Edmond Iancu IPhTSaclay&CNRS w/J.D.Madrigal,A.H.Mueller,G ... · Resumming large radiative...

Preview:

Citation preview

Resumming large radiative corrections in the high-energyevolution of the Color Glass Condensate

Edmond IancuIPhT Saclay & CNRS

w/ J.D. Madrigal, A.H. Mueller, G.Soyez, and D.N. Triantafyllopoulos

June 19, 2013

10-1

100

101

10-6

10-5

10-4

10-3

10-2

Q2 o

r 4/r

2 [G

eV

2]

x

dataGBW,smallGBW,facrcMV,smallrcMV,fac

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 1 / 33

Introduction

The Color Glass Condensate effective theory is the pQCD descriptionof the wavefunction of a very energetic hadron

non-linear effects associated with the high gluon density

Via appropriate factorization schemes, it controls various high-energyprocesses: DIS, proton-nucleus, nucleus-nucleus (initial conditions)

“Effective theory” : high-energy evolution described by pQCD

Balitisy-JIMWLK hierarchy ≈ BK equation (at large Nc)

non-linear generalizations of the BFKL equation

The non-linear evolution has recently been promoted to NLO

running coupling corrections to BK (Kovchegov, Weigert; Balitsky, 07)full NLO version of the BK equation (Balitsky, Chirilli, 08)JIMWLK evolution at NLO (Kovner, Lublinsky, Mulian, 2013)

Large corrections enhanced by double or single transverse logarithmsBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 2 / 33

Introduction

Similar corrections were previously identified in the context ofNLO BFKL (Fadin, Kotsky, Lipatov, Camici, Ciafaloni ... 95-98)

Associated with high transverse momenta (weak scattering/low gluondensity) =⇒ cannot be cured by non-linear effects

For NLO BFKL, one has devised powerful resummation schemes ...(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)

... which however were formulated in Mellin space

The non-linear evolution equation (JIMWLK, BK) are naturallyformulated in the transverse coordinate space (eikonal approximation)

A new strategy for resumming the large transverse logarithms, bettersuited for non-linear evolution (arXiv:1502.05642)

An all-order resummed (‘collinearly-improved’) version of the BKequation, as a powerful tool for phenomenology (arXiv:1507.03651)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 3 / 33

Outline

The prototype process at high energy: dipole-hadron scattering

BK equation at leading order (LO)

A glimpse at the NLO corrections

Double transverse logarithms & Time ordering

Adding single transverse logarithms (DGLAP, running coupling)

=⇒ a “collinearly improved” version of BK equation

Fits to the HERA data

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 4 / 33

QCD evolution via Bremsstrahlung

Bremsstrahlung favors soft and collinear emissions:

dP =αsNc

π

dx

x

dk2⊥k2⊥

≡ αs dY dρ

double logarithmic enhancement: Y ≡ ln(1/x), ρ ≡ ln(k2⊥/Q

20)

evolution with increasing Y (decreasing x) : BFKL, BK, JIMWLK

evolution with increasing ρ (or k⊥) : DGLAP

common limit: ‘double logarithmic approximation’ (DLA): (αsY ρ)n

Beyond leading-order (LO) : ‘cross-terms’ between BFKL and DGLAPBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 5 / 33

Dipole–hadron scattering

A high-energy process interesting for both DIS and pA collisions

σγ∗p(Q2, x) = 2πR2

p

∑f

∫d2r

∫ 1

0dz∣∣Ψf (r, z;Q2)

∣∣2 T (r, x)

x =Q2

2P · q 'Q2

s� 1 (Bjoerken’ x)

T (r, x) : scattering amplitude for a qq color dipole with transverse size r

r2 ∼ 1/Q2 : the resolution of the dipole in the transverse plane

x : longitudinal fraction of a gluon from the target that scattersBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 6 / 33

Dipole–hadron scattering

A high-energy process interesting for both DIS and pA collisions

Forward quark production in pA collisions

a quark from the proton undergoes transverse momentum broadeningvia rescattering off the nucleus

cross-section = amplitude × complex conjugate amplitude

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 7 / 33

Dipole–hadron scattering

A high-energy process interesting for both DIS and pA collisions

mathematically equivalent (to the accuracy of interest) to the elasticscattering of a dipole (amplitude only)

dηd2p= xq(x)

1

(2π)2

∫d2xd2y e−ip·(x−y) Sxy

Sxy = 1− Txy : the dipole S-matrix (survival of the singlet state)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 7 / 33

Dipole–hadron scattering (γ∗p, γ∗A, pA, ...)

Dipole (‘projectile’): large q+, transverse resolution Q2 = 1/r2

Hadron (‘target’): large P−, saturation momentum Q20

Wilson lines : multiple scattering in the eikonal approximation

Sxy =1

Nctr(V †xVy

), V †(x) = P exp

{ig

∫dx+A−a (x+,x)ta

}BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 8 / 33

The target average: CGC

Average over the color fields (or charges) in the target :

〈Sxy〉 =

∫[DA−]W [A−]

1

Nctr(V †xVy

)[A−]

The CGC weight function W [A−] : kind of ‘functional pdf’

B semi-classical treatment of the gluons in the target: high density

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 9 / 33

An instructive model (‘low energy’)

MV model (McLerran, Venugopalan, ’93) : a Gaussian weight function

〈Sxy〉 = e−〈T0(r)〉 ' exp

{−1

4r2Q2

0 ln1

r2Λ2

}B Q2

0 ∝ color charged squared/unit ⊥ area; Λ = IR cutoff (‘confinement’)

B 〈Txy〉 = 1− 〈Sxy〉 ∝ r2 as r → 0 : ‘color transparency’

B 〈Txy〉 ' 1 as r & 1/Qs0 : ‘unitarity’

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 10 / 33

High energy evolution

Probability ∼ αs ln(1/x) to have additional, soft (x� 1), gluons

x ≡ k+/q+ : longitudinal momentum fraction of the emitted gluon

x2 =k+

q+� x1 =

p+

q+� 1 , Y = ln

1

xmin= ln

s

Q20

Leading logarithmic approx: resum (αsY )n with n ≥ 1

strong ordering in x, no special ordering in k⊥BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 11 / 33

High energy evolution

Probability ∼ αs ln(1/x) to have additional, soft (x� 1), gluons

x ≡ k+/q+ : longitudinal momentum fraction of the emitted gluon

Non-linear evolution, due to high gluon density in the target

projectile (dipole) evolution: Balitsky hierarchy, BK equation

target (CGC) evolution: JIMWLK equation (functional)

linear approximation (weak scattering) : BFKL

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 11 / 33

One step in the high energy evolution

‘Real corrections’ : the soft gluon crosses the shockwave

y

x

0 8

z

t1

2t

0

z

0

z

0

z

‘Virtual corrections’ : evolution in the initial/final state

0

z

0

z

0

z

0

z

Large Nc : the original dipole splits into two new dipoles

y

x

z

y

x

z

y

x

z

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 12 / 33

The BK equation

∂Sxy∂Y

=αs2π

∫d2zMxyz

[SxzSzy − Sxy

]Dipole kernel: BFKL kernel in the dipole picture (Al Mueller, 1990)

Mxyz =(x− y)2

(x− z)2(y − z)2=

[zi − xi

(z − x)2− zi − yi

(z − y)2

]2color transparency : Mxyz ∝ r2, hence Txy ∝ r2 as r → 0

good ‘infrared’ (large z⊥, small k⊥) behavior : dipole

Mxyz 'r2

(z − x)4when |z − x| ' |z − y| � r

‘ultraviolet’ poles (z = x or z = y) cancel between ‘real’ and ‘virtual’

non-linear effects =⇒ unitarity bound : Txy ≤ 1

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 13 / 33

LO BK : numerical solutions

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

LO, α- s=0.25

Y=0

Y=4

Y=8

Y=12

Y=16 0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

dlo

g[Q

2 s(Y

)]/d

Y

Y

speed, α- s=0.25

LO

T (ρ, Y ) as a function of ρ = ln(1/r2Q20) with increasing Y

color transparency at large ρ (small r) : T (r, Y ) ∝ r2Q20 = e−ρ

unitarity (‘black disk limit’) at small ρ (large r) : T (r, Y ) ' 1

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 14 / 33

LO BK : numerical solutions

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

LO, α- s=0.25

Y=0

Y=4

Y=8

Y=12

Y=16 0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

dlo

g[Q

2 s(Y

)]/d

Y

Y

speed, α- s=0.25

LO

T (ρ, Y ) as a function of ρ = ln(1/r2Q20) with increasing Y

saturation momentum Qs(Y ): T (r, Y ) = 0.5 when r = 2/Qs(Y )

saturation exponent: λs ≡ d lnQ2s(Y )

dY ' 4.88αs ' 1 for Y & 10

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 14 / 33

Next-to-leading order

Two successive emissions strongly ordered in p+ (or x) : ∼ (αsY )2

two iterations of BK : part of the LO evolution

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 15 / 33

Next-to-leading order

Two successive emissions strongly ordered in p+ (or x) : ∼ (αsY )2

two iterations of BK : part of the LO evolution

‘NLO’ : any effect of O(α2sY )

the prototype: two successive emissions, one soft and one non-soft

Caution: two strongly-ordered emissions contribute to NLO as well

in fact, they give the largest NLO corrections (see below)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 15 / 33

Some NLO graphs

NLO graphs too can be ‘real’ or ‘virtual’

They can involve quark loops as wellBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 16 / 33

BK equation at NLOBalitsky, Chirilli (arXiv:0710.4330 [hep-ph]) : Nf = 0, large Nc

dSxy

dY=αs

∫d

2z

(x−y)2

(x−z)2(y−z)2

(SxzSzy − Sxy

){1 +

+ αs

[b ln(x−y)

2 − b(x−z)2 − (y−z)2

(x−y)2ln

(x−z)2

(y−z)2

+67

36−π2

12−

1

2ln

(x−z)2

(x−y)2ln

(y−z)2

(x−y)2

]}

+α2s

8π2

∫d2u d2z

(u−z)4

(SxuSuzSzy − SxuSuy

){−2 +

(x−u)2(y−z)2 + (x−z)2(y−u)2 − 4(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2ln

(x−u)2(y−z)2

(x−z)2(y−u)2

+(x−y)2(u−z)2

(x−u)2(y−z)2

[1 +

(x−y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2

]ln

(x−u)2(y−z)2

(x−z)2(y−u)2

}

blue : leading-order (LO) terms

red : NLO terms enhanced by (double or single) transverse logarithms

black : pure α2s effects (no logarithms)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 17 / 33

Large transverse logarithms

Running coupling corrections: proportional to b = 1112 − 1

6NfNc

taken care off via ‘standard’ prescriptions; see below

Collinear logarithms: ratios of widely separated dipole sizes

the double-logarithmic correction is already manifest

−1

2ln

(x−z)2

(x−y)2ln

(y−z)2

(x−y)2' −1

2ln2 (x−z)2

r2if |z − x| ' |z − y| � r

the single logs are still hidden: needs to perform the integral over u

1/Qs � |z − x| ' |z − y| ' |z − u| � |u− x| ' |u− y| � r

all dipoles are relatively small (� 1/Qs): weak scattering

... but such that their sizes are strongly increasing:

=⇒ logarithmic phase-space for the intermediate gluon at u

N.B. Collinear logs are important at weak scattering (dilute target)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 18 / 33

Unstable numerical solution

Keeping just the collinear logarithms =⇒

dT (r)

dY= αs

∫ 1/Q2s

r2

dz2 r2

z4

(1− 1

2αs ln2 z

2

r2− 11

12αs ln

z2

r2

)T (z)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

DLA at NLO, α- s=0.25

Y=0

Y=4

Y=8

10−5 10−4 10−3 10−2 10−1 100

rΛQCD

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

(∂yN)/

N

Qs,0/ΛQCD = 4Qs,0/ΛQCD = 13

Qs,0/ΛQCD = 19Qs,0/ΛQCD = 26

Left: LO BK + the double collinear logarithmRight: full NLO BK (Lappi, Mäntysaari, arXiv:1502.02400)

The main source of instability: the double collinear logarithmBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 19 / 33

Double logarithms in the QCD evolution

Where do the double collinear logs come from ?

Bremsstrahlung naturally introduces double-logarithmic corrections ...

dP =αsNc

π

dx

x

dk2⊥k2⊥

= αs dY dρ

... but an energy logarithm times a collinear one !

Hint: From a constraint on the energy phase-space ...

Y > ρ =⇒ αsY ρ −→ αs(Y − ρ)ρ = αsY ρ− αsρ2

... which is introduced by time orderingBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 20 / 33

Time ordering

To get double logs, successive emissions must be strongly ordered in ...

in longitudinal momentum : q+ � p+ � k+ · · · � q+0

in transverse momentum/size: Q2 � p2⊥ � k2

⊥ · · · � Q2s

in lifetime: τp = p+/p2⊥ � τk = k+/k2

⊥ (factorization)

Both p+ and p2⊥ are decreasing ⇒ potential conflict with time ordering

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 21 / 33

Time ordering

To get double logs, successive emissions must be strongly ordered in ...

p+

p2⊥>

k+

k2⊥=⇒ p+

k+>

p2⊥k2⊥

=⇒ ∆Y ≡ lnp+

k+> ∆ρ ≡ ln

p2⊥k2⊥

This condition enters perturbation theory via energy denominatorsBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 21 / 33

Two successive emissions: p+ � k+

Light-cone (time-ordered) perturbation theory: physics is transparent

mixed F representation (p+, t ≡ x+), with p− = p2⊥/2p

+ = 1/τp

the time integrals yield energy denominators

1∑i∈interm

k−i − P−0' 1

p− + k−

x

y

z, k+

z, k+

u, p+

u, p+pp

k k

p

k k

(a) (b)

t1 t2

⌧1

⌧2

1

p+u2 + k+z2=

1

p+u2p+u2

p+u2 + k+z2' 1

p+u2Θ(p+u2 − k+z2)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 22 / 33

Two successive emissions: p+ � k+

Light-cone (time-ordered) perturbation theory: physics is transparent

mixed F representation (p+, t ≡ x+), with p− = p2⊥/2p

+ = 1/τp

the time integrals yield energy denominators

1∑i∈interm

k−i − P−0' 1

p− + k−

x

y

z, k+

z, k+

u, p+

u, p+pp

k k

p

k k

(a) (b)

t1 t2

⌧1

⌧2

Integrate out the harder gluon (p+,u) to double-log accuracy:

αs

∫ z2

r2

du2

u2

∫ q+

k+

dp+

p+Θ(p+u2 − k+z2) = αsY ρ−

αsρ2

2

the expected LO contribution αsY ρ

NLO contribution αsρ2 to the kernel for emitting a softer gluon (k+, z)BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 22 / 33

The double logarithmic approximation (DLA)

Enforce time-ordering in the ‘naïve’ DLA limit of BFKL =⇒ DLA 2.0

∂Txy∂Y

=αs2π

∫d2zMxyz

[Txz + Tzy − Txy

]large daughter dipoles: 1/Q0 � |z − x| ' |z − y| � r

=⇒ Mxyz 'r2

(z − x)4

T (r) ∝ r2 =⇒ Txz ' Tzy � Txy : only ‘real’ terms matter

∂T (Y, r2)

∂Y= αs

∫ 1/Q20

r2

dz2

z2

r2

z2T (Y, z2)

∂T (Y, ρ)

∂Y= αs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y − ρ+ ρ1, ρ1)

introduce time-ordering =⇒ non-local in Y

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 23 / 33

The double logarithmic approximation (DLA)

Enforce time-ordering in the ‘naïve’ DLA limit of BFKL =⇒ DLA 2.0

∂Txy∂Y

=αs2π

∫d2zMxyz

[Txz + Tzy − Txy

]large daughter dipoles: 1/Q0 � |z − x| ' |z − y| � r

=⇒ Mxyz 'r2

(z − x)4

T (r) ∝ r2 =⇒ Txz ' Tzy � Txy : only ‘real’ terms matter

∂T (Y, ρ)

∂Y= αs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y, ρ1)

introduce logarithmic variable ρ ≡ ln(1/r2Q20)

∂T (Y, ρ)

∂Y= αs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y − ρ+ ρ1, ρ1)

introduce time-ordering =⇒ non-local in YBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 23 / 33

The double logarithmic approximation (DLA)

Enforce time-ordering in the ‘naïve’ DLA limit of BFKL =⇒ DLA 2.0

∂Txy∂Y

=αs2π

∫d2zMxyz

[Txz + Tzy − Txy

]large daughter dipoles: 1/Q0 � |z − x| ' |z − y| � r

=⇒ Mxyz 'r2

(z − x)4

T (r) ∝ r2 =⇒ Txz ' Tzy � Txy : only ‘real’ terms matter

∂T (Y, ρ)

∂Y= αs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y, ρ1)

introduce logarithmic variable ρ ≡ ln(1/r2Q20)

∂T (Y, ρ)

∂Y= αs

∫ ρ

0

dρ1 e−(ρ−ρ1) T (Y − ρ+ ρ1, ρ1)

introduce time-ordering =⇒ non-local in YBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 23 / 33

DLA 2.0

The importance of time-ordering has since long been recognized

coherence effects, kinematical constraint, choice of rapidity scale ...Ciafaloni (88), CCFM (90), Lund group (Andersson et al, 96),Kwiecinski et al (96), Salam (98) ... Motyka, Stasto (09), G. Beuf (14)

This is more than a prescription: it is a systematic approximation

resums powers of αsY ρ and αsρ2 to all orders

more precisely: all terms of order αnsY kρ2n−k, n ≥ 1 and 0 ≤ k ≤ n

However, in order to be useful, this should also include

the terms of order (αsY )n, n ≥ 1 (‘BFKL’)

the non-linear effects expressing saturation (‘BK’)

To that aim, one would need a ‘genuine’ evolution equation, local in Y

Does it exist ? Not a priori clear !

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 24 / 33

Getting local

T (Y, ρ) = T (0, ρ) + αs

∫ ρ

0dρ1 e−(ρ−ρ1)

∫ Y−ρ+ρ1

0dY1 T (Y1, ρ1)

For Y ≥ ρ, the solution T (Y, ρ) to the above equation coincides withthe solution T (Y, ρ) to the following problem:

T (Y, ρ) = T (0, ρ) + αs

∫ Y

0dY1

∫ ρ

0dρ1 e−(ρ−ρ1)KDLA(ρ− ρ1)T (Y1, ρ1)

with the following, all-orders, kernel:

KDLA(ρ) =J1(2√αsρ2

)√αsρ2

= 1− αsρ2

2+

(αsρ2)2

12+ · · ·

... and the following, all-orders, initial condition:

T (0, ρ) = T (0, ρ)−√αs∫ ρ

0dρ1 e−(ρ−ρ1) J1

(2√αs(ρ− ρ1)2

)T (0, ρ1)

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 25 / 33

Adding the single transverse logarithms

Recall the NLO equation with all the single logs

dT (r)

dY= αs

∫dz2

r2

z4

{1− αs

(1

2ln2 z

2

r2+

11

12lnz2

r2− b ln r2µ2

)}T (z)

The double-logarithm is already included within KDLA(ρ) XThe collinear single-log comes from the DGLAP regime:

one soft (x� 1) emission + one non-soft (x ∼ 1) one

coefficient A1 = 11/12 related to the DGLAP anomalous dimension:

γ(ω) =

∫ 1

0

dz zω[Pgg(z) +

CF

NcPqg(z)

]=

1

ω−A1 +O

(ω,

Nf

N3c

)can be resummed by including the A1 piece of γ(ω) into KDLA(ρ) X

The running coupling log is resummed by replacing αs → αs(r2) X

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 26 / 33

Extending to BFKL/BK

In the DLA regime (strong ordering in k⊥) we have so far obtained

∂T (Y, ρ)

∂Y= αs(ρ)

∫ ρ

0

dρ1 e−(1+αsA1)(ρ−ρ1)KDLA(ρ− ρ1) T (Y, ρ1)

LLA: daughter dipoles can also be comparable/smaller than the parentmatch onto the known result at NLLA:

KDLA ' 1− αs2

ln2 z2

r2→ 1− αs

2ln

(x−z)2

(x−y)2ln

(y−z)2

(x−y)2

restore the virtual and the non-linear terms

extend the prescription for RC using guidance from DGLAP

dTxydY

=

∫d2z

2παs(rmin)

(x−y)2

(x−z)2(z−y)2

(Txz + Tzy − Txy − TxzTzy

)×[

(x−y)2

min{(x−z)2, (y−z)2}

]±αsA1

KDLA

(ρ(x,y, z)

)BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 27 / 33

Numerical solutions

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

DLA at NLO, α- s=0.25

Y=0

Y=4

Y=8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

DLA resum, α- s=0.25

Y=0

Y=4

Y=8

Y=12

Y=16

Fixed coupling αs = 0.25, double collinear logs alone

left: expanded to NLOright: resummed to all orders

The resummation stabilizes & slows down the evolutionBNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 28 / 33

Numerical solutions

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

dlo

g[Q

2 s(Y

)]/d

Y

Y

speed, α- s=0.25

LO

DLA at NLO

DLA resum

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

DLA resum, α- s=0.25

Y=0

Y=4

Y=8

Y=12

Y=16

Fixed coupling αs = 0.25, double collinear logs alone

left: saturation exponent λs ≡ d lnQ2s(Y )/dY

LO: λs ' 4.88αs ' 1 (for Y & 10)

DLA resummed: λs ' 0.5

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 28 / 33

Numerical solutions

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

dlo

g[Q

2 s(Y

)]/d

Y

Y

speed, α- s=0.25

LO

DLA at NLO

DLA resum

DLA+SL resum

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

DLA+SL resum, α- s=0.25

Y=0

Y=4

Y=8

Y=12

Y=16

Further slowing down when including the single collinear logs

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 29 / 33

Numerical solutions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20

dlo

g[Q

2 s(Y

)]/d

Y

Y

speed, β0=0.72, smallest

LO

DLA at NLO

DLA resum

DLA+SL resum

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25

T(ρ

,Y)

ρ=log(1/r2)

DLA+SL resum, β0=0.72, smallest

Y=0

Y=4

Y=8

Y=12

Y=16

... and even more so after also using a running coupling

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 29 / 33

Fitting the HERA data (1)

Use numerical solutions to collinearly-improved running-coupling BKequation using initial conditions which involve free parameters

a similar strategy as for the DGLAP fits

Various choices for the initial condition at Y = Y0 :

GBW : T (Y0, r) =

{1− exp

[−(r2Q2

0

4

)p]}1/p

rcMV : T (Y0, r) =

{1− exp

[−(r2Q2

0

4αs(CMVr)

[1 + ln

(αsat

αs(CMVr)

)])p]}1/p

One loop running coupling with scale µ = 2Cα/r :

αs(r) =1

b0 ln[4C2

α/(r2Λ2)

] , with r = min{|x−y|, |x−z|, |y−z|}

Up to 5 free parameters: Rp (proton radius), Q0, p, Cα, (CMV)BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 30 / 33

Fitting the HERA data (2)

3 light quarks + charm quark, all treated on the same footing

quark masses are not fit parameters, but they are varied to test thesensitivity of the fit

good quality fits for mu,d,s = 50÷ 140 MeV and mc = 1.3 or 1.4 GeV

The most recent HERA data for the reduced photon-protoncross-section (combined analysis by ZEUS and H1)

small Bjoerken x: x ≤ 0.01

not very high Q2 : Q2 < Q2max with Q2

max = 50÷ 400 GeV2

Good quality fits: χ2 per point around 1.1-1.2

Very discriminatory: the fits favor

rcMV initial condition (pQCD + saturation)

physical prescriptions for RC: smallest-dipole, FAC

physical values for the free parameters

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 31 / 33

Fitting the HERA data (2)

3 light quarks + charm quark, all treated on the same footing

quark masses are not fit parameters, but they are varied to test thesensitivity of the fit

good quality fits for mu,d,s = 50÷ 140 MeV and mc = 1.3 or 1.4 GeV

The most recent HERA data for the reduced photon-protoncross-section (combined analysis by ZEUS and H1)

small Bjoerken x: x ≤ 0.01

not very high Q2 : Q2 < Q2max with Q2

max = 50÷ 400 GeV2

Good quality fits: χ2 per point around 1.1-1.2

Very discriminatory: the fits disfavorfixed coupling MV, GBW at high Q2

Balitsky prescriptions for RC

‘anomalous dimension’ γ > 1 in the initial condition

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 31 / 33

The Fit in tables

init RC sing. χ2 per data point parameterscdt. schm logs σred σccred FL Rp[fm] Q0[GeV] Cα p CMVGBW small yes 1.135 0.552 0.596 0.699 0.428 2.358 2.802 -GBW fac yes 1.262 0.626 0.602 0.671 0.460 0.479 1.148 -rcMV small yes 1.126 0.578 0.592 0.711 0.530 2.714 0.456 0.896rcMV fac yes 1.222 0.658 0.595 0.681 0.566 0.517 0.535 1.550GBW small no 1.121 0.597 0.597 0.716 0.414 6.428 4.000 -GBW fac no 1.164 0.609 0.594 0.697 0.429 1.195 4.000 -rcMV small no 1.097 0.557 0.593 0.723 0.497 7.393 0.477 0.816rcMV fac no 1.128 0.573 0.591 0.703 0.526 1.386 0.502 1.015

init RC sing. χ2/npts for Q2max

cdt. schm logs 50 100 200 400GBW small yes 1.135 1.172 1.355 1.537GBW fac yes 1.262 1.360 1.654 1.899rcMV small yes 1.126 1.172 1.167 1.158rcMV fac yes 1.222 1.299 1.321 1.317GBW small no 1.121 1.131 1.317 1.487GBW fac no 1.164 1.203 1.421 1.622rcMV small no 1.097 1.128 1.095 1.078rcMV fac no 1.128 1.177 1.150 1.131

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 32 / 33

The Fit in plots

00.05

0.10.15

0.2 0.045m

red

0.065 0.085 0.1 0.15

00.10.20.30.40.5

10-6 10-5 10-4

0.2

mre

d

x10-6 10-5 10-4

0.25

x10-6 10-5 10-4

0.35

x10-6 10-5 10-4

0.4

x10-6 10-5 10-4

0.5

x

00.10.20.30.40.50.60.70.80.9

0.65

mre

d

0.85 1.2 1.5 2

00.20.40.60.8

11.2

10-5 10-4 10-3

2.7

mre

d

x10-5 10-4 10-3

3.5

x10-5 10-4 10-3

4.5

x10-5 10-4 10-3

6.5

x10-5 10-4 10-3

8.5

x

00.20.40.60.8

11.21.4 10

mre

d

12 15 18 22

00.20.40.60.8

11.21.41.6

10-3 10-2

27

mre

d

x10-3 10-2

35

x10-3 10-2

45

x

r2

1.131.221.101.13

hs0.220.240.200.23

HERA datasmall, DL+SLfac, DL+SLsmall, DLfac, DL

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 33 / 33

The Fit in plots

theory

/data

0.9

0.95

1

1.05

1.1 0.045,0.065 0.085 0.1 0.15 0.2

theory

/data

x

0.9

0.95

1

1.05

1.1

10-6

10-5

10-4

0.25

x10

-610

-510

-4

0.35

x10

-610

-510

-4

0.4

x10

-610

-510

-4

0.5

x10

-610

-510

-4

0.65

theory

/data

0.9

0.95

1

1.05

1.1 0.85 1.2 1.5 2 2.7

theory

/data

x

0.9

0.95

1

1.05

1.1

10-5

10-4

10-3

3.5

x10

-510

-410

-3

4.5

x10

-510

-410

-3

6.5

x10

-510

-410

-3

8.5

x10

-510

-410

-3

10

theory

/data

0.9

0.95

1

1.05

1.112 15 18 22 27

theory

/data

x

0.940.960.98

11.021.041.06

10-3

10-2

35

x10

-310

-2

45 χ2

1.131.221.101.13

λs

0.220.240.200.23

HERA datasmall, DL+SLfac, DL+SLsmall, DLfac, DL

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 33 / 33

The Fit in plots

10-1

100

101

10-6

10-5

10-4

10-3

10-2

Q2 o

r 4/r

2 [G

eV

2]

x

dataGBW,smallGBW,facrcMV,smallrcMV,fac

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 33 / 33

The Fit in plots

10-1

100

101

10-6

10-5

10-4

10-3

10-2

Q2 o

r 4

/r2 [

Ge

V2]

x

dataGBW,smallGBW,facrcMV,smallrcMV,fac

10-5

10-4

10-3

10-2

10-1

100

10-2

10-1

100

101

DL+SL resummedT

(r,Y

=0

)

r [GeV-1

]

GBW,smallGBW,facrcMV,smallrcMV,fac

Rather stable predictions for the saturation line and the shape of theinitial amplitude

BNL, Long Island, July 2015 Collinearly-improved CGC Edmond Iancu 33 / 33

Recommended