17 The carbon cycle

Figure 54.18 The nitrogen cycle

Figure 54.19 The phosphorous cycle

Figure 54.20 Review: Generalized scheme for biogeochemical cycles

Figure 54.21 Hubbard Brook Experimental Forest: Concrete dams (left), logged watersheds (right)

Figure 54.21c Nutrient cycling in the Hubbard Brook Experimental Forest: an example of long-term ecological research

Figure 54.22 Agricultural impact on soil nutrients

Figure 54.23a Distribution of acid precipitation in North America and Europe

Figure 54.23b U.S. map profiling pH averages for precipitation in 1999

Figure 54.24 We’ve changed our tune

Figure 54.25 Biological magnification of DDT in a food chain

Figure 54.26 The increase in atmospheric carbon dioxide and average temperatures from 1958 to 2000

Figure 54.27a Erosion of Earth’s ozone shield: The ozone hole over the Antarctic

Figure 54.27b Erosion of Earth’s ozone shield: Thickness of the ozone layer

Figure 55.0 Deforestation of tropical forests

Figure 55.00x Deforestation in the United States

Figure 55.1 Three levels of biodiversity

Figure 55.2 A hundred heartbeats from extinction: Philippine eagle (left), Chinese river dolphin (right)

Figure 55.3 The rosy periwinkle (Catharanthus roseus): a plant that saves lives

Figure 55.4 What scientists learned about ecosystem services from the world’s largest terrarium

Figure 55.5 Fragmentation of a forest ecosystem

Figure 55.6 The history of habitat reduction and fragmentation in a Wisconsin forest

Figure 55.7 Disastrous species introductions: Nile perch (top left), brown tree snake (top right), Argentine ants (bottom left), seaweed Caulerpa (bottom right)

Figure 55.7x Zebra mussels

Figure 55.8 The great auk (Pinguinis impennis)

Figure 55.9 North Atlantic bluefin tuna auctioned in a Japanese fish market

Figure 55.10 The extinction vortex of the small-population approach

Figure 55.11 The decline of the greater prairie chicken (Tympanuchus cupido) in central Illinois from 1970 to 1997

Figure 55.12 Two species of edible plants whose persistence is threatened by habitat loss and overharvesting

Figure 55.13 Long-term monitoring of a grizzly bear population

Figure 55.14 Habitat requirements of the red-cockaded woodpecker

Figure 55.15 Edges between ecosystems

Figure 55.16 An artificial corridor

Figure 55.17 Some biodiversity hot spots

Figure 55.18 The legal and biotic boundaries for grizzly bears in Yellowstone and Grand Teton National Parks

Figure 55.19 Zoned reserves in Costa Rica

Figure 55.19 Local schoolchildren marvel at the diversity of life in one of Costa Rica's reserves

Figure 55.20b An endangered, endemic species in its unique habitat

Figure 55.21 The size-time relationship for community recovery from natural (salmon-colored) and human-caused (white) disasters

Figure 55.22 Restoration of degraded roadsides in the tropics

Figure 55.23 Biophilia, past and present

Recommended