Fig. 10-CO, p. 264

Preview:

DESCRIPTION

Fig. 10-CO, p. 264. Fig. 10-1, p. 266. Wave direction. Wave. Fig. 10-1, p. 266. Wave. Wave direction. Stepped Art. Fig. 10-1, p. 266. Fig. 10-2, p. 266. Direction of wave motion. A. B. Wavelength. Height. Still water level. Trough. Crest. - PowerPoint PPT Presentation

Citation preview

Fig. 10-CO, p. 264

Fig. 10-1, p. 266

Fig. 10-1, p. 266

Wave directionWave

Fig. 10-1, p. 266

Wave directionWave

Stepped Art

Fig. 10-2, p. 266

Fig. 10-2, p. 266

Direction of wave motion

A B

Wavelength

Height

Still water level Crest Trough

Frequency: Number of wave crests passing point A or point B each second

Orbital path of individual water molecule at water surface

Period: Time required for wave crest at point A to reach point B

Fig. 10-3, p. 267

Fig. 10-3, p. 267

Direction of wave motion

Wave-length

Still water levelCrest Trough Crest

1/2 wave-length depth

Fig. 10-4, p. 267

Fig. 10-4, p. 267

Stokes drift (mass

transport)

No mass transport

Wave

Wave

Closed orbit after one period

Open orbit after one period

Table 10-1, p. 268

Fig. 10-5, p. 269

Fig. 10-5, p. 269

Seismic disruptionDisturbing forcelandslides

Gravity Wind

Restoring force GravitySurface tension

Type of wave Tide Tsunami Seiche Wind wave Capillary wave (ripple)

24 hr.

Am

ou

nt

of

ener

gy

in o

cean

su

rfac

e

100,000 sec (1 1/4 days)

10,000 sec (3 hr)

1,000 sec (17 min)

100 sec 10 sec 1 sec 1/10 sec 1/100 sec

Period (time, in seconds for two successive wave crests to

pass a fixed point)

1 10 100

Frequency (waves per second)

12 hr.

Fig. 10-6, p. 269

Fig. 10-7, p. 270

Fig. 10-7, p. 270

30.6

Wavelength (m)

0 100 200 300 400 500 600

27.818

17 6225.0 15

22.211 14

13 16 50

9 12 37

19.4

16.6

11.0

5.6 4 138.4

3

57

Sp

eed

(m

ph

)

Period (in

seconds)

2513.8

Sp

eed

(m

/sec

)

2.80.0

10

2

Wavelength (ft)

0 328 656 984 1,312 1,640 1,968

10

86

Fig. 10-8, p. 271

Fig. 10-8, p. 271

Wind

b

aSea surface

Maximum wavelength 1.73 cm (0.68 in.)

Fig. 10-9, p. 271

Fig. 10-10, p. 272

Fig. 10-10, p. 272

5 4 3 2 1

6 5 4 3 2 1

6 5 4 3 2

7 6 5 4 3

7 6 5 4 3

7 6 5 4

8 7 6 5

8 7 6 5

Fig. 10-10, p. 272

Stepped Art

7 6 5 4 3

6 5 4 3 2

8 7 6 5

8 7 6 5

7 6 5 4 3

5 4 3 2 1

7 6 5 4

6 5 4 3 2 1

Fig. 10-11, p. 273

Fig. 10-11, p. 273

Fully developed seas

Changing to swellRipples to chop

to wind waves

Direction of wave advance

Wind

Length of fetch

Table 10-2, p. 273

Fig. 10-12, p. 274

Fig. 10-13, p. 274

Fig. 10-14, p. 275

Fig. 10-14, p. 275

7 across

1 high

120°

Fig. 10-15, p. 275

Fig. 10-15, p. 275

1 2

a

b

Constructive interference

(addition)

Destructive interference (subtraction)

Constructive interference

(addition)

Fig. 10-16, p. 276

Fig. 10-17, p. 277

Fig. 10-17, p. 277

1 2 4 53

Depth = 1/2 wavelength

Surf zone

Box 10-1, p. 278

Fig. 10-18a, p. 279

Fig. 10-18b, p. 279

Fig. 10-19a, p. 279

Fig. 10-19a, p. 279

Direction of progress

Wave crests

Waves begin to "feel bottom" here, water depth is L/2.

Bottom contours

Shoreline

Fig. 10-19b, p. 279

Fig. 10-20a, p. 280

Fig. 10-20b, p. 280

Fig. 10-20b, p. 280

Waves A and B create a checkerboard of peaks and troughs

A

B

Fig. 10-21, p. 280

Fig. 10-22, p. 280

Fig. 10-22, p. 280

(Every tenth wave crest shown)

0

10 Waves moving

20

30

Islands

Areas of wave crest reinforcement due to diffraction and interference

Fig. 10-23, p. 281

Fig. 10-23a, p. 281

NodeCrest

Node NodeCrest

Trough No motion Maximum water flow

No motion

1 2 3

Fig. 10-23b, p. 281

Node Node

Crest

TroughMaximum water flow

No motionTrough

4 5

Starts again at 2

Fig. 10-24a, p. 282

Fig. 10-24a, p. 282

Wind waves on surface

Less dense water Pycnocline

Internal wave crestDenser

water

Fig. 10-24b, p. 282

Fig. 10-24c, p. 282

Fig. 10-25a, p. 283

Fig. 10-25a, p. 283

CCW spin

Direction of storm and storm surge

Low atmospheric pressureDome of water

Dome of water

Low atmospheric pressure

CCW spin

Direction of storm and storm surge

Stepped Art

Fig. 10-25a, p. 283

Fig. 10-25b, p. 283

Fig. 10-26a, p. 284

Fig. 10-26b, p. 284

Fig. 10-27a, p. 285

Fig. 10-27b, p. 285

Fig. 10-27b, p. 285

176

175Buffalo

174

173Toledo

172

Lak

e E

rie

wat

er l

evel

(m

eter

s ab

ove

sea

lev

el)

171 12:00

0:00

12:00

0:00

12:00

0:00

12:00

12 November 13 November 14 November 15 November

b Date

0:00

Fig. 10-28, p. 286

Fig. 10-29a, p. 287

Fig. 10-29b, p. 287

Fig. 10-29c, p. 287

Fig. 10-29d, p. 287

Fig. 10-29e, p. 287

Fig. 10-30, p. 288

Fig. 10-31, p. 288

Fig. 10-32a, p. 289

Fig. 10-32b, p. 289

Fig. 10-32c, p. 289

Fig. 10-33, p. 290

Fig. 10-34, p. 290

Fig. 10-34, p. 290

November 14, 1994 Mindoro Island Maximum wave: 7 m Fatalities: 49

July 12, 1993 Okushiri, Japan Maximum wave:31 m Fatalities: 239

October 9, 1995 Jalisco, Mexico Maximum wave: 11 m Fatalities: 1

January 1, 1996 Sulawesi Island Maximum wave: 3.4 m Fatalities: 9

February 17, 1996 Irian Jaya Maximum wave: 7.7 m Fatalities: 161

September 2, 1992 Nicaragua Maximum wave: 10 m Fatalities: 170

December 12, 1992 Flores Island Maximum wave: 26 m Fatalities: >1,000

July 17, 1998 Papua New Guinea Maximum wave: 15 m Fatalities: >2,200

June 2, 1994 East Java Maximum wave: 14 m Fatalities: 238

December 26, 2004 Indonesia and vicinity Maximum wave: 35 m Fatalities: >176,000

February 21, 1996 North coast of Peru Maximum wave: 5 m Fatalities: 12

Fig. 10-35, p. 291

Fig. 10-36a, p. 292

Fig. 10-36b, p. 292

Fig. 10-36c, p. 292

Fig. 10-37, p. 293

Fig. 10-37, p. 293

GOES Satellite

Transducers

Signal flag Acoustic telemetry

Glass ball flotation ~6000 m

TransducerBottom pressure recorder

Sensor anchor

Anchor

Table 10-3, p. 293