Drennen IFPAC Summer Summit

Preview:

DESCRIPTION

Implementation of PAT in the Pharmaceutical Industry James K. Drennen, III Duquesne University http:// http:// http:// www.dcpt.duq.edu www.dcpt.duq.edu www.dcpt.duq.edu James K. Drennen, III 2 designing, analyzing, and controlling manufacturing timely measurements (i.e., during processing) monitoring critical quality and performance attributes raw and in-process materials process understanding A system for: “Analyzing” includes: James K. Drennen, III 3

Citation preview

Implementation of PAT in the Pharmaceutical Industry

James K. Drennen, IIIDuquesne University

James K. Drennen, III

2

Duquesne University Center for Pharmaceutical Technology (DCPT)

http://http://http://www.dcpt.duq.eduwww.dcpt.duq.eduwww.dcpt.duq.edu

James K. Drennen, III

3

What is PAT?

A system for:designing, analyzing, and controlling manufacturingtimely measurements (i.e., during processing)monitoring critical quality and performance attributes raw and in-process materialsprocess understanding

“Analyzing” includes:chemical, physical, microbiological, mathematical, and risk analysis

James K. Drennen, III

4

Process Understanding

A process is well understood when:all critical sources of variability are identified and explainedvariability is managed by the processproduct quality attributes can be accurately and reliably predicted

Accurate and Reliable predictions reflect process understanding

James K. Drennen, III

5

Key Elements of PAT Implementation

Risk AnalysisExperimental DesignControl Strategies

SensorsModel development/MaintenanceSPC

Process SamplingInformation Management

James K. Drennen, III

6

Risk Analysis/Experimental Design

FBDrier

Milling

Blender Press

Coater

Sieve

Dispensary

Wet granulation

NIRNIR

NIRNIR

NIRNIR

NIRNIR

Direct Compression

James K. Drennen, III

7

PAT for Solid Dosage Form

Feasibility/Risk AnalysisCalibration RangeProcess SignatureSamplingCalibration Maintenance/Transfer

James K. Drennen, III

8

Real Time Release (RTR)

Quantitative calibrations required for RTR of Dosage Form

Projects involving established productsLab samples required to create necessary range for calibrationStudies performed to determine effect of combining laboratory- and production-scale samples in calibration

Parallel testing may lead to novel qualitative models for predicting product quality parameters

James K. Drennen, III

9

Evaluation of Production Data

Evaluate the within-batch and between-batch spectral variability of production tablets manufactured over one year.

Samples chosen to provide maximum variabilityPotencyHardnessDissolutionDisintegration

James K. Drennen, III

10

Evaluation of Production Data

Little inter-lot variability for production materials

James K. Drennen, III

11

Quantitative Calibration from Production Samples only

Specified

xx

x

x

x

x

xxx

x xx

xx

x

xx

xx

x

xxxx

xxx

xx

xx

xx

xxxxxx

x

xxx

xx

xxxx

x

xxxx

xxx xx

xxxx x

x xx

xxx

x xx

xxxxxxx

xxx

xxx

x xx

xxxx xx

xx

xxxxxx x

xxxxx

xx

xxxx

x

x

xx

xxxx

xxx

x

xx xxxx

x

xx

x

xx

x

xx

xxx xx

xxxxx

x

xx xxxx

x

x

xx

x

x

x

x x

x

xxx

x xx

x

x xx

xx x

xxx x

x

xx x

xx

x

xx

xx x

x

xxx

xxx

x

x

xx

xx

xxx

x

x

x

xx

x

x

x

x

xx

x

x

x

x xxxx

xx

x

xx

xxx

xx

x

xx

x xx

x

x x

xx

xxx

xx x

xxx

xx

xx

x

xxxx

x

x

xxx xx

xxxxx

xxx

xxx

x

xx

xx

xx

x

x

x

xxxxx

xx

xx

x

xx

x

xxxxxxxx x

x x

xxx

x

x

xxx xx

x

x

x

xx

xxx

x

xxx x

xx

x

xx

xx x

xxx

x

xxxxxx

x

xx

xxxx xx

x

xxx

x

xxxxx

xxx

xx

x xx

x

xxx

xx

xx

xxxx

xx

x

xxx

x

xxx

xxx

x xx

xxx

xxx

x

x

xx

xxxx

x

xx

x

x

x xx x

xxx

x

x

x

x

x

x

xx

xxxx

xxxx xx

xx xxxxxx xx

xx xx xxx

x

xx xx xxxxxx xx

xxxxxx xx

xxxxxxxx

xxxxxxxxxx xx

xxxx

xxxxxx

xx xx

xx

xx

xx x

xxxx

xxx

x

xxx

xxx

x

xxxxx

x

xxxx x

x

x

xx x

x xxx

x

xx x

x xx

xx

xxx

xxxxx

x

xx

xxx xxxx

x

xxx

x

xxxxx

xxx

xxx

x

x xx

x

xxx

xx

xx

xxxx

xx

x

xxx

xxx

x

xxx

x xx

xxx

xxxxx

x

x

xx

xxxx

x

xx

x

x

x xx x

xxx

x

x

x

x

x

x

xx

xxxx

xx

xxxxxx xxxxx

xxxxxxxx

xxxxx

xxxx

xxx

xxxxx

xxxxxx xx x

xxxx

x xxxx

xxxxxxxxxxx

x xx

xxxx xxxx

xxxxxx xxx

xxxxxxxx

xxx

xxxx

xxxxx

xxx xxxx

xx

xxxx xxxxxx

xxxxxx xx

xx xxxxxx

xxxx xxxx

xx xx xx

xx xx

xx xxxx

xxxxxx

xx

xxxx

xxxx

xx

xx xxxx

xxxxxxxxxx

xx xxxx

xxxxxx xxxx

x

xxx

xxxx x

xxx

xxxxxx

xx

xxxx x

xxx

x

x xxxxxx

xx

xx

xx xx

xx

xxxxxxxx xx x

xxx

93.0 94 95 96 97 98 99 100 101 102 103 104104.693.7

96

98

100

102

104

106

108

110

112

114114.8

Estim

ated

SEC = 1.2 % w/w

SEP = 1.3 % w/w

R squared = 0.58

James K. Drennen, III

12

Calibration including production and development samples

9071.0 75 80 85 95 100 105 110 115 120 125 130 134.366.5707580859095100105110115120125130135140

144.9

Specified

xxx

xx

xx xx x

xx x

x

x

x x

x

xx x

xxx

x

x x

x

x xx

xxx

xx

xxxx

x x

xxx

xx

x

x

x

x

xxxxx xxxx

xx

x

x

xx

x

xx x

xxx xxx xx

x xx

xx

x

xxxx

xxx

x xx

xxx

x

x

x

xx

xx

x

x

x x

x xx

x

xxxx

xx x

x

xx

xx x

xxxEs

timat

ed

SEP > 3.0

James K. Drennen, III

13

Evidence of “Process Signature”

-0.185 -0.15 -0.10 -0.05 -0.00 0.05 0.10 0.150.169-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.189

PC 2 (22.95%)

PC 1

( 59 .

59%

)

x pt7069~1

x pt7069~3

x pt7069~9x pt706~14

x pt706~20

x pt706~23x pt706~25x pt706~27

x pt706~29

x pt706~31

x pt706~35

x pt706~39

x pt706~43

x pt706~45

x pt706~47

x pt706~53

x pt706~55

x pt706~57

x pt706~59

x pt706~62x pt706~67

x pt706~72x pt706~74x pt706~76 x pt706~78x pt706~81x pt706~85x pt706~87

x pt706~97x pt70~101

x pt70~109

x pt70~113x pt70~115x pt70~121

x pt70~127x pt70~131

x pt70~133x pt70~135

x pt70~139

x pt70~143

x pt70~146x pt70~149x pt70~153

x pt70~155

x pt70~159x pt70~165

x pt70~167

x pt70~172x pt70~176

x pt70~177x pt70~181

x pt70~185x pt70~191

x pt70~193 x pt70~199x pt70~201

x pt70~203

x pt70~209

x pt70~211

x pt70~212x pt70~214

x pt70~220

x pt70~222

x pt70~225

x pt70~226

x pt70~227

x pt70~228

x pt70~229

x pt70~230x pt70~232

x pt70~233

x pt70~234

x pt70~235

x pt70~238

x pt70~240x pt70~243

x pt70~248x pt70~249

x pt70~250

x pt70~251

x pt70~254x pt70~256

x pt70~257x pt70~260

x pt70~265x pt70~267

x pt70~268x pt70~269

x pt70~272

x pt70~273

x pt70~276

x pt70~277x pt70~278

x pt70~281x pt70~282

x pt70~285

x pt70~286x pt70~289x pt70~292

x pt70~294

x pt70~296

x pt70~297x pt70~298

x pt70~299

x pt70~300

x pt70~301x pt70~303x pt70~305

x pt70~311x pt70~313

x pt70~316

x pt70~318x pt70~319

x pt70~321

x pt70~322

x pt70~323

x pt70~328

x pt70~329

x pt70~330

x pt70~331

x pt70~335

x pt70~336x pt70~337

x pt70~338

x pt70~344

x pt70~345

x pt70~348

x pt70~349

James K. Drennen, III

14

Using Laboratory Scale Samples to Expand Calibration Range

Comparison of three scales of compression

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

-0.0015 -0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015

P C1

single punch compressor small scale rotary comp. full scale compressor

James K. Drennen, III

15

Sampling/SPC/Data Management

James K. Drennen, III

16

Test of Sample Positioning System

James K. Drennen, III

17

Test of Sample Positioning System

Two sides of tablet provide identical spectra

James K. Drennen, III

18

Test of Sample Positioning System

Early positioning studies led to improvements in conveyor and trigger system

X-position study for 2nd Deriv. Intensity vs. Position along the belt

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0

P o sit io n alo ng the belt (1 / 64 in)

James K. Drennen, III

19

Example API Calibration

~500 calibration/150 validation samplesMultiple independent lots

30

35

40

45

50

55

60

65

70

30 35 40 45 50 55 60 65 70

Reference Assay (mg)

Pred

icte

d A

ssay

(mg)

Elements=599Slope=0.963129Intercept=1.803031Correlation=0.981368RMSEP=1.247676Bias=-0.002690

James K. Drennen, III

20

Example Hardness Calibration

~500 calibration/150 validation samplesMultiple independent lots

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160

Reference Hardness

Pred

icte

d H

ardn

ess

Elements=588Slope=0.93Intercept=4.36Correlation=0.9629RMSEP=7.99Bias=-0.0143

James K. Drennen, III

21

Calibration Maintenance/Transfer

Why are transfer/update protocols necessary?Need for a calibrated backup instrumentEventual expansion to further linesTransfer-in-time of knowledge from earlier experiments

James K. Drennen, III

22

Calibration Maintenance/Transfer

Variability in Product/ProcessVariability in Instrument/Sensor

Methods must be developed prior to implementation

Calibration updateCalibration transferIntegration with existing SPC and OOS procedures

James K. Drennen, III

23

Possible Outcomes of NIR Prediction of Assay Results

In S

pec

Out

of S

pec

ValidNIR Result

Not-ValidNIR Result

1 2

4 3

NIR

Tes

t Res

ult f

or T

able

t:

Evaluation of NIR Test:1. Accepted result - pass2. Investigation required

(NIR result not acceptable)3. Investigation required

(NIR result not acceptable)4. Accepted result – fail

orDuring initial period –Investigation recommended

James K. Drennen, III

24

Calibration Update

Definition:The enhancement of an existing calibration model through the inclusion of additional calibration samples

Calibration update samples are more representative of the current test samples than the original calibration samples

Calibration update performed following change in product (eg: new supplier)

James K. Drennen, III

25

Continuum of Calibration Transfer Types

Preprocessing Methods (scatter correction, derivatives, etc.)

Instrument Matching (univariatelinear, etc.)

Complex, black-box Method-Method: PDS, ANN

Orthogonal Projection Methods

James K. Drennen, III

26

Failure Detection

NIRInstrument Sample

NIRData

Pre -treatment

Model

Result(Prediction) Final

Result

Is prediction valid?(Qres and T 2)

InstrumentStandardization Instrument

Evaluation andcorrective action

Potential errors ( A) due to:-New instrument-Changed instrument response

Potential errors ( B) due to:-Raw material change-Process change

Result is valid

Result requires investigationInstrumentMatching

Calibration TransferProcesses NIR Prediction Prediction Validity

Historicaldata and

actionthreshold

James K. Drennen, III

27

Example: Master and slave instruments

1300 1400 1500 1600 1700 1800 1900 20000.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Wavelength ( nm )

Ref

lect

ance

Rat

io

James K. Drennen, III

28

Bias Correction Needed

James K. Drennen, III

29

Bias Correction Applied

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

New Instrument Absorbance @ 1440 nm

Ref

eren

ce In

st. A

bsor

banc

e @

144

0 nm

James K. Drennen, III

30

Calibration transfer model

1300 1400 1500 1600 1700 1800 1900 2000-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Wavelength ( nm )

Arb

itrar

y U

nits

Multiplicative Constant

Additive Coefficients

James K. Drennen, III

31

Prediction Following Instrument-Instrument Transfer

30 35 40 45 50 55 60 65 7030

35

40

45

50

55

60

65

70

Measured Content ( mg )

Pre

dict

ed C

onte

nt (

mg,

bia

s co

rrec

ted)

N = 78RMSEP = 2.25%RSD = 23.2 %r = 0.973r2 = 0.946

James K. Drennen, III

32

Example: Lamp change

1300 1400 1500 1600 1700 1800 1900 20000.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Wavelength ( nm )

Ref

lect

ance

Rat

io

James K. Drennen, III

33

Justification for baseline subtraction method

46 46.5 47 47.5 48 48.5 49 49.5 5046

46.5

47

47.5

48

48.5

49

49.5

50

Prior to Lamp Change, ( mg )

Follo

win

g La

mp

Cha

nge,

Unc

orre

cted

( m

g )

James K. Drennen, III

34

Calibration transfer model for correcting lamp change

1300 1400 1500 1600 1700 1800 1900 2000-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Wavelength ( nm )

Ref

lect

ance

Rat

io

Additive Calibration Transfer Coefficients

James K. Drennen, III

35

Prediction quality with calibration transfer

46 46.5 47 47.5 48 48.5 49 49.5 5046

46.5

47

47.5

48

48.5

49

49.5

50

Prior to Lamp Change, ( mg )

Follo

win

g La

mp

Cha

nge,

Tra

nsfe

r Cor

rect

ed (

mg

)

James K. Drennen, III

36

How Many Transfer Samples?

5 10 15 20 25 30

1

Number of Transfer Samples ( n )

Rel

ativ

e Er

ror (

mul

tiple

)

James K. Drennen, III

37

Stability of transfer standards

0 5 10 15 20 25 30 352

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Time ( days )

Tran

sfer

SE

P (

mg

)

James K. Drennen, III

38

Process Understanding- Blending

Optimization of PAT methodTechnologyMethodologySampling

Improved Process Control

James K. Drennen, III

39

Advantage of PAT Method

RL

1 23 4

5

0

5

10

15

20

25

30

35

40

1 2 3 4 5Location

% O

utlie

rs

BA

Figure 2. Outlier pattern of thief probe collected samples. A) V-blender showing UV sampling positions. B) Percent of outliers as a function of sample location

James K. Drennen, III

40

Inter- vs. Intra-shell MixingFront

L R

Back

R L

Top (n=4)Middle (n=4)

Bottom (n=4)

Left shell (n=6)

Right shell (n=6)

James K. Drennen, III

41

V-BlenderTop

y = 88.231e-0.1197x

R2 = 0.9945

Middley = 77.703e-0.1201x

R2 = 0.9684

Bottomy = 79.212e-0.1307x

R2 = 0.9711

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Time (min)

%R

SD

James K. Drennen, III

42

V-Blender

Left army = -9.2466x + 63.825

R2 = 0.9995

Right army = -1.9808x + 13.321

R2 = 0.9979

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 1 2 3 4 5 6 7

Time (min)

%R

SD

James K. Drennen, III

43

V-Blender

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0 5 10 15 20 25 30 35 40 45 50

Time (min)

%R

SD

Left armRight armTopMiddleBottom

James K. Drennen, III

44

Optimization of Sensor Position

James K. Drennen, III

45

Effect of Blender RPM

0.700.750.800.850.900.951.001.05

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56Time (min)

Cor

rela

tion

Coe

ffic

ient

IX

0.70

0.75

0.80

0.850.90

0.951.00

1.05

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56Time (min)

Cor

rela

tion

Coe

ffic

ient

XIII

Figure 3B. MBEST correlation coefficient-time profiles of high humidity 11% SA blends using single model

Higher RPM

Lower RPM

James K. Drennen, III

46

Conclusion

Risk Analysis and Statistical experimental design requiredChemical, physical and performance parameters can be predicted, but understand the chemistry/physicsSampling issues are criticalData management system necessaryControl systems integration necessary- SPC, OOS, 21 CFR Part 11

James K. Drennen, III

47

Duquesne University Center for Pharmaceutical Technology

http://http://http://www.dcpt.duq.eduwww.dcpt.duq.eduwww.dcpt.duq.edu

Recommended