DISTRICT HEATING IN ROMANIA An assessment of …...Romanian DH sector, followed by the description...

Preview:

Citation preview

DISTRICTHEATINGINROMANIA

AnassessmentofthedistrictheatingenergysectorinRomania-Acasestudyof

Cluj-Napoca,Romania

Master’sThesis

VladPana

September26,2017

Photoonthefrontpage:DanfossA/S©

Title:AnassessmentofthedistrictheatingenergysectorinRomania-AcasestudyofCluj-Napoca,RomaniaSemesterDescription:4thSemester,MScinSustainableEnergyPlanningandManagementSemesterTheme:Master’sThesisProjectPeriod:26/06/2015–26/09/2016SemesterTheme:Master’sThesisProjectPeriod:26/06/2015–26/09/2016ECTS: 30Author:___________________________________VladPanaSupervisor: ProfessorHenrikLundAalborgUniversityPages: 66AppendixPages:5

FacultyofEngineeringandScienceDepartmentofDevelopmentandPlanningStrandvejen12-149000Aalborghttp://www.aau.dkSynopsisAnassessmentofthepossibletechnicalsolutionsandpolicyrecommendationsforsolvingproblemsregardingthedistrictheatingsectorofCluj-Napocawereconductedinthisthesis.Anextensiveliteraturereview,datacollection,andanEnergyPlanmodellinghavebeencarriedouttopresentpotentialtechnicalsolutions.ThethesisbeginswithapresentationofthecurrentsituationofRomanianDHsector,followedbythedescriptionofCluj-Napocaheatingsector.Itthenchangesfocusonthemethodologybehindthemodellingoftheprojectanddatacollection.UsingthesimulationtoolEnergyPlan,areferencescenariohasbeencreatedbasedontheCluj-Napocaheatingsector,followedbythreeotheralternativescenarioscreatedtoevaluatethemostcost-effectivesolutionofusingrenewableenergysourcestofueltheCluj-Napocaheatingsector.Thetechnicalanalysisisfollowedbyacomparisonbetweenthefuturealternativescenariosandtheirresults,emphasizingthebenefitsofusingonlyrenewableenergysourcestofueltheDHSofCluj-Napoca.Next,themostimportantRomanianlawsregardingthenationalDHSarereviewed,andpolicyrecommendationsregardingtheCluj-Napocadistrictheatingarepresented.Finally,theassumptions,limitations,resultsandpolicyrecommendationsregardingthepossiblesolutionsforsolvingtheproblemsofCluj-Napocadistrictheatingsystemarediscussed.

PrefaceBetweenJuly26th,2017andSeptember26th,2017,theprojecthasbeenmade.TheprojecthasbeenmadeinthelastsemesteroftheMaster’sdegreeSustainableEnergyPlanning&ManagementattheSchoolofArchitecture,DesignandPlanningatAalborgUniversity.Acknowledgement

IwouldliketoexpressmysinceregratitudetomysupervisorProf.Dr.HerinkLundforhisguidanceandencouragementthroughoutthismasterthesis.Also,Iwouldliketothankallmyfamilymembersandfriends,whohavebeenacontinuoussourceofmotivationthroughoutthewholeeducationprocess.ReadingGuidance

Inthereport,severalreferenceshavebeenusedandorganizedwiththeHarvardapproach,withauthorsandyearofpublication.Iftheyearofpublicationisnotincludedthenthesourcewillbewrittenlikethis:“anre.ro,seen2017”.Ifthereferenceisafteradotinasectionthenitcoversthewholesectionandifthereferenceisbeforethedot,thenitonlycoverstheline.ForsourceswiththesameauthorandyearofpublicationtherewillbeaddedanA,BorCtoseparatethereference.Thetextthatisuseddirectlyfromasourceintheprojecthasbeenmadeitalic.Allthereferencesaregatheredattheendoftheprojectasareferencelistwithalltheinformationaboutthesources.ProjectStructure

Thestructureoftheproject’schaptersandsectionshasbeensetupinnumericalorderwithchapteras1.XXandsmallersectionsas1.1XXor1.1.2XX.Thisorderwillalsobeusedforfigures,graphsandpicturesthatarebeingnotedas“Figure1.1”intheChapter“1.XX”etc.

vi

vii

TableofContents

AbbreviationsandAcronyms..........................................................................................ix

Measurementunits..........................................................................................................x

1 Opening....................................................................................................................11.1 Towardsanefficientandsustainableglobalenergysystem............................21.2 EuropeanUnionEnergySystem.......................................................................41.3 ThecurrentstateoftheRomanianEnergySystem..........................................51.4 DistrictHeatinginRomania..............................................................................71.5 PossiblywrongdecisionsofeconomicandenergeticpolicywhichaffectedtheRomaniandistrictheating....................................................................................101.6 DistrictHeatinginCluj-Napoca......................................................................11

2 Problemdefinition.................................................................................................142.1 ResearchQuestion.........................................................................................142.2 Boundariesandlimitationsoftheproject......................................................152.3 ProjectStructure............................................................................................15

3 TheoriesandMethods...........................................................................................183.1 Researchmethod:ACaseStudyoftheDHSofCluj-Napoca..........................193.2 DataCollection...............................................................................................203.3 Summaryofthetheoriesandmethodschapter............................................23

4 BackgroundInformation........................................................................................244.1 Analysisframe................................................................................................244.2 TheHeatingSectorofCluj-Napoca(TheReferenceScenarioBasis)..............254.2.1 CurrentcostsofheatinginCluj-Napoca,2017.......................................25

4.2.2 TheCentralizedHeatPowerSupplySystem(DHS)ofCluj-Napoca........26

4.2.3 DecentralizedSystemofthermalenergyofCluj-Napoca.......................27

4.3 DifferentRESassolutionsfortheDistrictHeatingSystemofCluj-Napoca(analternativescenariobasisforDHSofCluj-Napoca)....................................................314.3.2 4thGenerationDistrictHeating(4GDH)(analternativescenariobasisforDHSofCluj-Napoca)...............................................................................................36

5 TechnicalAnalysis...................................................................................................405.1 ScenariosOverview........................................................................................405.1.1 ReferenceScenario.................................................................................40

5.1.2 Scenario2:Business-as-Usual2050(BaU2050).....................................44

5.1.3 Scenario3:BIO+SOL2050....................................................................45

5.1.4 Scenario4:BIO+SDH+SOL2050..........................................................45

5.2 Results............................................................................................................46

viii

5.2.1 ValidationoftheReferenceScenario.....................................................46

5.2.2 ScenariosResultsandComparison.........................................................47

5.3 SensitivityAnalysis.........................................................................................49

6 PolicyAnalysis........................................................................................................516.1.1 PolicyAnalysisandRecommendationsregardingindividualheatingsolutions51

6.1.2 PolicyAnalysisandRecommendationsregardingDistrictHeating........52

6.1.3 OtherlawsrelatedtoDistrictHeatingSectorinRomania......................53

7 Conclusion..............................................................................................................55

8 Discussion...............................................................................................................59

9 ListofFigures.........................................................................................................61

10 ListofTables.......................................................................................................62

11 Bibliography.......................................................................................................63

12 Appendix............................................................................................................6812.1 A1.ReferenceScenario–Cluj-Napoca...........................................................6812.2 A2.Scenario2:Business-as-Usual2050.........................................................6912.3 A3.Scenario3:Biomass+Solar2050.............................................................7012.4 A4.Scenario4:Biomass+Solar+SolarDistrictHeating2050.......................71

ix

AbbreviationsandAcronyms4GDH 4thGenerationDistrictHeatingBTU BritishThermalUnitsCGB CondensingGasBoilersCHP CombinedHeatandPowerCHPSS CentralizedHeatPowerSupplySystemCO2 CarbonDioxideDH DistrictHeatingDHS DistrictHeatingSystemEC EuropeanCommissionEU EuropeanUnionGcal GigacalorieGHG GreenhouseGasGHI GlobalHorizontalIrradiationIEA InternationalEnergyAgencyIHS IndividualHeatingSectorIMHU IndividualMicro-HeatingUnitMWe MegawattelectricalMWh MegawatthourMWt MegawattthermalRATCJ AutonomousDistrictHeatingCompany-Cluj-NapocaRE RenewableEnergyRES RenewableEnergySourceRON RomanianLeu(Currency)

x

MeasurementunitsMeasurementUnitMWh GJ Gcal1 3.6 0.860.28 1 0.241.16 4.19 1Basedoninformationprovidedby(InternationalEnergyAgency,2017)

1

1 OpeningAnthropogenicwarmingoftheearth’sclimatesystemisnowindisputableanditswidespreadeffectsareoneofthebiggestdauntingproblemnowadays.Globaltemperaturerising,warmingoftheoceans,shrinkingoftheicesheets,glacierretreateverywherearoundtheworld,withsealevelsrising,extremeeventsandoceanacidificationarejustsomeofthecompellingevidencethattheEarth'stemperatureisrising.Someoftheseeffectsandotherassociatedimpactsmaycontinueforhundredsofyearsevenafterthecompletestoppageoftheanthropogeniccarbondioxide(CO2)emissions.(IPCC,2014)Oneofthelargestcontributorstoglobalwarmingistheairpollution(IPCC,2014),whichisalsothelargestglobalhealthrisknowadays,since,annually,morethan6milliondeathsarecausedorrelatedtopoorairquality(WorldHealthOrganisation,2005).Thekeytosolvingthisproblem,whichisalsotheunderlyingproblemofairpollutionisintheenergysector,whichshouldbeprioritizedonthepoliticalagendaofeachcountry,sinceitaccountsfortwo-thirdsoftheGreenhouseGas(GHG)emissionsworldwide.(InternationalEnergyAgency,2016)Numerousaspectshavecontributedtothissituation,suchasthelackofenergyefficiency,theenergysourcesusedintheenergygenerationsuchasfossilfuelsandtheamountofenergyproduced.Moreover,theglobalpopulationisgrowingsignificantlynowadaysanditisexpectedthatthetrendwillcontinueinthenextdecades(GlobalHealthObservatory,2017),which,ofcourse,willleadtoanincreaseintheenergydemandacrosstheglobe.

Figure1.1:WorldEnergyConsumptionbysource,1990-2040,inquadrillionBtu.

2

TheU.S.EnergyInformationAdministrationpredictsthatbetween2012and2040,theworldenergyconsumptionwillincreaseby48%,asillustratedinFigure1.1above.(U.S.EnergyInformationAdministration,2016)This,certainly,willraiseenvironmentalconcernsworldwide.TheglobalpopulationgrowthisexpectedtoaffectEuropeaswell,ofcourse,wherethedependencyonimportedfossilfuelswillincreasetoo.Inconsequence,theneedforchangeintheEUenergysystemisvitalandunavoidableinordertosecureasupplyofenergyinasustainableway,withoutincreasingtheGHGemissions.(Østergaard&Andersen,2016)1.1 Towardsanefficientandsustainableglobalenergysystem

Ataninternationallevel,inDecember2015,195countriesrepresentedbytheirstateleaders,wereunitedinParis,FranceatTheUnitedNationsClimateChangeConference.ThepurposeofthisConferencewassingingthe"ParisAgreement".Itsprimaryaimswerekeepingtheglobaltemperaturerisebelow2°Cabovepre-industriallevels,reducingtheGHGemissionsandstrengtheningtheabilityofthecountriestofightgloballywiththeimpactsofclimatechange.Allthecountriesweredemandedthroughnationallydeterminedcontributionstogivealltheirinterestinthisissueintheyearsahead.(UnitedNations,2015)InEurope,theEuropeanUnion,withthe28memberstates,hasendeavoringgoalsregardingtheclimatechange.ThemainobjectivesincludedecreasingthedependencyoftheEUonfossilfuelimports,reducingtheuseofitsresources,bringinghealthbenefitstothepopulationbyreducingairpollutionandboostingitseconomybyusingcleantechnologiesandlow-orzero-carbonenergy.TheEuropeanCommissionhasscheduledthreestepsinachievingtheseambitiousgoals,byadoptingtargetsandpolicyobjectivesfor2020,2030and2050.(EuropeanComission,2011)Thefirsttargetisscheduledtobeachievedby2020witha20%cutinGHGemissionsincomparisonwiththe1990levels,a20%improvementinenergyefficiencyanda20%increaseoftheshareofrenewablesintheirenergyconsumption.Thesecondtargetissetfor2030withacutofatleast40%inGHGemissionsincomparisonwiththe1990levels,aminimumof27%improvementinenergyefficiencyandatleast27%ofitsenergyconsumptionbeingcoveredbyrenewables.Thelastmilestone,scheduledfor2050,aimsoncuttingtheGHGwith80-95%incomparisonwiththe1990levels.(EuropeanComission,2011)Toassuretheachievementofthesetargets,asetofmandatorymeasureshasbeensetbytheEU.Oneofthemeasuresisthe2012EnergyEfficiencyDirective,whichimposestoalltheEUcountriesusingtheenergyasefficientlyaspossible,inallsteps,fromproductiontofinalconsumption.(EuropeanComission,2012)UndertheArticle7oftheEnergy

3

EfficiencyDirective,TheEuropeanCommissionbindseachEUcountrytosetupanenergyefficiencyobligationscheme(EEOS)ortocreatealternativemeasurestoachieveacertainamountofenergysavings.(EuropeanCommission,2016)AnotherDirectivewiththeoverallgoalofproducingandpromotingenergyusefromRenewableEnergySources,istheRenewableEnergyDirective.Itsmainobjectivesare:minimum10%ofeachcountry'stransportationfuelsoriginatingfromRESby2020andaminimumof20%oftotalenergyconsumptionofeachEUcountrybeingproducedbyRES.(EuropeanComission,2009)InFebruary2016anEUStrategyonHeatingandCoolingwasreleasedaspartofEUdecarburizationstrategythataimstoboostenergyefficiencyandrenewableenergy,andthus,createamoreefficientdistrictheatingsectorbycombiningtheheatingandelectricitysectorsandrenovatingtheexistingbuildingstock.(EuropeanComission,2016)Inoneofitsreports,TheInternationalEnergyAgency(IEA)statesthatenergyefficiencypoliciesamongothermeasureshaveledtoatotalof49%oftheenergyconsumptionbetween1973and1998,in11Europeancountries.Also,afurtherpotentialof20%savingsbytheendof2030ifallthemeasuresimposedintheECarerespectedispredicted.(InternationalEnergyAgency,2006)InRomania,the“EnergyStrategyofRomania2016-2030,withtheperspectiveof2050”hasfivefundamentalstrategicobjectivesaimingtocreateamoresustainableenergyplan.(MinistryofEnergy-Romania,2016):

• Thefirstobjectiveisincreasingthenationalenergysecurity,whichistheabilityofastatetoprovideitsenergyneedsuninterruptedlyandataffordableprices.ItwillbebasedontheEuropeanapproachtoenergysecuritypolicy,which,inturn,isbasedonrulesofintra/extra-communitycooperation,normsandinstitutions.(MinistryofEnergy-Romania,2016)

• Creatingacompetitiveenergymarketrepresentsthesecondobjective,which

willprovidetheconsumerswiththebestquality/priceratio,andthus,supportingthecountry'seconomiccompetitiveness.Inordertoaddressthismatter,anenergysystembasedonfreemarketmechanismswillbecreated,themainfunctionsofthestateremainingthepolicymaker,regulator,guarantorofthestabilityoftheenergysystemandtheinvestor.(MinistryofEnergy-Romania,2016)

• Thethirdobjectiveiscreatingcleanenergy,whichwilllowertheGHGemissionsandothernoxioussubstances,thuscontributingtomitigateclimatechange.Basedontheprincipleofequitableparticipationinreachingnationaltargetsfor2020and2030,RomaniawilldoitsutmosttoachieveitstargetsbyinvestingeffectivelytoincreasetheRESs.(MinistryofEnergy-Romania,2016)

4

• Modernizingtheenergygovernancesystemisthefourthobjective.ItspurposeisincreasingthequalityoftheenergygovernancesysteminRomania,whichisthebasisforalltheotherstrategicobjectives.(MinistryofEnergy-Romania,2016)

• Thevulnerableconsumerprotectionandthereductionofenergypoverty(lack

ofaccesstomodernenergyservices)areaddressedbythelastobjective.Itincludesfundamentalstrategicobjectivesaimingtohelpthefinalconsumer.Priceaccessibilityisoneofthemostimportantchallengesoftheenergysystem.Inaddition,theobjectiveaimstoincreasethecommunicationqualitybetweentheenergysuppliersandtheconsumersbycontinuingtheinstallationofsmartmeterswithremotereadingandatthesametimeincreasingthetransparencyofthefinalenergyprice.(MinistryofEnergy-Romania,2016)

SincetheremaybechangesintheEUenergystrategyinthefollowingyears,onceeveryfiveyears,theRomanianEnergyMinistryintendsonupdatingthesystemdataandanalysis,defininganewqualitativeanalysisoftrendsinthenationalenergysystem,andreviewingthetargetsaswellasthepriorities.(MinistryofEnergy-Romania,2016)AccordingtoTheEuropeanCommission,Romaniaisexpectedtoachieveits2020renewableenergytargetsincetheshareofrenewableenergyinRomaniain2013was23.9%.(EuropeanComission,2015)1.2 EuropeanUnionEnergySystem

In2015,theproductionofprimaryenergyintheEUtotaled767milliontonsofoilequivalent(Mtoe)whereonly72.4%ofthetotalgrossinlandenergyconsumptionwasreachingtheendusers.(EuropeanEnvironmentAgency,2015)TheEUenergysystemishighlyrelyingonfossilfuelswithashareof73.8%ofthetotalenergyconsumptiongeneratedbyburningfossilfuelsin2013,whilerenewableenergysourcesaccountedforonly11.8%,and13.6%nuclearpower(EuropeanEnvironmentAgency,2015).TheEUdependencyonenergyimportsfromnon-EU-membercountrieshasincreasedsignificantlywithinallitsenergysectorsthroughthelasttwodecades,from40%in1990to54%in2015,meaningthatmorethanahalfofthegrossinlandEUenergyconsumptioncamefromimportedsourcesin2015.(Eurostat,2017)Figure1.2illustratesthenetimportsoffueltypesasapercentageoffuel-specificgrossinlandconsumptionfrom1995to2013.Thereadercannotice,aspictured,thatfrom2005to2013theimportofallproductsremainedapproximatelythesame.

5

Figure1.2:NetimportsoffuelintheEU(EuropeanEnvironmentAgency,2015)

TheHeatingandcoolingsectorisusinghalfoftheEUfinalenergyconsumptionanditaccountsforapproximately68%ofalloilandgasimports.TheECclassifiesthissectorasbeingdecisiveintheEU'stransitiontowardsanenergyefficientanddecarbonizedenergysystem.Moreover,thissectorisessentialinobtainingalong-termenergysecurity.Consideringthatthissectorismanlybasedonfossilfuelimports,itcouldbeapotentialthreadfortheEuropeanEconomysincethesecurityofsupplyisvitalforit.TheEUStrategyonHeatingandCoolingproposedonFebruary2016hasasmainobjectivesloweringtheheatingandcoolingdemandbyrenovatingitsbuildingsstockwithhigh-performanceinsulationmaterials,increasingtheenergyefficiencyinsupplybyusingthelatesttechnologies,increasingtheuseofrenewableenergyandreducingthecostofheatingandcoolingtoanaffordablelevelforthewholepopulation.(EuropeanComission,2016)TheEUalsoplanstocontroltheenergyusewiththehelpofintelligentthermostats,toupgradetheheatingequipmenttothemostefficienttechnologiesandtousebiomassandsolarheatingsystemstoreducetheGHGemissions.Inaddition,otherheatingandcoolingstrategiesareplannedinthenextyears.(EuropeanCommission,2017)1.3 ThecurrentstateoftheRomanianEnergySystem

AsdepictedintheFigure1.3,theprimaryenergyconsumptioninRomaniaisdiversified.In2015,Romania'sgrossenergyconsumptionwas377TWh,whilethefinalenergyconsumptionwas254TWh.Thedifferenceof123TWhcamefromtheinherentlossesofthetransformationprocessinthethermoelectricpowerplants(66TWh),theconsumptionofenergybythethermalpowerplants,refineriesandextractiveindustries(28TWh),theconsumptionoftherawmaterial(17TWh)andthelossesinnetworksdistributionofelectricity,gasandthermalenergy(12TWh).(MinistryofEnergy-Romania,2016)

45,66

17,88

80,03

44,2557,07

39,4

82,15

52,2465,28

44,16

87,37

53,19

0

20

40

60

80

100

NaturalGas SolidFuels Oil(total) Allproducts1990 2005 2013

NetimportsoffuelintheEU

6

Figure1.3:GrossconsumptioninRomaniain2015(MinistryofEnergy-Romania,2016)

Theanalysisoffinalenergyconsumptionin2015(total254TWh)byenergyconsumption,representedinFigure1.4,showsthatthelargestenergyconsumerin2015inRomaniawastheheatingandcoolingsector(97TWh),withabout39%ofthetotalconsumption.Therestoftheenergyconsumptionwasdividedasfollows:consumptioninindustrialprocesses(48TWh),passengertransportation(48TWh),otherindustrialenergyconsumption(27TWh),freighttransport(17TWh),householdandserviceelectronicsandhomeappliances(13TWh),whilethelowestenergyconsumerwastheagriculturalsector(4TWh).(MinistryofEnergy-Romania,2016)

Figure1.4:FinalenergyconsumptioninRomaniain2015bysectors(MinistryofEnergy-Romania,2016)

254 TWh

66 TWh28 TWh 17 TWh 12 TWh

377 TWh

050

100150200250300350400

FinalEnergyConsumption

Lossesinthetransformation

process

Owntechnologicalconsumption

Consumptionofenergyresourcesasrawmaterial

Lossesinthedistributionnetworks

TOTAL

GrossenergyconsumptioninRomaniain2015

97 TWh75 TWh 65 TWh

13 TWh 4 TWh

254 TWh

0

50

100

150

200

250

300

Heatingandcoolingsector

Industrysector Transportsector ElectronicsandHouseholds

AgriculturalSector

TOTAL

FinalenergyconsumptioninRomaniain2015

7

1.4 DistrictHeatinginRomania

DistrictHeatingisatechnicalprocessofproducingheatindifferentsources,transportinganddistributingitthroughthermalnetworks(undergroundpipelinenetwork).Thistechnicalprocessservestosupplyheatefficientlytoalargenumberofresidential,publicandprivateconsumers.(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)ThefirstdistrictheatingsystemsappearedinEuropeinthelate19thcentury,whilethefirstcommercialdistrictheatingsystemwasestablishedin1921inHamburg,Germany.(Euroheat&Power,2005)TheDistrictHeatingSystems(DHSs)haveprovedtobeasustainableandlow-costmethodinallthedenselypopulatedurbanareasandnotonly.Usually,bothprivateandindustrialconsumersneedelectricityandthermalpoweratthesametime.TheycaneitherbeproducedtogetherinaCombinedHeatandPowerplant(CHP),withbothelectricityandheatbeingproducedinasingleprocesscalledcogeneration,ortheycanbeproducedseparately.(Leca,2012)Romaniaisoneofthe28EUmemberstates.ItissituatedintheSouth-EastCentralEurope,anditsbordersareasitfollows:RepublicofMoldovaintheNortheastandEast,UkraineintheNorthandEast,theBlackSeaintheSouth-East,BulgariaintheSouth,SerbiaintheSouth-WestandHungaryintheWest.Romaniaisthe9thcountryinEuropebypopulation,withover21.000.000people,anditisdividedinto41countiesplusBucharest,whichisthecapitalcity.(MinistryofDefenseandInternalAffairs,2008)Dependingonaltitudeandseason,thetemperaturevariesfrom-38°Cinwinterand+44.5°Cinsummer.Thedurationofthecoldseasonvariesfromapproximately160days/yearintheSouthto222-232daysintheNorth,withanaverageof43.8%to63.5%ofayear.TheseclimateconditionsmaketheheatingsectorimperativeinRomania.(TheGovernmentofRomania,2004)ThefirstDHSappearedinRomaniainthe1960sandallthesystemswereownedbythenationalcompanyS.C.TermoelectricaS.A.(Vaida,2014)Duringthecommunistregime,until1989,315centralizeddistrictheatingsystemswerebuiltand251settlementsacrossthecountrybenefitedfromthem.(FlaviusIacobescu,2011)Aftertheoverthrownofthecommunistregimein1989,therehavebeenmanychangesinRomania,amongwhich,politicalandsocialchangesthataffectedthefunctioningofdistrictheating.Themostdamagingfactorwasthattheindustrialsectorhasshrunkmuchofitsworkafter1989.Alongside,numerousothercauseshavebroughttheurbanenergyinRomaniaintheserioussituationtoday:buildingshavelargeenergylossesandthermalnetworkstructureisoldandinefficient.Moreover,thelegislationdoesnotproducepracticalresults,investmentsareabsentandthenationalpolicyandregulationsinthisfieldareinadequate.(Leca,2012)AccordingtotheannualreportsofpublicinstitutionsinRomania,thenumberoflocalitiesconnectedtotheDHShasbeenreducedbyanaverageof10%peryear.Also,inapproximately40%oftheurbanlocalities,thepublicheatsupplyservicesprovided

8

inacentralizedsystemwerecompletelydismantledbetween1997and2003.(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)AsshowninFigure1.5,thenumberoflocalitiesconnectedtoDHSdroppedinRomaniafrom315in1989to61in2016,representingadecreaseof81.5%.AlmostalltheconsumersoptingouttodisconnectfromtheDHSareswitchingtoIMHUs.(MinistryofRegionalDevelopmentandPublicAdministration,2013)

Figure1.5:EvolutionofthenumberoflocalitiesconnectedtoDHSinRomaniafrom1989to 2016. Figure created based on data from (National Regulatory Authority forCommunityUtilitiesServices,2016)and(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)

Figure1.6representsthenumberofflatsandpersonsusingthedistrictheatingsysteminRomaniasince1992until2014.ThenumberofindividualsusingDHSdroppedfrom8.463.500in1992to3.822.000in2014.ThenumberofflatsusingDHSdroppedfrom2.885.012in1992to1.331.353in2014.

315 308

188

121 116 11086 78 70 64 61

050100150200250300350

1989 1997 2003 2009 2010 2011 2012 2013 2014 2015 2016

EvolutionofthenumberoflocalitiesconnectedtoDistrictHeatinginRomaniafrom1989to2014

9

Figure1.6:EvolutionofthenumberofflatsandpersonsconnectedtoDHSinRomaniafrom1989to2016.Figurecreatedbasedondata(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)

Currently,onlyapproximately22%ofthetotalnumberofcitiesandmunicipalitiesinRomaniastillhaveaDHS.Ifvillagesandcommunesareaddedtothetotalnumberofcitiesandmunicipalitiesandtakenintoaccount,thesituationisevenworse-only0.43%ofthemareconnectedtoDHS.(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)

Figure1.7:NumberofdwellingsconstructedinRomaniauntil2009(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)

2.885.012

2.485.295

1.920.000

1.689.616

1.647.881

1.595.175

1.550.402

1.488.293

1.412.014

1.364.354

1.331.353

8.463.550

6.900.000

5.500.000

4.849.198

4.713.000

4.562.200

4.449.700

4.256.500

4.038.400

3.902.000

3.882.000

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1992 2001 2004 2007 2008 2009 2010 2011 2012 2013 2014

EvolutionofthenumberofflatsandpersonsconnectedtoDHinRomaniafrom1989to2014

766854

4006787

2017679

592323

7383643

010000002000000300000040000005000000600000070000008000000

Before1947 1948-1977 1978-1989 After1989 Total

NumberofdwellingsconstructedinRomaniauntil2009

10

Moreover,asdepictedinFigure1.7,mostofthedwellingsinRomaniawerebuiltpriorto1989,whentherewerenospecificthermalrequirementsofthebuildingelementsthatmakeuptheirtire,andforthisreasonthebuildingsinRomaniahaveveryhighheatlosses.Theincreaseofurbanconsumptionenergyisthereforeupto25%comparedtonormal.(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)

Figure1.8:Energyresourcesinthecentralizedsystemofheatsupplyin2015inRomania.Figure created based on data from (Ministry of Regional Development and PublicAdministration&MinistryofEnergy-Romania,2015)

TheFigure1.8showsthatnaturalgasisthemostusedenergyresourceintheDHSinRomaniawithashareof80.18%,followedbycoal–17.67%,otherresourcessuchascombustiblewaste,etc.–1.06%,renewableenergyresourcessuchasbiomass,geothermalenergy,solarenergy–0.64%andcrudeoil–0,45%.(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)Initsmid-termandlong-termdevelopmentplan,Romaniaacknowledgestheimplementationofanenergystrategytocapitalizeonthepotentialofrenewableenergysources(RES).ThemainrenewableenergysourcesthatcanbeusedinRomaniaarebiomassandgeothermalsources-66geothermalwatersources.(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)1.5 Possiblywrongdecisionsofeconomicandenergeticpolicywhich

affectedtheRomaniandistrictheating

80,18%

17,67% 0,64% 0,45%

1,06%

020406080100

Energyresourcesinthecentralizedsystemofheatsupplyin2015inRomania

11

Romania’spossiblewrongeconomicdecisionsinthelastdecadeswhichaffectedtheDHSinRomanianFirstly,Romaniahasn’tacceptedtolowertheValueAddedTax(VAT)forthedistrictheatingasmanyother“poor”countriesofEuropeanUnion.AlowerVATisappliedforinstanceinTheCzechRepublic(20%normalVAT,reducedVATfordistrictheating14%),Lithuania(21%and9%respectively),Latvia(22%and12%respectively).Secondly,anotherpossibleissuewassellingthenationalapartmentstothetenantsatthebeggingofthe’90s,andtherefore,duetotheirlowincomes,theownerscannotcopewiththeresponsibilitiestheyhaveforhousingmaintenance,suchasenergyupgradingofbuildings.Thirdly,thelackofanationaleconomicstrategystarting1990whentheonlystructurespecifictothecentralizedeconomyofRomania,theStatePlanningCommittee,wasdissolvedwasanotherpossibleproblemofthecountry.Onelastpossibleissuewasthatin’80s,Romaniapaidentirelyitsexternaldebt,andthus,hinderedtheeconomicandsocialdevelopmentofthecountryforalongtime.In’90s,RomaniarequestedassistancefromtheInternationalMonetaryFundandtheWorldBankandtherefore,duringthislongperiodoftime,thetechnicalandmoralwearofthetechnologiesandenergyequipmenthasdeepened,amongwhichthosespecifictocentralizedheatsupplysystems.(Leca,2012)Romania’spossiblewrongenergeticdecisionsinthelastdecadeswhichaffectedtheDHSinRomanianFirstofall,DHShavebeeninvolvedin4ministries(MinistryofAdministrationandInterior,MinistryofEconomy,MinistryofLaborandSocialProtection,MinistryofEnvironment)andtworegulatoryagencies(NationalRegulatoryAuthorityforEnergy,NationalRegulatoryAuthorityforCommunityUtilitiesServices).Ofcourse,thishasmadecoordinationverydifficult.Secondly,thelackofinterestand/orskillsofthecentralandlocalauthoritiesinfindingfinancingsolutionsfortheenergymodernizationofhousingblockshasdeepenedtheproblemevenmore.Asalreadystated,alotofenergyislostduetothelowenergyperformanceofbuildings,thereforemakingitofcrucialconcern.Moreover,simpleandineffectivesolutionshavealwaysbeenadoptedregardingtheDHS,andthisisoneofthemainreasonswhytoday,theDHSrepresentsthemostdeficitsub-sectorinRomania.(Leca,2012)1.6 DistrictHeatinginCluj-Napoca

Cluj-NapocaisoneofthelargestcitiesinRomania,situatedinthenorth-westpartofthecountry.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)Thecity'spopulationdoubledbetween1960and1990,andthismadethecitygrowwithanincrediblespeed,which,triggeredtheconstructionofbigdistrictsandtogetherwiththem,thedevelopmentofthecity’sdistrictheatingsystem.Atthebeginningofthe

12

70s,thecentralheatingsupplyandhotwatersupplywereestablishedinCluj-Napoca.Theseserviceshavebeentakenoverin1991bytheAutonomousDistrictHeatingCompanyofCluj-Napoca(RATCJ)thatissubordinatedtotheLocalCouncil.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017).Currently,thecityisanimportantuniversity,culturalandindustrialcenter,withapopulationofabout325,000inhabitants.Itisdividedin24neighborhoods(Cluj-NapocaMunicipality,2015),ofwhich,only6arecurrentlyconnectedtoDHS.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)ThethermalenergyproductionoftheDHSofCluj-Napocahasatotalinstalledcapacityof556MW,achievedby2CHPswithatotalinstalledcapacityof13MW,76thermalpowerplantswithatotalinstalledthermaloutputofabout400MWandadistrictheatingplantwith143MWinstalledthermaloutput.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)ThetransportofthermalenergyoftheDHSinCluj-Napocacomprise16.5kmsofthermalenergytransportnetworksandthedistributionofthermalenergyisachievedthrough128kmsofdistributionnetworksofthermalenergy.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)Thethermalenergyproductionandsupplysystemwasrenovatedbetween1991and2003withinvestmentsofover18,000,000Euros.Duringthisperiod55.3kmsofthermalnetworkswererehabilitated,theequipmentfrom26quaternarythermalpowerstationsweremodernized,7newthermalpowerstationsand8newthermalpowerplantswerebuilt,68unitswereautomated(bothcentralandthermal)andthefirstCHPwasconstructed.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)Butthisfactdidn’tstoporlowertheincreasingnumberofconsumersoptingouttodisconnectfromtheDHSinthenextperiod.TheDHCompanyofCluj-Napocalostmostofitsclients,aspeopleswitchedtoIMHUs.(MinistryofRegionalDevelopmentandPublicAdministration,2013)

82487

4596330407 29387

0

20000

40000

60000

80000

100000

2003 2009 2014 2015

EvolutionofthenumberofapartmentsconnectedtoDistrictHeatinginCluj-Napocafrom2003to2015

13

Figure1.9:EvolutionofthenumberoflocalitiesconnectedtoDistrictHeatinginCluj-Napocafrom2003to2015(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)(TheGovernmentofRomania,2004)

Figure1.9illustratesthenumberofapartmentsconnectedtotheDHSinCluj-Napoca,thatdroppedfrom82487in2003(TheGovernmentofRomania,2004)to29387in2015(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015).Thedatashowsadisconnectionrateofabout-64%from2003to2015.ThemainreasonwhyRATCJhaslostmostofitsclientsisthecompany’swayofchargingthecustomers.Moreexactly,thecustomerswerebeingchargedbythesizeoftheirapartmentandnotbythequantityofheatconsumed.Thehotwaterbillswereemittedaccordingtothenumberofpeoplelivingintheapartmentandnotbythequantityofhotwaterconsumed.Forexample,evenwhennotbeinghome,ifyouweretobetheircustomer,youwouldhavetopayhighbillsforheatandhotwater.However,recently,theproblemhasbeensolvedsinceRATCJhasintroducedindividualbilling.Moreover,partofthenetworktransmissionanddistributionlosses,which,forinstance,inthewinterof2011-2012accountedfor27.4%ofthetotalheat,wereincorporatedinthefinalpricepaidbycustomersandinthesubsidiesbornebythelocalgovernment.Tosumup,thedissatisfiedcustomersofthepoorqualityofthenetworkandthepoorqualityoftheservices,havedecidedtoswitchtoIndividualMicro-HeatingUnits(IMHU)andtoonlypayforwhattheyactuallyconsume.(MinistryofRegionalDevelopmentandPublicAdministration,2013)

14

2 ProblemdefinitionTheaimofthepreviouschapteristodescribethebackgroundoftheRomanianurbanenergysector,withaspecificfocusonthedistrictheatingsystemofCluj-Napoca.Theaimofthischapteristodefinetheresearchproblemandtopresentthecontextinwhichitwillbeanalyzed.Also,anoverviewonthelimitationsandthestructureoftheprojectwillbegiven.2.1 ResearchQuestion

TheRomanianenergysystemisfacingchangesinthecomingyearstoimproveitsenergysystembyincreasingtheshareofrenewablesintheirenergyconsumption,improvingitsenergyefficiencyandreducingtheGHGemissionsontheroadtowardsreachingthespecificenergytargets,towhich,thecountryhascommittedtoreachalongsidetheEU.Itisimportantthatthesetargetsareachievedinthemostfeasibleway,districtheatingaccompaniedbyheatsavingsrepresentingnowsomeofthemostimportantprioritiesfortheEU.InRomania,thedistrictheatingsectorisinadeplorablestatewhere,becauseofthepossiblewrongenergeticand/oreconomicdecisions,thenumberoflocalitiesconnectedtotheDHSisreducedannuallybyanaverageof10%.Outoftotalof320citiesandtownsinRomania,only61(19%)werestillconnectedtoDHSinRomaniain2016,comparedto315(98,5%)in1989.InCluj-Napoca,thereisalsoacontinuoustrendofincreasingthenumberofconsumersoptingouttodisconnectfromtheDHSfromdifferentreasonssuchas:financialdifficulties,opportunityforothertypesofheating,thelackoftrustinthedistrictheatingcompany,thepoorqualityofthenetworkorthepoorqualityoftheservices.ThenumberofapartmentsconnectedtotheDHSinCluj-Napocadroppedfrom82.487in2003to29.387in2015.Thisrepresentsadisconnectionrateofabout-64%intheperiod2003–2015.Ifthistrendwillcontinueatthesameextentinthenextyears,thereisanimminentriskthattheDHSofCluj-Napocawillbelost.Theabovefactshaveledtothefollowingresearchquestions,whichdefinethisthesis:

1. WhatcausedthedropintheuseofDHSinthecityofCluj-Napoca?

2. Onalong-termperiod,whatarethetechnicalsolutionssothattheDHofCluj-Napocacanofferamorefeasiblealternativetoconsumerswhichareusingindividualheating?

15

3. WhatarethepolicyrecommendationssothattheactualsituationofCluj-NapocaDHScouldbeimproved?

ThisstudyfocussesonDHSofthecityofCluj-Napoca,whichisthesecondlargestcitypopulationinRomania.TheproblemsfacedbytheDHsystemofCluj-Napocaaresimilarthroughoutthewholecountryandtherefore,theanalysisconductedinthisstudycouldberelevanttootherDHsystemsinRomania.2.2 Boundariesandlimitationsoftheproject

Inthisproject,onlytheDHSofCluj-Napocacityisanalyzed,withitbeingthebasisoftheanalysis.Otherenergysectorssuchasindustryortransportarenotconsideredintheanalyze,andthereforethedatashouldbeinterpretedbytakingthisintoconsideration.Thedatausedforthereferencescenarioisfrom2012.Thedecisionwastakenconsideringthefactthatthiswasthemostrecentyearwithacompletesetofdataavailable.Thetechnologicallifetimeofthetechnologiesconsideredintheprojectare25years.ThepriceofgasusedisthereferencepricepublishedbythegasdistributorofClujcounty.SomeassumptionsarebeingmadeforthereportanddiscussedintheChapter.

2.3 ProjectStructure

Figure2.1presentsthestructureofthismasterthesisreport,withthegreysectionsillustratingthesectionsoftheproject,theblueboxesrepresentingthechapters,andtheorangeonespecifyingthecontentofeachchapter.Thisprojectisdividedinsevenchapters,eachofthemcontainingsectionsandsubsections.Chapter1definesthebackgroundandthecontextualinformationoftheanalyzedprobleminthisproject,whichledtotheresearchquestion.Chapter2introducestheresearchquestion,followedbyadiagramoftheprojectstructureandexplanationofeachchapter.Thischapteralsoprovidesinformationregardingtheboundariesofthisproject.Chapter3consistsofthemethodsusedinthereporttoanswertheresearchquestion.ThemainsubsectionsofthechapterrepresentthemethodologyandtheoryusedinthisprojectandthedescriptionoftheEnergyPlantoolusedtocreatethemodelforthescenarioanalysis.

16

Chapter4presentsthebackgroundinformationfortheanalysischapter,whichisalsothebasisforthescenarios.Furthermore,itgivesanoverviewoftheDHfeasibletechnologiesthatcouldbeusedintheDHsystemofCluj-Napoca.Chapter5presentsthemainanalysisofthisproject,wherescenariosarecreatedandadetailedoverviewoftheresultsofeachscenarioisprovided.Moreover,acomparisonbetweenscenariosisconductedtoexplainthemosteffectivesolutionfortheDHSofCluj-Napoca.Chapter6iselaboratesonthePolicyAnalysisregardingtheDistrictHeatingSectorofRomania.TheresultsoftheanalysisandthesolutionsbasedontheproblemdefinitionaresynthetizedinChapter7.InChapter8theassumptions,thelimitationsandpolicyrecommendationsregardingthepossiblesolutionsforsolvingtheCluj-NapocaDHSproblemsarediscussed.Finally,thereportendsbyprovidingalistofthereferencescitedthroughouttheprojectusingtheHarvardReferencingStyle.Inaddition,theListofTables,theListofFiguresandtheAppendixareprovidedwithalltheresultsofthescenarioscreatedinEnergyPlan.

17

Figure2.1:ThesisStructure

DistrictHeatinginRomania- AstudycaseofCluj-Napocadistrictsystem

Sections

*Actionstakenregardingclimatechange

*EUEnergySystem*DHinRomania

*DHinCluj-Napoca

*Problemstatementandapproach*Projectlimitations*Projectstructure

*CaseStudyasaReseachMethod*DataCollection*EnergyPLAN

*AnalysisFrame*TheHeatingSectorofCluj-Napoca*Differentpossiblesolutionsto

addresstheproblem

*Technicalanalysis*Socio-environmentalanalysis

*SensitivityAnalysis*Results

*PolicyAnalysisandRecommendationsregardingHouseholdBoilersinRomania

*PolicyAnalysisandRecommendationsregardingDistrict

HeatinginRomania

*Conclussion

*OtherRESsolutions*Discussionofsensitivityanalysis

*DiscussiononResults

Chapters

Opening

Problemdefinition

TheoriesandMethods

BackgroundInformationforanalysis

TechnicalAnalysis

PolicyAnalysis

Conclussion

Discussion

Usedinproject

*Backgroundfortheproblemdefinitionispresented.

*Research Question,Projectstrucureandtheapproachare

presented.

*Explanationofthemethodsandtheoriesusedtoanswertheresearch

question.

*Backgroundinformationisprovidedfortheanalysischapter.

*Theanalysisframeispresentet.*Themainanalysisofthisprojectis

conducted.*Theresultsarepresented.

*AnanalysisoftheRomanianPoliciesrelatedtoHeatingSectoris

conducted,followedbyrecommendations.

*Reflectsontheprojectresults

*DiscussionsonotherpossibleRESsolutionsandontheresults.

18

3 TheoriesandMethodsInordertoprovidethemostconclusiveresults,abroadamountofmethodsandtheoriesareincludedinthisproject.Thischapterprovidesanintroductionofallthemethodsandtheoriesusedinthisproject,followedbyadetaileddescriptionofeachofthem.Thisprojectisusingdifferentmethodsandtheoriesinordertoincrementtheveracityoftheresults.Theideabehinditisthattheresultsaremoreexactifdifferenttechniquesleadtothesameresult.Averyefficientwayofgettingresultswithhighdegreeofaccuracy,isthetechniqueofcrossverificationofdatafromtwoormoresources(Bogdan&Biklen,2006).Besidesthat,theprojectisusingdifferentapproachessuchasquantitative,qualitativeandpragmaticapproaches.Thequantitativeapproachisusedinordertocreateconclusionsandhypothesesaboutfutureenergysystems,conclusionswhichcanbemadebymakingenergysystemanalyzes,whichinvolvesvariousdatabasedonmeasurementsfromtheproducersofenergyandfromthedemandside,whichisrepresentedbytheconsumers.Thequantitativeapproachfocusedoncollectingandconvertingdataintonumericalformsoitcanbeusedinstatistics.ThedatafromCluj-Napocacityarecollected,analyzedandverifiedfollowedbyavalidationofthedata,whichismadebycomparingdifferentdocuments,researcharticlesprogramsandsoon.TheprojectalsoincludesaquantitativeapproachbecausedifferenttypesoftoolssuchasEnergyPlanprogramareusedtocreate,defineandcomparevariousscenarios.Objectivityisveryimportantwhenaquantitativeresearchisconductedandthereforetheprojectscenariosarebasedonlyonreliabledatafromreliablesourceswithoutanypersonalinterpretation.Thevalidityoftheconclusionsdrawnfromthedataandthehypothesespresentedarebasedononeormorepremises,suchasdifferentconditionsandpriorstatements.Thequalitativeapproachisusedinmaintheprojectasatoolforabetterunderstandingoftheunderlyingreasons,opinionsandmotivationsoftheanalyzedproblem.Asmentionedbefore,theEnergyPLANprogramhasbeenusedtocreateareferenceandotherfictivealternativescenariosofthedistrictheatingsectorofCluj-Napocacity,andbecausetheprogramworksinthewaythatthedeveloperhascreatedit,ithassomelimitationssuchas:theuserlacksflexibilityinmakingdifferentchangesinthewayitfunctionsandmainly,becausetheprogram’stheoriesareusedastoolsformakingtheanalysis.Therefore,theapproachusedtendstobepragmatic.(A.EuropeOffice,2009)Scenarioswillbecreatedtotestthehypothesisthatthenewenergysystemismorefeasibleincomparisonwiththereferenceone.TheanalysisapproachhasthepotentialofbeingusedinotherDHenergysystemanalysisinRomania.

19

3.1 Researchmethod:ACaseStudyoftheDHSofCluj-Napoca

Casestudyresearchisausefultoolthatallowdeeplyinvestigationsofspecificsituations,offeringaprofoundviewoftheresearchproblem,facilitatingtheunderstandingandclarifyingofthecertainsituationorresearchproblem(Baškarada,2014).Thestudycaseapproachisaveryusefultoolthatfacilitatestheanalyzetheresearcherneedstoconductpointingexactlytheinformationfromaparticularsituation,suchasmallgeographicalareaoralimitednumberofsubjects.(Zainal,2007)Theapproachcanbeusedwhenmultiplesourcesofevidencearetakenintoconsideration(Yin,2009),inordertoensurethataproblemisnotexploredfromonlyonepointofview,butfromamoreangles(Zainal,2007).Inthisthesis,itisanalyzedwhethertheDHSofCluj-Napocacanofferafeasiblealternativetoconsumerswhoareusingindividualheating.AdvantagesofstudycasesOneoftheadvantagesofusingthestudycaseapproachisthatdataisexamineddependingonitscontext.Thisisdifferentfromanexperiment,forinstance,wheretheanalyzedsituationisisolatedfromthecontext.Anotheradvantageofthisapproachisthatboth,quantitativeandqualitativedatacanbecollected.Byusingqualitativedatainastudycasealongsidequantitativedata,thereal-lifeeventscanbebetterexplainedandunderstoodincomparisontothosesituationsinwhichonlyquantitativedataareusedsuchasexperimentsorsurveyresearch.(Zainal,2007)DisadvantagesofstudycasesOneofthecriticismsthatarebeingmadetothisapproachisthattheauthorcanintentionallyomitcertainfactsorthingstodirecttheoutcometoaparticularviewpoint,whichheconsidersasviable.Anotherdisadvantageofthecasestudyapproachisthatitcannotbeusedforgeneralizationofthequantitativedata.StudycaseapproachIneachstudycase,thefirststepisthemostimportantone,wheretheresearchproblemandstudyobjectivesareclearlydefined(Baškarada,2014).Inthiscase,theobjectivesofthestudycaseanalyzedistofindsolutionsandpolicyrecommendationssothattheDHSofCluj-Napocacanregainitscustomersback.Oncetheresearchquestionisset,thenextstepisthedeterminationoftheapproach.Thestudycaseconductedcouldbe:explanatory,exploratory,descriptiveoramulti-case-study,etc.Whenaprojectanalysesaproblemrelatedtoonlyacertainareaoracertainsituation,thesinglecasestudyapproachisused,whichisalsothecaseinthisthesis.Also,theresearchquestionhastobenarrowedasmuchaspossibletoavoidexcessofinformation(andunnecessaryinformation),andtheboundariessuchastimeandplacemustbewelldefined.(Jack&Baxter,2008)

20

Inthenextstepsdatagatheringandanalysistechniquesaredetermined,followedbytheircollectionandanalyze.Thelaststepconsistsinthepreparationoftheresultsandtheirpresentation.(Soy,1997)Tosumup,theapproachusedintheprojecttoanswertheresearchquestionisthedescriptivesinglecaseresearch,wherethefeasibilityofanewenergysysteminCluj-Napocaisanalyzed.Theboundariesaresetintheproblemdefinitionchapteranddatausedinthisprojectareexplainedsoitcanprovidecertaintythattheprojectmatchestherealworldasexactlyaspossible.Thisstudycasewaschosenforseveralreasons:

• TheproblemsfacedbytheDHsystemofCluj-Napocaaresimilarthroughoutthewholecountryandtherefore,theanalysisapproachandsolutionsmayberelevantforcomparisonswhenotherRomanianDHsystemanalysesareconducted.

• Asnumberofclients,theDHsystemofCluj-Napocasufferedoneofthelargest

customerlossesinthewholecountry,withadisconnectionrateofabout-64%intheperiod2003–2015.

• Dataavailability.Technicalandstatisticaldatacanbeobtainedfromthe

websitesofEuropeanCommission,theGovernmentofRomaniaandtheRATCJ.3.2 DataCollection

Inthefollowingsection,thedatacollectionmethodsaredescribed.ThedatawasgatheredthroughliteraturereviewandthroughcalculationsinEnergyPlanprogram.Thereferenceyearforcollectingdatawaschosentobe2012becauseofthedataavailability,asalreadymentioned,sinceitisthemostrecentyearwhenallthenecessarydataforcreatingareferencescenariowereavailable.ThedatacanbefoundinAppendixXX–Datacollection.LiteraturestudyanddataavailabilityLiteraturereviewformsthebasisoftheproject,beingthefirstphaseoftheproject.Theinformationwasgatheredfromvarioussources:scientificreportssuchasScienceDirectandResearchGatewherekeywordsrelevantforthisstudywereused,books,internetandpublicinformationprovidedbytheGovernmentofRomaniaandtheRATCJ.Theresearchwasconductedin2languages,RomanianandEnglish.AgreatpartofdatawasgatheredfromofficialreportsavailableonlyinRomanianlanguage,whilemostoftheresearchontheavailableliteraturehasbeenconductedinEnglish.

21

EnergySystemAnalysisTool–EnergyPlanEnergyPLANisanenergysystemanalysistooldevelopedatAalborgUniversity.Theaimofthistoolistosimulateandoptimizetheoperationstrategyofaspecifiedenergysystemonnational,regionalorevenlocallevel,suchastownsormunicipalities.Theanalysisoftheenergysystemiscarriedoutonanhourlybasisduringoveraperiodofoneyear.Itcanalsobeusedtocreatenationalenergyplanningstrategies.(LundH.A.,2014)EnergyPLANwillbeusedinthisprojecttosimulatetherealexistingheatingenergysystemofCluj-NapocaandtocreatepossiblefutureenergysystemasscenariosinordertofindthemostfeasiblesolutionfortheDHSofCluj-Napoca.AnalysisApproachInEnergyPlan,fourstepsarenecessaryinordertocompleteanenergysystemanalysis.Thefollowingsectionwilldescribeeachstepoftheanalysis.

• ReferenceEnergyDemandTobeginwith,theuserisrequestedtoinputtheenergydemand–electricityanddistrictheating–foraperiodofoneyear,usinganannualdemand(TWh/year)andthedistributiondatasetwhichcanbefoundinthedatabaseofthemodel.Thereisthepossibilityofaddingtwoadditionaldemandsfortransportationandforexports,butthosearenotusedinthisproject.Thereisalsotheoptionofaddingtheindividualheatingsector(IHS)byincludingvarioussolarthermalandmicro-CHPsystems.Theheatdemandsectionisdividedintofourdifferentgroups,namelygroup1to4(smallerheatingplants,decentralizedCHPplants,centralCHPplantsandindividualdemand).(LundH.A.,2014)Thereferenceyearforthedatausedinthedemandis2012.ThedatawasgatheredmainlyfromtheRomanianNationalInstituteofStatisticsandfromtheMunicipalityofCluj-Napoca.

• ReferenceEnergySupplyThesecondstepisdefiningtheenergysources,thestoragecapacitiesandtheenergyconversiontechnologies.CapacitiesandtheefficienciesoftheDHpowerplantsaredividedindifferentgroups.Itismandatorythattheefficiencyandthecapacityofeachenergyproductionunitisdefined.(LundH.A.,2014)TheefficienciesusedinthisprojectwereobtainedfromtheSTRATEGOEnergyPLANmodelforRomania.Also,inthisstep,theinstalledcapacityofeachheatgenerationgroupandtheirannualproductionisspecified,whileadistributiondatasetneedstobeselected.FortheRESusedforheatingpurposessuchasthermalplants,additionalinputsuchasdistributioncurvesfortheyearlycalculationoftheelectricityand/orheatisneeded.Thefueltypesandthefuelconsumptionarealsorequired.Iftheanalysisincludestheeconomicassessment,thepriceofthefuelhastobedefinedtogetherwiththetaxesandtheoperationandmaintenancecosts.(LundH.A.,2014)Inthispaper,thedatawasmainlycollectedfromtheCluj-NapocaMunicipality’swebsite.Asacomplementtothesupplyanddemand,distributioncurvescantobedefined.TheelectricitydemandcurveusedinthisprojectwasobtainedfromENTSO-E.(EuropeanNetworkofTransmissionSystemOperatorsforElectricity,2017)

22

• RegulationoftheEnergySupplySystemAtthispointtheuserhastoselectoneofthepredefinedgeneralstrategies:technicaloptimizationormarket-economicaloptimization,whichwillbelaterdescribedinthissection.Limitationandotheradditionaloptionsarealsodefinedatthispoint.(LundH.A.,2014)

• AlternativesThelaststepconsistsofacomparisonbetweenthepreviousdefinedreferencesystemandotheralternativesystems.Thesealternativesystemsaredefinedduringthisstep.Also,thestrategyand/orthetechnologycanbechangedduringthisstep.(LundH.A.,2014)Inthisproject,thetechnologieswillbechangedbycreatingthreenewscenariosthatwillbelatercomparedtothereferencesysteminordertoanalyzethefeasibilityandtheconsequencesofanewenergysystemforthecityofCluj-Napoca.Asmentionedbefore,thethirdstepoftheanalysis-RegulationoftheEnergySupplySystem-requirestheselectionofoneofthepredefinedgeneralstrategies:technicaloptimizationstrategyormarket-economicoptimization.Thegoalofthefirstoptimizationstrategy–technicalstrategy–istocutdownthefuelconsumptionandtolowerboththeexcesselectricityproductionandtheexportsofelectricity.Mainly,theexcessenergyisstoredforlateruseandtheexportsarestartedonlywhenthereisnootherusetheelectricity.Theenergysource,energydemands,productioncapacityandefficiencyoftheplantsarerequiredandtheresultsincludetheannualenergyproduction,fuelconsumption,importsandexportsandCO2emissions.(LundH.B.,2014)Furthermore,thisstrategyisalsodividedintotwootherstrategies.Inthefirstone,onlytheheatdemandiscovered.ForthecentralizedheatpowersupplysystemswithCHPs,theproductionunitsareprioritizedasitfollows:solarthermal,industrialCHP,CHPunits,heatpumps,andpeakloadboilers.Inthesecondstrategy,boththeelectricityandtheheatdemandarecovered.TheelectricityproductiondecreasesbecausetheCHPproductionisreduced,whiletheoverallelectricityconsumptionincreases,sincetheCHPheatproductionisreplacedwithheatpumpsandboilers,whichareusingelectricityfortheheatproduction.(LundH.A.,2014)Inthesecondstrategy–market-economicoptimization–itisassumedthateachplantoptimizesaccordingtothebusiness-economicprofits.Userinputsareusedtodeterminethemarginalproductioncostsoftheelectricityproductionunitsandthemarketprices,dependingontheimportsandexportsofelectricity.(LundH.B.,2014)AnotherfeatureofEnergyPlanisthepossibilityofcreatingafeasibilitystudyofacertainenergysystem.Theanalysiswillcalculatethesocio-economicconsequencesoftheproductionbasedontheinvestmentcosts,fixedoperationalandmaintenancecosts,lifetimeofthetechnologiesandtheinterestrate.Thedetailedresultswillshowthecosts,overaoneyeartimeperiod.Theywillbedividedinto6categories:fuel

23

costs,investmentcosts,electricityexchangecosts,fixedoperationalcosts,variableoperationalcostsandifthereareanyCO2payments,thesewillbeincludedtoo.(LundH.B.,2014)Lastly,thecostsdatahavetobeinputtedintheEnergyPLAN.CostsoftheenergysystemsarecalculatedinEnergyPLANbasedonthediscountrateanddatainsertedbytheuser.Thecostsaredividedintofourcategories:fuel,operation,investmentandadditionalcosts.Fuelcostsareusedwhenthemarginalproductionscostsarecalculated,aswellasinthefeasibilitystudyconductedattheendoftheenergysystemanalysis.Thevariableoperationalandthemaintenancecostscanbedefinedintheoperationcategory,whereastheunitprices,lifetimesandfixedoperationandmaintenancecostscanbespecifiedintheinvestmentcostscategory.Thelastcategoryincludesinvestmentsthatarenotdirectlyconnectedtotheproductionunits.(LundH.B.,2014)ThestandardEnergyPLANdiscountrateof3%andthestandardcostdataofEnergyPLANlibraryhavebeenusedinthisproject.ThecostsaredefinedbasedontheDanishcontextandinthisproject,itisassumedthatthecostsdatacanbeappliedforRomaniaaswell.3.3 Summaryofthetheoriesandmethodschapter

Theabovechapteraimedtopresentallthetheoriesandmethodsusedinthisproject,whichrepresenttheunderstructureoftheproject.Eachtheoryandmethodisfollowedbyadescription.Thefirstphaseoftheprojectconsistsofbackgroundinformationconsistingofdatathatwasgatheredbyliteraturestudy.ThestudycaseapproachaimstoinvestigatethespecificsituationoftheDHsystemofCluj-Napoca,byfacilitatingtheunderstandingoftheresearchproblem.Lastly,theEnergyPLANtoolispresented,inordertosimulatethereferencescenariooftheDHsystemofCluj-Napoca.TwonewalternativescenarioswillbecreatedusingtheEnergyPLANtool,inordertoevaluatethemostcost-effectivesolution.

24

4 BackgroundInformationThischapterpresentstheproject'sanalysisframe,backgroundinformationregardingtheactualheatingsectorofCluj-Napocaand,finally,adescriptionandrelatedplanningconsiderationsofothertechnologiesandRESswhichcouldimprovethedistrictheatingsystemofCluj-Napoca.4.1 Analysisframe

Theproject’smainfocusistheDHsystemoftheCluj-Napoca,acitylocatedintheNorth-WestregionofRomania.ThelocationofCluj-Napocacitycanbeseenbelowonanationalscale.(GoogleMaps,2017)

Figure4.1:LocationofCluj-Napocainnationalcontext(GoogleMaps,2017)

25

Cluj-Napocaisthe2ndcityaspopulationinRomania(RomanianNationalInstituteofStatistics,2015).4.2 TheHeatingSectorofCluj-Napoca(TheReferenceScenarioBasis)

TheheatingsectorofCluj-Napocaisdividedintwocategories:

• CentralizedHeatPowerSupplySystem(DHS),wheretheheatgeneration,transportanddistribution,andthesupplytoendusersisachievedinacentralizedmanner.

• DecentralizedSystemofthermalenergygenerationandsupply,whichisalso

dividedintotwoothercategories:o ConsumerswithoutaccesstotheDHSinareaswheredistrictheating

systemshavenotbeendeveloped,usingvariousIMHUs;o ConsumersoptedoutfromtheDHS,nowusingvariousIMHUs.

(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)4.2.1 CurrentcostsofheatinginCluj-Napoca,2017

CurrentcostofheatinginCluj-Napoca,2017CurrentcostofheatinginDHS CurrentcostofheatingwithIMHUs 1Gcal=1,29MWhx32,40EuroPricefor1Gcal:47,93Euro Pricefor1Gcal=42,14Euro

Table4.1:CurrentcostofheatinginCluj-Napoca,2017

AsshowninTable4.1,thepricefor1GcalusingaIMHUis42,14Euro,comparingto47,93Eurofor1GcalintheDHSofCluj-Napoca.However,inadditiontothat,customersoptingforIMHUsarealsoobligatedtopayelectricalpower,periodictechnicalchecksandISCIRchecks(RomanianStateInspectionforBoilerControl,PressureVesselsandLiftingInstallations).Thelocalheatingbillingpricetothepopulationis47,93Euro/Gcalbecausethedifferencebetweenthefinalpriceofthermalenergyandthelocalheatingbillingprice,whichis48,03Euro,isbornebytheLocalCouncilbudget.Ifthepricewouldn’tbebornebytheLocalCouncilbudget,thepriceofthermalenergyinDHSinCluj-Napocawouldbe89,10Euro/Gcal.(MunicipalityofCluj-Napoca,2014)

26

TheenergyconversionratesusedinthecalculationwereprovidedbyRATCJ.Transformationratiois1Gcal=1,163MWh.IMHUaverageefficiencyis90%(1.29MWhgasfor1Gcalproduced)(RATCJ,Seen2017)ThepriceofthegasusedinthecalculationsisthepricedisplayedontheE.ONGazRomania’swebsite,whichisthegasdistributioncompanyofClujCounty.(1MWh=148,75RON=32.40Euro)(E.ONEnergyRomania,2017)Theexchangerate-1Euro=4.59RON-wasofferedbytheNationalBankofRomaniaonSeptember8th,2017.RomanianVAT19%wasincludedinthePrice.(NationalBankofRomania,2017)4.2.2 TheCentralizedHeatPowerSupplySystem(DHS)ofCluj-Napoca

Incomparisonto1996,whenthetotalthermalenergydistributedbyDHSwas1.2millionGcal,theproductiondecreasedapproximately4timesby2013whentheamountofthermalenergydistributedthoughDHSwasonly260,000Gcal(MinistryofRegionalDevelopmentandPublicAdministration,2013),andonly26%ofthetotalbuildingsinCluj-NapocawerestillconnectedtotheDHS.(MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania,2015)4.2.2.1 Production,transportanddistributionofthethermalenergyinDHSCluj-

NapocaThethermalenergyproductioninDHSinCluj-Napocaisachievedby:

• 76thermalpowerplants,equippedwithapproximately300boilersofvarioustypesthatusenaturalgasasfuelandhaveatotalinstalledthermaloutputofabout400MW(Thethermalagentusedishotwaterwithparameters90/70degreesCelsius);

• 1districtheatingplantwith143MWinstalledthermaloutputthatproduces

hotwaterwithparametersof110/60degreesCelsius.Theplantconsistsofanoldhotwaterboilerof116MWtplus3newthermalmotorswithacapacityof1,5MWeeachand2newhotwaterboilers(14+8MWt).

• 2interconnectedCHPswithatotalinstalledcapacityof13MW;

Summedup,thetotalinstalledcapacityinCluj-Napocais556MW.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)ThetwoCHPswerebuiltin1998and2001respectively.ThefirstCHPconsistsof2hotwaterboilersof1160kWeachandanaturalgascogenerationunitequippedwitha

27

thermalmotorof210kWelectricand350kWthermal.ThesecondCHPisconnectedtotheoldCHPandiscomposedof3boilerswithacapacityof3300kWeachand2naturalgascogenerationunitsof300kWand450kWeach.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)CogenerationofCombinedHeatandPower(CHP)isaprocessofsimultaneousproductionofthermalandelectricalenergywiththesameinstallation.Cogenerationplantshaveexperiencedatremendousdevelopmentoverthelasttwodecadesduetoexistingenergycrises.Theoperatingprincipleistheconversionofthemechanicalworkproducedbytheengineintothermalandelectricenergy.Heatobtainedduringengineoperationisdeliveredtotheprimaryagentoftheboilerthroughheatexchangers,thusachievingthermalenergy.Also,apowergeneratoriscoupledtothemotorshaft,thatproduceselectricpower.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)Cogenerationplantsaredimensionedinrelationtotheheatdemand,theelectricitybeinga"secondary"product,varyingfromtheClassicalInstallations-ThermalPowerPlants–arethereforesizedfortheelectricitydemand,thethermalenergybeinginthiscasethe"secondary"product.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)Theimplementationofthecogenerationsystempresentsanumberofadvantages,amongwhichthemostimportantare:-puttingintopracticethemostmodernenergysolutions-rationaluseoffuel-lowproductionandexploitationcosts-usingelectricityforownneedsandpumpingthesurplusintothenationalenergysystem,thusbecomingelectricityproducers,whichleadstoamoreefficientinvestment.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)TransportanddistributionofthermalenergyinDHSinCluj-Napocaconsistsof:

• 16.5kmsofthermalenergytransportnetworks(hotwaternetwork);

• 128kmsofdistributionnetworksofthermalenergy,outofwhich,94kmsnetworkofthermalpowerstationstoconsumers,31kmsnetworkfromthethermalpointsconnectedtothedistrictnetworkplanttotheconsumersand3kmsnetworkfromthermalpointsconnectedtothermalpowerplantstoconsumers.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)

4.2.3 DecentralizedSystemofthermalenergyofCluj-Napoca

Inthelast15years,inCluj-Napoca,likeinotherplacesinRomania,thenumberofapartmentsswitchingfromDHStoIMHUs,hasincreasedexponentially.(Ministryof

28

RegionalDevelopmentandPublicAdministration,2013)Themainreasonsformakingthisdecisionarelistedbelow:

• Thewayofchargingcustomers.Morespecific,theheatbillswerechargedbythesizeoftheirdwellingandnotbythequantityofheatconsumed.Thehotwaterbillswereemittedaccordingtothenumberofpeoplelivinginthedwellingandnotbythequantityofhotwaterconsumed.Evenwhentheywerenotathome,theyhadtopaybillsforheatandhotwater.Now,theproblemwassolvedsinceRATCJhasintroducedindividualbilling.(MinistryofRegionalDevelopmentandPublicAdministration,2013)

• Networktransmissionanddistributionlosses,whichwerealsochargedmostly

tothecustomers.(accountingfor27.4%in2011-2012).(MinistryofRegionalDevelopmentandPublicAdministration,2013)

• Thepoorqualityofthenetworkandthepoorqualityoftheservices.(Ministry

ofRegionalDevelopmentandPublicAdministration,2013)

• ThedecreasednumberofcustomersconnectedtoDHSdeterminedalsothereducedproductionofheatdelivered.DHSequipmenthasbeenproducedtocoverahighlevelofproduction,andwhentheproductionvolumehasbeenreduced,theefficiencyofthisequipmenthasalsodecreased,whichhasincreasedthespecificconsumptionofnaturalgasandelectricity.Bymaintainingthesefixedcosts,thishasledtoincreasedproductioncostsand,andtherefore,totheriseinthepriceofthermalenergy.(Benga,Fowler,Haiduc,&Nastase,2004)

• TheIMHUproducershaveadvertisedtheIMHUs,presentingonlythe

advantages,notthedisadvantagesoftheIMHUs.(Benga,Fowler,Haiduc,&Nastase,2004)

Moreover,intheearly2000s,Hungaryrestrictedthemicro-heatingunitsonitsterritory,whichledtoanincredibleincreaseintheimportsofsecond-handgasboilersinRomania.Besidesthat,newgasboilerscouldbefoundataveryreasonablepriceinRomaniaatthattime,andthegasboilerproducerswereadvertisingtheminRomaniaveryintense,presentingonlytheadvantages.(MinistryofRegionalDevelopmentandPublicAdministration,2013)Thus,thegasboilersbecamethefirstchoiceofpeoplewhenswitchingfromtheDHStoindividualheatingsystems.4.2.3.1 CondensingGasBoilersasanIndividualHeatingSolutionCondensinggasboilersarewaterheatersfueledbygas,andareillustratedintheFigure4.2below.Thewaterflowsthroughajacketwhichsurroundsthecombustion

29

chamberwherethefuelisburned.Thus,theenergygeneratedbythecombustionisutilizedtoheatthewater.Comparedtotheconventionalgasboiler,whereenergyiswastedbyventingintotheatmospheretheresultingfluegases,theCGBareutilizingtheheatcontainedbythefluegasesaswell,transformingitintoheatenergyandfeedingitintotheheatingcircuit.Beforepassingintotheprimaryheatexchanger,thecoldheatingwaterispreheatedbytheenergyrecoveredbythesecondaryheatexchangerwherethewatervaporcontainedinfluegasesisdeliberatelycondensed,sohencethenameoftheCGB.(Group-Vaillant,2017)AnextrapipetodrainawaythecondensateliquidisrequiredforCGBandinsomecaseswherethisisfittedexternally,someproblemsmayappearinthewintertimewhenitfreezesduringverylowtemperaturetimeswhenthecoilersareshuttingdownforprotection.(BaxiHeatingUKLimited,2017;BaxiHeatingUKLimited,2017)Conventionalgasboilers,illustratedintheFigure4.2,usethesameprincipleasCondensinggasboilers(CGB)toheatwaterbyburninggasasfuel,withtheonlydifferencethattheenergycontainedbythefluegasesisnotharvestedandisventedintotheatmosphere,thus,theefficiencyisapproximately30%lower.(Group-Vaillant,2017)

Figure4.2:Simplifieddiagramofacondensingboilervs.anon-condensinggasboiler(TheGreenHome,2013)

30

4.2.3.2 AdvantagesofusinghouseholdgasboilersWhenitcomestousingahouseholdgasboiler,thereareveryfewadvantagesandthosearepresentedbelow.TheCGBhaveanoptimumenergyefficiencyofupto98%-whichmeansfinancialbenefitsfortheapartmentowners.(Group-Vaillant,2017)Condensingboilersarefullyroomsealedandtakeairindirectlyfromtheoutsidethroughthechimneys,comparingtotheconventionalgasboilers.Agoodheatingcontrolcanleadtoanoverallhigher-efficiencyoftheCGBsifthefollowingareassociatedwiththeCGB:Electronictimerorprogrammerthatallowsseparateswitchingofheatingandhotwater,aroomthermostat,thermostaticradiatorcontrolvalves(TRVs),separatethermostaticcontrolonthehotwatersystem.(BaxiHeatingUKLimited,2017)4.2.3.3 Disadvantagesofusinghouseholdgasboilers

Figure 4.3: Chimneys from individual micro-heating units, protruding through outerwalls(MinistryofRegionalDevelopmentandPublicAdministration,2013)

Thedisadvantagesofusinghouseholdgasboilersarecountless.Themostimportantonesarepresentedbelow,inthefollowingparagraphs.InRomania,theexhaustingofthefluegasesofthehouseholdgasboilersiscarriedoutbypipeswhichareprotrudingtheexteriorwallsoftheapartmentblocks.AsdepictedinFigure4.3,thesebasketsarelocatednearthewindowsandbalconiesofneighborsorclosetootheropeningsintheblocksofflatsandthus,allpollutantscontainedbythefluegasesarebroughtintotherespiratoryareaofpeoplelivinginthatbuilding.Thesefluegasespipesarecomparablewiththegasdischargepipeofanautomobileandtheycontaindangerouslife-threateningcompoundssuchas:Carbondioxide,

31

nitrogenoxides,polyaromatichydrocarbons,otherpolyaromaticcompounds,volatileorganiccompounds,soot,particulatematterbelow10micrometers(PM10,PM2,5,PM1).(Benga,Fowler,Haiduc,&Nastase,2004)Sincenowhereintheworld,riskofgasinstallationis0-degreerisk,thedangerofanexplosionwillalwaysbepresentandthatleadstoaseriesofquestions,suchas:Areapartmentsandapartmentblocksequippedwithfireprotectionsystems?Inthecaseofearthquakes,whatisthebehavioroftheseIMHUs?(Benga,Fowler,Haiduc,&Nastase,2004)Also,thegasesdischargedbyIMHUsdamagetheblockfacademortar,inadditiontotheaestheticpollutioncreatedbythegasevacuationpipes.(Benga,Fowler,Haiduc,&Nastase,2004)TheincreaseinthenumberofIMHUshasalsoledtoanincreaseingasimportsthathavecreatedunfavorableconsequencesforRomania'sbudget.(Benga,Fowler,Haiduc,&Nastase,2004)BasedonthefactthatonlysomeoftheneighborsaredisconnectedfromtheDHSandothersarenot,andbecausesomeneighborsarepollutedbyothers,bythefluegaseseliminatedbytheIMHUsofsometenants,socialconvulsionscanbecreated.(Benga,Fowler,Haiduc,&Nastase,2004)4.3 DifferentRESassolutionsfortheDistrictHeatingSystemofCluj-

Napoca(analternativescenariobasisforDHSofCluj-Napoca)

Asiswellknown,theworldwideDHSarecurrentlyusingmainlyfossilfuelssuchascoalandgas.TheDHSofCluj-Napocamakesnoexceptiontothat,either.CombiningDHSwithREScanbringvariousbenefits,includingincreasedenergysecurity,improvedsystemefficiency,improvedlocalairqualityandhealth,andreducedclimateimpactbyreducingemissions.ThemostimportantRESthatcouldimprovetheDHSsaresolidbiofuels,solarenergyandgeothermalenergy.(InternationalRenewableEnergyAgency,2017)TherenewableenergyresourcesfoundinRomaniaaredistributedthroughoutthewholecountryandtheycanbefoundinvariousforms,suchasbiomass,hydropower,geothermalpotential,wind,solarandphotovoltaic.(MinistryofEnergy-Romania,2016)TheRESinRomaniahavebeenincreasinglypromotedlately,butthemainfocusofthepromotionwastheproductionofelectricity,especiallythroughlargeprojects.Thispromotionschemeimmediatelyrevealeditsshortcomingsinthefactthattheeconomiceffectoftheselargeprojectswaslow.Theseprojectswereimplementedbyforeigninvestorswhocreatedfewjobopportunitiesforthelocals,whiletheprofithadbeenexternalized.Thebiggerproblem,however,wasthatthethermalenergyproductionsectorhasbeenneglected,eventhoughitrepresentsoveronethirdoftotalfinalenergyconsumptioninRomania.IfthesameeffortshadbeenmadeinthecaseofsustainingthecapitalizingoftheRESpotentialthroughsmallormediumpowerprojects,itwouldprobablyhaveresultedinamorepositivesocialimpactatthelocal

32

level.Thus,jobscouldhavebeencreated,gainscouldhavebeenmadeincombatingpollution,andtheeconomiceffectsoftheseprojectscouldhavegeneratedlocalbenefits.(CenterforRegionalDevelopmentAgency-Romania,2014)TheannualenergypotentialofRomania'sRESispresentedintheTable4.1below:Renewableenergysource Theannualenergy

potentialEquivalenteconomicenergy(Millionstoe)

Fieldofapplication

Solarenergy:thermal 60x10^6GJ 1,423 ThermalEnergySolarenergy:photovoltaic 1.200GWh 0,132 ElectricityWindPower 23.000GWh 1,978 ElectricityHydroEnergy 40.000GWh 3,440 ElectricityBiomass 318x10^6GJ 7,597 ThermalEnergyGeothermalEnergy 7x10^6GJ 0,167 ThermalEnergyTable 4.2: The annual energy potential of RES in Romania (Center for RegionalDevelopmentAgency-Romania,2014)

Table4.2itillustratesthattherenewableenergyresourcesthatcanbemainlyusedinRomaniaintheproductionofthermalenergyare:

• Biomass;• Geothermalsources;• SolarEnergy.

BecausenogeothermalsourcesarepresentanywherenearorinthecityofCluj-Napoca,theywillnotbediscussedinthissection.Next,biomassandsolarenergywillbepresentedasalternativesourcesofenergyfortheDHSofCluj-Napoca.4.3.1.1 RenewableEnergySource:BiomassOneofthestrategy'sprioritiesin“TheEnergyStrategyofRomania”,publishedin2017,isincreasingthebiomassshareintheRomanianenergymix.Themostbiomasscouldbeusedintheheatingsector.ItisalsoestimatedthatbiomasscouldbecomeRomania'smainenergyproductbytheyear2050whentotalbiomassproductionintendedforenergyproductioninthecountrycouldincreaseto184TWh.Currently,thetotalbiomassproductioninRomaniain2015wasis47TWh.(MinistryofEnergy-Romania,2016)ThefinalenergyconsumptionexpectedbytheMinistryofEnergyinRomaniafor2020inRomaniaisapproximately350TWh.ThetargetfortheshareofenergyfromrenewablesourcesinRomania'sgrossenergyconsumptionin2020is24%.AsmallcalculationshowsthatbymultiplyingthetotalenergyconsumptionofRomaniawiththe2020target,theamountofenergyproducedfromrenewablesourcescorrespondingtothe2020targetinRomaniaisapproximately84TWh.Itcanbe

33

observedfromtheabovedatapresentedinTable4.1thatifthewholeamountofbiomassinRomaniawasusedenergetically,onlythebiomassitselfcouldmeetthe2020target,since7597Mtoeequals88.35TWh.(CenterforRegionalDevelopmentAgency-Romania,2014)InthebelowFigure4.4thetotalannualpotentialuseofwoodbiomassandplantbiomassinRomania(318.000TJ)ispresented.ItcanbeseenthatbiomassinClujCountyhasapotentialof513,3TJ,outofwhichwoodbiomass29,98TJandplantbiomass483,32TJ.(MinistryofRegionalDevelopmentandPublicAdministration,2013)

Figure 4.4: Total annual biomass potential in Romania (Ministry of RegionalDevelopmentandPublicAdministration,2013)

4.3.1.2 RenewableEnergySource:SolarThermalEnergySolarthermaltechnologycollectssolarenergyandgeneratesenvironmentallyfriendlythermalenergyand/orelectricity.Theuseofthistechnologyistogeneratehotwaterforuseinhomes,buildings,orswimmingpools,heattheinsideofhomes,greenhouses,andotherbuildingsandheatfluidstohightemperaturesinsolarthermal

34

powerplants.Themainlimitationofthetechnologyisthattheamountofsolarenergyvariesdependingonlocation,timeofday,seasonoftheyear,andweatherconditions.Invalidsourcespecified.SolarDistrictHeating(SDH)technologyisakeystepinfightingclimatechangenowadays.ItsmainadvantageisthatitcanbeusedanywhereinEurope.SDHplantsconsistoflargefieldsofsolarthermalcollectorswhere,thesolarthermalenergyisharvestedforproducingsolarheatandlatersupplyingitintodistrictheatingnetworks.Thetechnologycanbeusedtogetherwithothertechnologiesfortheheatproductionor/andwithlargeheatstorages.ThemostimportantadvantagesofSDHarethatitisanemission-freetechnology,itisavailableeverywhereinEuropeandthecostsarestableandknownfortheentirelifetimeofthetechnology.Attheendof2015,inEurope252solarthermalplantswereoperatingwithmorethan350kWthermalnominalpower.(SolitesGermany,2017)

Figure4.5:Jelling,DanishdistrictheatingplantInvalidsourcespecified.

SincetheSDHtechnologyiscurrentlybeingusedwithfeasibleheatingcostsinSwedenandDenmark(SolitesGermany,2017),wheretheGHIhasanannualaverageof1000kWh/m2/yearorless,itcanbeconcludedthatSDHtechnologyfeasibilityisworthbeinganalyzedalsoinRomania,wheretheannualaverageofGHIis1275kWh/m2/year.Solarthermaltechnologiesareusedalsoforindividualheating.Atypicalsolarheatingsystemconsistsofacollectorandafluidtoabsorbsolarradiation,wheretheheatabsorbingliquidiscirculatedbypumpsthroughcollectorandthentransferredtoa

35

roomwheretheheatisneededortoaheatstoragesystemandusedlater.Invalidsourcespecified.

Figure 4.6: Typical Sun Collector used in Individual Heating Sector Invalid sourcespecified.

InthefollowingFigure4.7theGlobalHorizontalIrradiation(GHI)inRomaniaispresented.TheGHIisthetotalamountofsolarradiationincidentreceivedfromabovebyasurfacehorizontaltotheground.ThedatapresentedwerecalculatedbasedontheaverageannualsumGHIfrom1994to2013.ThereadercannoticethatmorethanhalfoftheClujcountyareabenefitsfromanaverageannualenergyflowof1275kWh/m2.(Solargis,2017)

36

Figure4.7:AnnualGlobalHorizontalIrradiation(GHI)inRomania(SolargisMaps,2017)

4.3.2 4thGenerationDistrictHeating(4GDH)(analternativescenariobasisforDHS

ofCluj-Napoca)

Motivatedbytheglobalwarming,theworldisfastmovingtowardsatransitionoftheenergysystemswheretheprimaryenergysupplyhasshiftedtorenewableenergysources.Inthistransition,thedistrictheatinghasanimportantkeyroletoplay,andinordertoplaysucharole,theactualgenerationofdistrictheatingtechnologieswillrequirefurtherdevelopmentintoanewgeneration,whichwilldecreasegridlossesandwillincreasetheefficienciesoflow-temperatureproductionunitsinthesystem.(Lund,etal.,2014)Thissectionwillpresentanewandsustainablegenerationofdistrictheatingsystems,theirimplicationsandthechangesneededinordertotransformactualDHSofCluj-Napocaintosuchasystem.Overtime,threegenerationsofDHhavebeendifferentiated.ThemainmotivationsofthesefirstthreegenerationsofDHweretheconvenience,lowcostsandsecurityofsupply.Abriefdescriptionofthetechnologicaldifferencesusedbythefirstthreegenerationsispresentedbelow.ThethermalagentusedinthefirstgenerationofDHSwasthesteam.Atypicalsystemwasconsistingofsteampipesinconcreteducts,steam

37

traps,andcompensators.Thistechnologyhadseveraldisadvantagessuchasheatlossesandlowenergyefficiency.Itwasusedupto1930whenthesecondgenerationwasintroduced.OncewiththeintroductionofthesecondgenerationofDHS,thethermalagentwaschangedtopressurizedboilinghotwater.AtypicalsystemofthesecondgenerationofDHSwouldconsistofwaterpipesinconcreteducts,largetube-and-shellheatexchangers,andmaterial-intensive,large,andheavyvalves.ThethirdgenerationofDHShasgrowninthe1980sandhasbeenusedworldwideeversince.Thethermalagentispressurizedhotwater,butwithatemperatureunder100degreesCelsius.Thecomponentsofatypicalsystemhavebeenchangedtoprefabricated,pre-insulatedpipesdirectlyburiedintotheground,improvedstainlesssteelheatexchangersandmaterialleancomponents.Alongwiththisgenerationrenewableenergysourcessuchassolarandgeothermalheat,andothercheaperfuelsthatcouldfoundlocally,suchascoal,biomassandwastewereintroducedintheDH.(Lund,etal.,2014)InthedevelopmentofthesegenerationsofDHSovertime,thereisatendencyofusinglowertemperaturesininstallations.Thecomponentsusedareleanmaterialandtheirprefabricationhasreducedthenumberofworkersatconstructionsites.Thesetrendshavebuiltthebasisof4thGenerationDistrictHeatingTechnologiesandSystems(4GDH).Thenew4GDHdiffersfromthefirstthreegenerationsinthatitsmaingoalistotransformthecurrentenergysystemintoasustainableone.Changewillnotbeeasyandwillencountermanydifficultiesalongtheway.ItwillinvolvetheintegrationofnewgenerationsofDHintosmartenergysystems(),andthus,itwillbenecessarytocreateintegratedsmartelectricity,gasandthermalgrids.(Lund,etal.,2014)Asmartgridisanautomatednetworkconsistingofcontrolsandcomputerswhichcanrespondandreacttofastchangesintheusageofthenetworkandthus,increasingitsefficiency.(U.S.DepartmentofEnergy,2017)IntegratingthenewgenerationofDHintosmartenergysystemswillmakeenergysystemsmoreefficientbyusingvariousindustrialsurplusheatsources,integratinggeothermalandsolarthermalheatintoDHSandusingCHPalongwiththeuseofheatfromwaste-to-energy.(Lund,etal.,2014)Themethods,techniquesandtechnologieswhicharemakingthe4GDHanimportantpillarinthefuturesustainableenergysystemswillbepresentednext.

• Sustainablebuildingshavetobedevelopedwherelow-temperaturedistrictheatingforspaceheatingandhotwatercouldbesupplied.

AsustainablebuildingwillnotproduceanyCO2emissionseithercauseddirectlybythebuilding,orindirectlybysuppliersofenergytothebuilding.(Srinivas,2017)Inordertoaccomplishthis,integratedbuildingdesignfeatureshavetobeused,asdescribedinthefollowingparagraphs.Firstofall,sincetheenergyneededduringsummerneedstobeproportionaltotheoneduringwinter,theaimistoreducethetotalenergyuseforspaceheatinginthenewestablishmentssothatitmatchestheenergyusefordomestichotwaterheating.Thatinturnwouldlowertheenergylevelandkeepitataconstantlevel,allowingthe

38

implementationofaheatrecyclingsystemorRES,thatcouldfinallyreducetheoverallcosts.(Lund,etal.,2014)Secondly,takingintoaccounttheexistingbuildings,othersolutionscouldbeimplemented.Morebuildingscouldbeconnectedtothesamegrid,iftheyweretobeinsulated,sinceitscapacityandtheproductionunitswouldallowthat.Anoptiontobetakenintoconsiderationisusinglow-temperaturespaceheatingsystems(e.g.,floorheating,wallheating).Onaverage,thedifferencebetweenthewatertemperatureandroomtemperature,doesn’thavetobeveryaccentuated.Forexample,temperaturesof40Ccouldbeenough.Furthermore,intelligentcontroloflow-temperaturedomestichotwater(DHW)supplysystemscouldbeimplementedinordertoheatthebuildings.Usingthiskindofsystemswouldallowcalculatingandpredictingtheheatneededforeachandeveryroom,basedontheweatherforecasts.Theconcretedeckanditsthermalcapacityinsuchasystemwouldhavetoworkbeforeanexcesssolargain.(Lund,etal.,2014)

• NetworkswithlowgridlossesandheatdistributionIfthenetworkiscomposedofheating/coolingproductionunits(e.g.,individualcontributions),smartthermalgridscanbeused.Theirmostimportantfeatureswillbedescribedbelow.Firstly,ifnormaldistributionstemperaturesaverage50Cforthesupplypipesand20Cforthereturnpipes,peryear,theoverallnetworktemperaturewilldecrease.Secondly,inordertoreducetheheatlosses,smallerpipescanbeused.Thiswouldn’tbepossibleifthepeakflowratedidn’tdecrease.Furthermore,intelligentcontrolofthenetworksisrecommended,withdecentralisedsystems.Also,meteringtheirperformanceisneeded.Forexample,meteringthesaleofsurplusheattothegridfromthesolarthermalofthebuilding,couldbeincluded.(Lund,etal.,2014)

• Low-temperaturesourcesandtheirpotentialforrenewableandrecycledheatThesmartthermalgridsaimbothforamoreefficientutilisationofthelow-temperaturesourcesasrenewableandrecycledheatsystems,aswellasCHPandlarge-scalepumpsincreasingtheirpotential.Thefollowingaspectsareofimportance:Firstofall,wasteincinerationandheatfromCHPcanbeused.Beingsuppliedthroughoutthewholeyear,wasteincineration,asadistrictheatingsystemoption,isveryuseful.Also,wastefromindustrialprocessesandcommercialbuildingscanbeusedinahigherproportioninlow-temperaturenetworks.Secondly,makinguseofboththeabsorptionheatpumpsusedinthegeothermalheatsystemsaswellasthesteamproductioncouldmaketheoverallprocessmoreefficient.Anotherwayinwhichthedistrictheatingsystemcouldbeimprovedisusingtheseasonalstorageofthecentral/localsolarheatingplantstosupplementtheheatsupply.Otherbenefitsofthesenetworksincludeincreaseduseofgeothermalandindustrialheatsources,increasedperformanceintheheatpumpsandbetterheatrecoveryratesfromgascondensation,increasedperformanceofthecentralsolarplants,aswellasanincreaseinthermalenergystorage.(Lund,etal.,2014)

39

• TheintegrationoftheDHSinthesmartenergysystemsisessentialAchallengethatcanoccurinthedesignofthefutureenergysystems,isintegratingonalarge-scalethefluctuatingpowerinthenewenergysystemsinanefficientway.ByfindingsolutionsonhowtointegratetheRESwithenergyconservationandsystemefficiencyimprovementsandcreatingthemostoptimalenergysystems,animportantsteptowardsfuturerenewablenon-fossilenergysystemswillbeachieved.IthasbeenshownmanytimesthattheDHScanimprovetheoverallefficiencyofenergysystemsbyusingCHPproductionandotherrenewableresourcessuchaslarge-scalesolarthermal.Also,theDHScanintegratethelargeheatpumps,geothermalheat,industrialsurplusheat,andwasteincinerationtoincreasetheoverallefficiency.InordertointegratetheDHSinthesmartenergysystemsinafeasibleway,thefollowingelementsneedtobepartofthedevelopment.Theenergysystemshouldbecomemoreflexiblesothatchangesinproductionanddemandcanbebalancedoutquickly,byinvolvingflexibletechnologiesingridstabilizationsuchasCHP,heatpumps,andtheelectrificationoftransport.Thiswillreduceimbalancesintheelectricitysystemandthegridstabilitywillbemaintained.ThatwillbeofgreatimportancesincetheshareofenergyfromRESisgrowingdaybyday.ForabetterintegrationoftheRES,large-scaleheatpumpsandheatstoragescapacitiesshouldbeintegratedintheCHPsystems.Groundsourceheatpumpsshouldalsouseindividualheatingwhentheenergydensityinthebuildingstockislow.(Lund,etal.,2014)

• Theplanning,costandmotivationstructuresneedtobeimplemented.Asmentionedbefore,4GDHsystemsrepresentagreatpartofthetransformationofthecurrentenergysystemsintosustainableenergysystems.AneconomicredistributionmustbemadebyswitchingfromnuclearandfossilfuelbasedenergysystemstoREsystemsandbyinvestinginenergyconservationinsteadofconstructionoflargepowerplants.Suitableplanningwillrequiretoolsbasedongeographicalinformationsystem(GIS)andadvancedenergysystemanalysis.TherewillbedifferentapproachestoimplementthenewDHtechnologiesintothefutureenergysystem,basedoneachcountryinstitutionalframeworkandregulations,buttheprimarymotivationinsocietywillbethetransformationofthecurrentenergysystemsintofuturesustainableenergysystems.Themostimportantchallengeswhichwillbefacedbythechangeare:decisionofwheretheDHSshouldbeplacedornot,thedecisiononthecapacityoftheDHSversustheenergyconservation,andthemotivationofintegratingofRESandotherpartsoftheoverallenergysystem.Achangeinthetariffspoliciesisalsorequiredalongwiththe4GDH,wherethetariffsandcostprinciplesarebasedonlong-termmarginalcosts.(Lund,etal.,2014)

40

5 TechnicalAnalysisThischaptercontainsthemodelling,resultsandoutputsof4scenarioscreatedinEnergyPLAN.Firstly,areferencescenariohasbeencreated,basedondatafrom2012,wheretheenergysystemofCluj-Napocaisdefined.Next,twoalternativeenergyscenarioshavebeencreatedandcomparedwiththereferencescenario.ThepurposeofthecomparisonbetweenthealternativescenariosandthereferencescenariowastofindthemostsuitablesolutiontoreducetheCO2emissions,increasetheenergyefficiencyandtheshareofRESintheenergysystem.Inotherwords,thecomparisonhasbeenmadewiththepurposeoffindingthemostfeasiblelong-termsolutionforthethermalenergysystemofCluj-Napoca.Theresultsarepresentedinthesecondpartofthischapter.Lastly,asensitivityanalysisispresentedtocomparethepricevariationdependingondifferentdiscountratesonthetechnologiesanddependingonthefuelprice.5.1 ScenariosOverview

SCENARIOS FUEL SHAREOFRESScenario1–ReferenceScenario NATURALGAS 0%Scenario2–Business-as-UsualScenario2050 NATURALGAS 0%Scenario3–BIO-SOL2050 BIOMASS,SOLARENERGY 100%Scenario4–BIO-SDH2050 BIOMASS,SOLARENERGY 100%

Table5.1:OverviewoftheScenarios

Theabovetablepresentsanoverviewofthescenarios,thefuelsandtheshareofRESusedineachofscenarios.ImagesduringthemodellinginEnergyPLANcanbeseenintheprint-outsinAppendix2B.5.1.1 ReferenceScenario

Inordertocreateamodelwhichreflectstherealityasbestaspossible,theyear2012hasbeenchosenasyearforthereferencescenariobecauseitcomprisesthemostcompletesetofdata.Thereferencescenariodescriptionisdividedinthreeparts:demand,supplyanddistributioncurves.EachpartcontainsadetaileddescriptionofdatausedinEnergyPLAN.

41

DemandSideDatausedinthedemandsideiscompiledintheTable5.2.ThedataregardingtheheatingsectorofCluj-NapocawasobtainedbyemailfromtheRomanianNationalInstituteofStatistics.ThedataincludeinformationregardinghowmanypeopleareconnectedtotheDHSofCluj-Napoca,howmanypeopleareusingindividualheatingsystemsandthefuelusedbyeachcategory.Itneedstobeemphasizethatonlynaturalgasisusedasafuelforthedistrictheatingproduction,whichisalsothemostcommonchoiceoffuelfortheIHS.ThedataregardingtheelectricityproductioninCluj-NapocawasgatheredfromCluj-NapocaMunicipality’swebsite.ThetotalelectricitydemandforCluj-Napocais540GWh.(LocalCouncilofCluj-Napoca,2013)ThetotalindividualheatdemandforRomaniawasgatheredfromtheSTRATEGOmodelforRomaniaandthenscaleddowntothepopulationofCluj-Napoca.TheirefficiencieswereusedalsofromtheSTRATEGOmodelforRomania.TotalheatdemanddataweregatheredfromareportmadebytheMinistryofRegionalDevelopmentandPublicAdministration.(MinistryofRegionalDevelopmentandPublicAdministration,2013)Lastly,hourlyheatdemandintheIHSanddistrictheatingwasobtainedfromtheSTRATEGOprojectforRomaniaandthenscaleddownbyusingtheratioofpopulation.(Connolly,Hansen,&Drysdale,2015)

Totalno.of

dwellingsinCluj-Napoca

DwellingsinCluj-NapocausingDHS

HeatDemandof

DHSofCluj-

Napoca

HeatDemandofIHSofCluj-

Napoca

ElectricityDemandin

Cluj-Napoca

No.ofdwellingsinCluj-NapocausingIHS

135419 39418 302.380MWh

1.070.789MWh

540.000MWh/annu

al

Individual

heatingusingGas

Individual

heatingusingSolidFuel

Individual

heatingusingOil

86100 408 228

Total:86.736

Table5.2DemandSideData

AspreviouslymentionedintheChapter4.2.3,itcanbeobservedthatGasBoilersarethemostcommonchoicewhenitcomestoindividualheatingsystems.

42

SupplySideOnthesupplyside,thedataregardingheatingproductionoftheDHSofCluj-NapocawasobtainedfromtheAutonomousDistrictHeatingCompanyofCluj-Napoca.Thedataincludescapacityofeachplantandthefuelusedbyeachofthem.(AutonomousDistrictHeatingCompanyCluj-Napoca,2017)TheefficienciesareobtainedfromtheSTRATEGOEnergyPLANmodelforRomania.(Connolly,Hansen,&Drysdale,2015).EverythingelseisusedasinthedefaultversionofEnergyPLAN.Electricitywithinthemunicipalterritoryismainlygeneratedbytwogas-operatedmunicipalcogenerationpowerplants(37.5GWh/a).Noelectricityisgeneratedfromhydropower,biomassorwindrenewablesources.DatawasgatheredfromCluj-NapocaMunicipality’swebsite.ThetotalelectricitydemandforCluj-Napocawas540GWhin2012.(LocalCouncilofCluj-Napoca,2013)Totalelectricitygenerationwithinthemunicipalterritory–2CHP

ThermalenergyproductioncapacityofCluj-NapocaDHS

2CHP 1DHPlant 76ThermalPowerPlants+300Boilers

13MWh 143MWh 400MWh

37500MWh/a Total:556MWhTable5.3SupplySideData

DistributionCurvesAsitwasalreadyexplainedinChapter3.3,distributioncurvesareusedintheEnergyPLANhourlybasedanalysis.Inthisprojecttwodistributioncurveshavebeenused,oneforelectricitydemandandoneforheatdemand.Figure5.1,presentsthedistributioncurveoftheelectricitydemandinCluj-Napoca.Itwasobtainedfromtheelectricitydemanddistributioncurveforthewholecountry,andthenscaleddownbyusingtheratioforthepopulation.ThedistributioncurveoftheelectricitydemandforRomaniawasobtainedfromENTSO-E.(EuropeanNetworkofTransmissionSystemOperatorsforElectricity,2017)Itcanbeobservedthattheconsumptionalternatesbetweendaytimeandnighttime.

43

Figure5.1:ElectricitydemandcurveforCluj-NapocaFigure5.3,presentsthedistributioncurvefortheheatdemandofCluj-Napoca.ThehourlyheatdemandcurvewasobtainedfromtheSTRATEGOProjectforRomaniaandthenscaleddownbyusingtheratioofpopulationbetweenRomaniaandCluj-Napoca.Itcanbeobservedthatheatdemandispresentonlyduringwintertimes.

Figure5.3:HeaddemandcurveforINSCluj-Napoca

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000 7000 8000

MWh

Hours

0,00000

0,00200

0,00400

0,00600

0,00800

0,01000

0,01200

0,01400

0,01600

0,01800

0,02000

1304

607

910

1213

1516

1819

2122

2425

2728

3031

3334

3637

3940

4243

4546

4849

5152

5455

5758

6061

6364

6667

6970

7273

7576

7879

8182

8485

44

5.1.2 Scenario2:Business-as-Usual2050(BaU2050)

Business-as-Usual-Scenarioisanalternativefuturescenariowithnomajorchangesintechnology,economics,orpoliciescomparingtothereferencescenario.Itisbasedonaseriesofassumptionsandprojectionsthatweremadebasedontheoncurrenttrendsandactualmeasurementsofthereferencescenario.SincetherearenoactualplansforfuturechangingtheactualstructureofheatproductioninCluj-Napoca,naturalgaswasstillconsideredastheonlyfuelusedintheheatproductioninCluj-Napoca,butsomeassumptionsneededtobemadetodrivethemodelfortheyear2050.TheDemandSideintheBaU2050scenariowaschangedaccordingly:

• Thesameshareofdistrictheatingasinthereferencescenariowasmaintained.TheDHCompanyofCluj-Napocadeclaresontheirwebsitethatthereisarhythmofdecreasingdisconnectionsfromthecentralizeddistrictheatingnetworkandstabilizingthenumberofcustomerstheyhave.(RATCJ,Seen2017)

• Theannualelectricitydemandisassumedtoincreaseby1%.FollowingthereportbytheEuropeanBankforReconstructionandDevelopmentitshouldbenotedthatthepopulationofCluj-Napocahasincreasedwith8.37%inthelast10years.Moreover,weassumethatthepopulationlivingstandardwillalsoincrease.(EuropeanBankforReconstructionandDevelopment,2015)

• TheoilboilersinindividualheatingwillbereplacedbyCGB.

• Theannualenergyefficiencyintheheatingsectorwillincreaseby0.3%eachyear.

ThisassumptionwasbasedontheachievementsandprojectsrealizedintheheatingsysteminCluj-Napocabetweentheyears1991and2009.(RATCJ,Seen2017)SupplySideOnthesupplysideintheBaU2050scenariotherewasnoneedfordecommissioninganyheatorelectricityplantsincethedemandissupposedtoincreaseintheupcomingperiod.Also,anysurplusofelectricityproducedcanbeexportedtothenationalgrid.SincethescenarioisbasedonlyonCluj-Napocawheretheheatandelectricityareproducedalmostonlyonnaturalgas,therewasnochangebetweenfueltypesused,e.g.switchingfromcoaltonaturalgas.Theheatdemandwillbeincreasedby1%annuallyonbothdistrictheatingandindividualheating.

• 2CHPs-Total13MWh;• 1DHPlant-143MWh;• 76ThermalPowerPlants+300Boiler-400MWh.

45

5.1.3 Scenario3:BIO+SOL2050

Thethirdscenario-BIO+SOL2050-isanalternativefuturescenariowheretheDHSofCluj-Napocaisbasedonlyonbiomassandtheindividualheatingisbasedonbiomass,individualthermalsystemsandindividualelectricheatingsystems.Thatmeansthatthesystemprimaryenergysupplyisshiftedto100%RES,whichwillbethefirststepinthetransformationofthecurrentenergysystemintoasustainableone,whosebenefitsarepresentedintheChapter4.TheDHSefficiencyisincreasedby20%consistingintherenovationofthepipeinthedistributionandtransmissionnetwork.Also,theshareofdistrictheatingisincreasedby40%.Waste-to-energyandindustrialsurplusheatsourcesarenotincludedintheproject.Technicaldetailsofthedemandsideofthescenarioarepresentednext.DemandSide

• Theelectricitydemandisincreasedannuallywith1%;• Theheatdemandisincreasedannuallyby1%;• Theefficiencyisincreasedby20%duetotherenovationofthepipenetwork.• Theshareofdistrictheatingisincreasedby40%;• Alltheindividualheatingsystemsbasedonnaturalgasarereplacedby:

o 55%-Biomassboilerso 25%-Individualsolarthermalsystems;o 20%-Individualelectricheatingsystems.

SeveralassumptionsaremadeinthesupplysideofthethirdscenariowhereproductionofheatiscompletelychangedcomparingtoBaU2050scenariosinceonlyRESareusedtofueltheheatingsectorofCluj-Napoca.Allthetechnicaldetailsofthesupplysideofthescenarioarepresentedbelow.SupplySide

• Allthermalplantsandboilers(400MW)havebeendecommissioned;• Thethermalpowerplant(143MW)havebeendecommissioned;• 187MWofCHPhavebeenadded(ofwhich,50MWCHPbackpressuremode

withthethermalcapacityof64MW).• 50MWofbiomassboilers;

5.1.4 Scenario4:BIO+SDH+SOL2050

Thefourthscenario-BIO+SDH+SOL2050-isanotheralternativefuturescenario,wheretheCluj-NapocaDistrictHeatingisaccomplished80%bybiomassCHP+20%SolarDistrictHeating.Theindividualheatingsectoristhesameasinthethirdscenario,andisbasedonbiomass,individualthermalsystemsandindividualelectricheatingsystems.Thesystemprimaryenergysupplyofthefourthscenarioisalsobased100%

46

onRES.TheDHSefficiencyisincreasedby20%consistingintherenovationofthepipeinthedistributionandtransmissionnetwork.Also,theshareofdistrictheatingisincreasedby40%.Waste-to-energyandindustrialsurplusheatsourcesarenotincludedintheproject.Next,technicaldetailsofthedemandsideofthescenarioarepresented.DemandSide

• Theelectricitydemandisincreasedannuallywith1%;• Theheatdemandisincreasedannuallyby1%;• Theefficiencyisincreasedby20%duetotherenovationofthepipenetwork.• Theshareofdistrictheatingisincreasedby40%.• Alltheindividualheatingsystemsbasedonnaturalgasarereplacedby:

o 55%-Biomassboilerso 25%-Individualsolarthermalsystems;o 20%-Individualelectricheatingsystems.

Thesupplysideofthefourthscenarioischangedto80%BiomassCHP+20%SolarDistrictHeating.Theindividualanddistrictheatingisaccomplishedaspresented:SupplySide

• Allthermalplantsandboilers(400MW)havebeendecommissioned;• Thethermalpowerplant(143MW)havebeendecommissioned;• DistrictHeatingisaccomplishedby80%BiomassCHP+20%SolarDistrict

Heating;• 50MWofbiomassboilers;

5.2 Results

Thissectioncontainsthevalidationofthereferencescenario,followedbytheEnergyPLANanalysesresultsoftheabovedescribedscenarios.Theresultsofthescenarios’analysesarethencomparedtoeachotherindifferentfiguresandtables,createdtoemphasizethedifferencebetweenthemofCO2emissions,shareofRES,energysupplyandthetotalcostsofthemodelledscenarios.5.2.1 ValidationoftheReferenceScenario

Inordertovalidatetheaccuracyofdatausedinthereferencescenario,avalidationofdatafollowedbyaCO2emissionscomparisonhasbeenmadebycomparingthevalue

47

providedbytheIEAandthevalueobtainedinEnergyPLAN.ThiscomparisoncanbeseenintheTable5.4.Sincethedifferenceisapproximately5%,itcanbeconcludedthatthereferencescenariomatchestheofficialdataofferedbyIEA.Thedatausedinthisprojectwasobtainedonlyfromofficialsources,suchas:RomanianNationalInstituteofStatistics,MinistryofRegionalDevelopmentandPublicAdministration,StrategoProjectandCluj-NapocaMunicipality.Sincethedatausedtobuildthereferencescenariowereeitherofferedbyemailuponrequest,eitherhavebeencollectedthemfromtheofficialwebsitesofthementionedbeforesources,itcanbeconcludedthatthedataisreliable.ThecostsofthescenariosarebasedonEnergyPLANdatacostslibrarysothecalculationsarealsoassumedtobereliable.

Emission EnergyPLAN IEA DifferenceEnergyPLAN-IEA

CO2 1,266miltons 1,341miltons 0,944Table5.4:ComparisonofCO2emissionsforenergysystemofCluj-Napoca

5.2.2 ScenariosResultsandComparison

Inthissection,themainresultsofthescenariosarecomparedinordertodeterminethemostfeasibleonebasedontheirmostimportantcharacteristics:

• CO2emissions;• PrimaryEnergyProduction;• TotalAnnualCosts.

COSTSAsspecifiedintheChapter3.3,thecostsoftheenergysystemarecalculatedbasedonEnergyPLANdatacostslibraryandbasedonthestandarddiscountrateof3%.Theenergyefficiencywasinputtedasadditionalcostsandtheoperationandmaintenancecostsarethesameinallscenarios.AsshowninFigure5.3,fromafinancialpointofview,BIO+SOL2050scenarioisthemostfeasibleone.Whilethisscenariohasalmostthesameannualcostsasthereferencescenario,itisthemostfeasiblescenariofromanenvironmentalpointofview,togetherwiththelastscenario,sincethereareonlyRESsourcesusedandthereforethecostsforCO2emissionsare0.ThelastscenarioBIO+SOL+SDHisthemosteconomicallyunfeasibleoneduetothehighcostsofinvestmentsinceSDHisaveryexpensivetechnologyatthemoment.

48

Figure5.2:CostsofscenariosPrimaryEnergySupplyFigure5.4presentsthePrimaryEnergySupplyofeachscenariocreatedinthisproject.Allthreefuturescenarioshaveanincreasedelectricityandheatdemandsinceitwasassumedthattheelectricityandheatproductionwillhaveanannualincreaseof1%.SincethesystemwascompletelychangedtoRES,theproductionbasedonnaturalgashasbeenphasedoutinbothindividualanddistrictheatingsectorsinthelasttwoscenarios.BytheintroductionofSDHtechnologywithashareof20%intheprimaryenergyproduction,thebiomassconsumptionwasreducedsignificantly.SincetheSDHtechnologyinvestmentcostsaresohighatthemoment,only20%ofthedistrictheatingproductionhasbeenconsideredintheanalysis,andevenwiththatlowpercent,theinvestmentcostsinthelastscenarioBIO+SOL+SDH2050aremuchhigherthaninthethirdscenarioBIO+SOL2050.

REF BAU BIO+SOL SOLARTHERMALDH

CO2 25 29 0 0

Variable 169 203 114 97

FixedO&M 82 119 56 65

Investment 121 173 231 632

0100200300400500600700800900

MEU

R

49

Figure5.3:PrimaryEnergySupplyInTable5.5anoverviewofthescenariosmainresultsispresented,wheretheirmostimportantcharacteristicsarepresentedinthreecategories.Thefirstoneisthetechnicalcategorywheretheprimaryenergysupplyofeachscenarioispresented,followedbytheenvironmentalcategoryandtheeconomiccategory.IntheenvironmentalcategorytheCO2emissionsarepresented,whilethetotalannualcostsareshownintheeconomic. REF BaU BIO+SOL BIO+SDH+

SOLPES[TWh] 3,74 4,43 6,59 5,77CO2[Mt] 0,87 1 0 0Totalannualsystemcosts[MEUR]

397 524 401 794

Table5.5:Overviewofthemainresultsofscenarios

5.3 SensitivityAnalysis

TheanalysiswasconductedtoevaluatethefeasibilityofBIO+SOLscenariobyimplementingdifferentpossiblefuturechangesintheeconomy,suchasdifferentdiscountratesoftheinvestmentcosts.IntheEnergyPLANmodel,thestandard

REF BAU BIO+SOL SOLARTHERMALDH

Solar 0 0 0,19 0,35

Biomass 0,01 0,03 6,4 5,42

NaturalGas 3,72 4,4 0 0

Oil 0,01 0 0 0

0

1

2

3

4

5

6

7

TWh

50

discountrateusedis3%.ThediscountrateofferedbytheRomanianNationalBankis1,75%startingwith2015,whilein2012itwas5.25%(FocusEconomics,2017).Discountratesfrom1%to15%fortheinvestmentcostsofthealternativescenarioswereconsideredintheanalysis.TheanalysiswasconductedbyreplacingthediscountrateinEnergyPLANwithvaluesfrom1to15.Thediscountratesusedarenominaldiscountrates,whicharedifferentfromtherealdiscountratesbythefactthatinflationrateisincluded(HomerEnergy’,Seen2017).AnalyseswillrevealthediscountratesforwhichtheBAU+SOL2050scenariowillbecomemoreexpensivethentheBaU2050scenario.InFigure5.4itcanbeobservedthatwhenahigherdiscountrateisappliedtotheinvestmentcosts,thevalueofthescenarioisincreasing.Also,itcanbeobservedthatwhenadiscountrategreaterthan12.8%isappliedtotheBIO+SOL2050scenario,thisscenarioisbecomingmoreexpensivethenBaU2050scenario.FromaneconomicpointofviewthatmeansthatthescenarioBIO+SOL2050isnolongerfeasible.

Figure5.4:SensitivityAnalysisondifferentdiscountratesofinvestmentcosts

51

6 PolicyAnalysisThischapteraimstoinvestigatethewaysinwhichtheactualsituationoftheDHSofCluj-Napocacanbeimprovedintermsofpolicies.Also,thischaptercontainsareviewoftheRomanianlawsrelatedtodistrictheatinglaws.6.1.1 PolicyAnalysisandRecommendationsregardingindividualheatingsolutions

SincethegasesemittedbytheIMHUsaredischargedveryclosetothebreathableairofothertenants,thelevelofthesegasesshouldbecomparedtotheconcentrationofpollutantsinthebreathableair,andnottotheemissionlimitvaluesofacentralheatingsystemwhichevacuation’sbasketsarelocatedabovethebuildingshigh.Asaresult,theairinhaledbythetenantsinblocksofflatswhereIMHUswereinstalled,violatesthecurrentrulesonbreathableairquality.(Benga,Fowler,Haiduc,&Nastase,2004)ThissituationcanberegulatedbylawswhichclearlystipulatesthetechnicalconditionsunderwhichanIMHUcanbeinstalled.TheinstallationofIMHUsinRomaniaisdoneinsomecaseswithouttheconsentofallbuilding’scondominiumownersandviolatesatleasttwolaws:

• HousingLawinRomania,no.114/1996withsubsequentmodificationsstipulatesinart.14ofAnnex2:"noownermayviolateorprejudicetherightofjointorindividualownership".(TheRomanianParliament,1996)

AlawtotightenthetechnicalconditionsinwhichanIMHUcouldbeinstalledsothatotherresidentsinthesamebuildingwillnolongerbeaffectedbyfluegasemittedbytheIMHUcouldsolvethisproblem.Atechnicalsolutionwouldbetofindatechnicalsolutionwherethefluegasesaredischargedatthetopofthebuildings.

• Law10/1995onqualityinconstructioninRomania,art.5:"Inordertoobtainsuitablequalityconstructions,thefollowingrequirementsmustbefulfilledandmaintainedthroughoutthelifetimeofbuildings:...(d)hygiene,humanhealth,restorationandprotectionoftheenvironment;(TheParliamentofRomania,1995)

Thesebreachesoflawscouldbepreventedwithanincreasedattentionfromtheauthorities.

52

AnotherrightwhichisviolatedinRomaniaistherighttoinformation,sincethecitizenswerenotandarenotinformedaboutthenegativeeffectsoftheuseofIMHUs.

• Therighttoinformation(Article31oftheConstitutionofRomania)foreseesatparagraph1:"Therightofthepersontohaveaccesstoanyinformationofpublicinterestcannotberestricted"andatparagraph2:"Thepublicauthorities,accordingtotheircompetencies,areobligedtoensurethatcitizensareproperlyinformedaboutpublicaffairsandissuesofpersonalinterest."(CenterforConstitutionalLawandPoliticalInstitutions-Romania,1991)

TheRomanianStateshouldstarttoinformitscitizensabouttheharmfuleffectsofIMHUs,byinterviewingspecialistsandbyprovidingdetailedinformationthroughmass-media.6.1.2 PolicyAnalysisandRecommendationsregardingDistrictHeating

TheapartmentswhichuseIMHUs,savemoneybybeingpartofaheatedbuildingwithaDHS,because,duringthecoldseason,theirwallshaveanaveragetemperatureof+20degreesCelsiusandnotequalwiththeoutsidetemperature.ThistemperaturedifferenceispaidbytheownerswhoarestillconnectedtotheDHS.(Benga,Fowler,Haiduc,&Nastase,2004)Thiscouldbesolvedbyaddingatax,paidmonthlybytheapartmentownersdisconnectedfromDHS,dependingonsurfacetheysharewiththeheatedpartofthebuilding.TheRomanianauthoritiesdidnottakeintoconsiderationthefactthattheinstallationinmassofdomesticboilerswillleadtothedestructionoftheDHS,whichisincontradictionwiththepoliciesandrequirementsoftheEuropeanUnion;(Benga,Fowler,Haiduc,&Nastase,2004)TheDHSisapublicsystemandthedecisiontokeeptheDHSoperatingornot,shouldnotentirelybelongtotheconsumers,becausebydisconnectingtheapartmentfromtheDHS,theintegrityoftheDHSisjeopardized.Thisismainlyhappeningbecauseatthemoment,thedisconnectionfromtheDHSdoesnotrequiretheapprovalfromalltheapartmentownersoftheentirebuildingorfromtheRomanianstate.Currently,theDHSinRomaniaisinvolvedin4ministries(MinistryofAdministrationandInterior,MinistryofEconomy,MinistryofLaborandSocialProtection,MinistryofEnvironment)and2regulatoryagencies(NationalRegulatoryAuthorityforEnergy,NationalRegulatoryAuthorityforCommunityUtilitiesServices).Therefore,asalreadystated,thishasmadecoordinationverydifficult.(Leca,2012)Abettermanagementcouldbeachievedbymodernizingtheenergygovernancesystem.EachyearthemunicipalityofCluj-NapocapaysaroundEUR15millioninheatsubsidies,whichisabout5%ofthecitybudget,afigurethatputsabigburdenonthecity’sfinances.(MunicipalityofCluj-Napoca,2014)

53

Byinvestinginmodernizingthedistributionnetworkandbycreatingamoreefficientheatproduction,thesubsidiescanbereducedorevenstopped,beingnolongerneeded.The4thgenerationDHSshouldbestronglyencouragedbytheGovernmentofRomaniabysubsidizingDHprojectswithhighshareofannualheatconsumptionfromrenewableenergysourcesorwasteheat,asitishappeninginotherEuropeancountriessuchasGermany,wheretheGermanMinistryforEconomicAffairsandEnergylaunchedanewsubsidyschemeforDistrictHeatingPilotProjects.(Solites,2017).Ontopoftheabove-mentionedrecommendations,thefollowingcanbeadded:

• TheValueAddedTax(VAT)canbeloweredforthedistrictheatingasitishappeninginotherEuropeancountriessuchasCzechRepublic,LithuaniaandLatvia;

• Interestofthecentralandlocalauthoritiesinfindingfinancingsolutionsforthe

energymodernizationofbuildingstockshouldbeincreased;

• TheEnergyMinistryshouldproposelawsandcomeupwiththefastestsolutionstopromotetherestorationofDHSsinRomaniainordertoavoidapossibleirreparableworseningofthesituation.

6.1.3 OtherlawsrelatedtoDistrictHeatingSectorinRomania

• Lawno.51/2006onpublicservices,addressingpublicservicesoflighting,

waste,heatandwater;Thislawestablishesthelegalandinstitutionalframework,theobjectives,thecompetencies,thetasksandthespecificinstrumentsnecessaryforsettingup,organizing,managing,financing,exploiting,monitoringandcontrollingtheregulatedsupply/provisionofcommunityservicesofpublicutilities.(RomanianParliament,2006)

• Lawno.325/2006ontheheatingsectoristhespecificlawforDistrictHeating;Thislawregulatestheperformanceofspecificpublicserviceactivitiesforthesupplyofheatenergyusedforheatingandhotwaterproduction,namelytheproduction,transport,distributionandsupplyofdistrictheating,underefficientconditionsandqualitystandards,forusingoptimalenergyresourcesandcomplyingwithenvironmentalprotectionstandards.Thislawappliestopublicservicesupplyheatinacentralizedsystem,establishedandorganizedincommunes,towns,municipalitiesorcounties,regardlessoftheirsize.(RomanianParliament,2006)

54

• GD(GovernmentDecision)1215/2009oncogenerationsupportscheme.ThisDecisionestablishesthelegalframeworknecessarytoimplementasupportschemeforthepromotionofhighefficiencycogeneration.(TheRomanianGovernment,2009)

• Lawno.123/2012onelectricityandgas,alsoaddressescogeneration;Thepurposeofthislawistoregulatethedevelopmentofactivitiesintheelectricityandthermalenergysectorsproducedincogenerationinordertooptimallyusetheprimaryenergyresourcesundertheconditionsofaccessibility,availabilityandaffordability,andtorespectthesafety,qualityandenvironmentalstandards.(RomanianParliament,2016)

• Lawno.121/2014onenergyefficiency,transposingDirective2012/27/EC;Thepurposeofthislawistocreatethelegalframeworkforthedevelopmentandimplementationofthenationalenergyefficiencypolicywithaviewtoachievingthenationalenergyefficiencytarget.(RomanianParliament,2016)

55

7 ConclusionThepreviousChapter4.2.3andChapters4.2.1aimedtoinvestigatewhatcausedthedropintheuseofDH,andthustoanswertothefirstresearchquestion:

WhatcausedthedropintheuseofDHinthecityofCluj-Napoca?Tosumup,itcanbesaidthatthemajorcauseswhichleadtothedropofuseoftheDHofCluj-Napocaweremainlyrelatedtothewayofbillingthecustomers,thepoorqualityofthenetworkandthepoorqualityoftheservicesofferedbytheRATCJ.Thecustomerswerechargedaccordingtothesurfaceoftheirdwellingandnotbythequantityofheatconsumed,aspreviouslystated.Asimilarprinciplewasusedonthehotwater,wherethecustomerwaschargedaccordingtothenumberofpeoplelivinginthedwellingandnotbythequantityofhotwasconsumed.Thetransmissionanddistributionnetworkusedtohavelargelossesofover25%,whichweremostlypaidalsobythecustomers.Therefore,thecustomersturnedtheirattentiontodifferentindividualheatingsourceswheretheycouldpayaccordinglytotheirconsumption.TheIMHUproducershaveseenagreatmarketopportunityinthatandtheystartedcreatinggreatoffersandfocusingonpresentingthebenefitsoftheIMHUs.InthelastyearmajorimprovementstothetransmissionanddistributionnetworkoftheDHSofCluj-Napocahavebeenmade,buttheactualpriceofferedbytheRATCJfor1GcalishighercomparingtothepricepaidbyacustomerusingaIMHUsuchascondensinggasboilers.ItisneededtobementionedthatcustomersoptingforIMHUshavetopayelectricalpower,periodictechnicalchecks,ISCIRchecks(RomanianStateInspectionforBoilerControl,PressureVesselsandLiftingInstallations)ontopofthepricepaidforheating.Chapter5aimstoanswerthesecondresearchquestion:

Onalong-termperiod,whatarethetechnicalsolutionssothattheDHofCluj-Napocacanofferamorefeasiblealternativetoconsumerswhichareusingindividualheating?Intheanalysisofthisproject,threealternativescenariosoftheCluj-NapocaDHShavebeencreated,analysedandcomparedtofindafeasiblelong-termtechnicalsolutionforCluj-NapocaDHS.Byfindingandimplementingthistechnicalsolution,theCluj-NapocaDHScouldbeabletoofferafeasiblealternativefortheindividualheatingconsumers.Therefore,hopefullyitcouldregainthecustomerswhohaveoptedoutandgotdisconnectedfromthecentralizedheatingsysteminthelastfewyears.BasedontheactualCluj-NapocaDHS,areferencescenariohasbeencreatedinthefirstplace.Afterwards,analternativescenariofortheyear2050,namelyBusiness-as-Usual2050,hasbeencreatedbasedonaseriesofprojectionsandassumptionsmade

56

onthecurrenttrendsandtheactualmeasurementsofthereferencescenario.ThisscenarioaimedtopictureCluj-NapocaDHSin2050ifnomodificationwillbemadetoitssystem.TwootheralternativescenarioshavebeencreatedstartingfromtheassumptionthatonlyrenewableenergysourcesweretobeusedtofueltheheatingsectorofCluj-Napoca.Afterthecreationofthealternativescenarioswasdone,acomparisonhasbeenmadebetweentheBusiness-as-Usual2050scenarioandtheothertwofuturealternativescenariosinordertoanalyzeifafeasiblesolutioncanbefoundforCluj-NapocaDHS.Aspreviouslymentioned,thefeasiblesolutionwouldaimtoregaintheindividualheatingconsumers.Aftercomparingallscenarios,thefirstone-BIO+SOL2050–hasbeenfoundtobeafeasiblesolutionforCluj-NapocaDHS,duetoitsfinancialandenvironmentalbenefits.TheannualcostsinthisscenarioaremuchlowerthanBusiness-as-Usual2050scenario,whiletheproductionstaysthesame.DuetotheexclusiveuseoftheREStofueltheDHSandfuelemissionsbeingcompletelystopped,thescenariopinpointsnumerousenvironmentalbenefits.TheseconclusionsemphasizeonthepossibilityforCluj-NapocaDHStoofferafeasiblesolutiontotheconsumers,bydecreasingthepricesandalsocontributingtotheenvironment.Inthelastscenario-BIO+SOL+SDH2050-fossilfuelemissionsarecompletelyreducedsince,again,onlyrenewableenergysourcesareusedfortheheatproduction.However,theannualcostsaremuchhigherthantheBusiness-as-Usual2050scenarioanddoublecomparedtothethirdscenario-BIO+SOL2050-.Inthefuture,renewableenergysourceswillclearlydominatetheproductionofelectricityandheatallovertheworld,duetothecurrentenvironmentalproblemscreatedbyfossilfuels.ThisprojectshowsthattheimplementationofanewDHSinCluj-NapocabasedsolelyonrenewableenergysourceswouldsubstantiallyreducetheannualcostsoftheDHS,thusbecomingabletoprovideafeasiblealternativesolutionstotheconsumersusingindividualheating.Moreover,thiscouldrepresentthefirststeptowardsafuturesustainableenergysystemsuchas4GDHsystems.Ontopofthat,thenewdefinedDHSwouldbringenormousbenefitstotheenvironment,sincefossilfuelemissionswouldbecompletelyremovedfromtheheatproductionprocess.ThepreviousChapters6aimstoinvestigateintermsofpolicieswhatcausedthedropintheuseofDHSofCluj-Napocaandhowtheactualsituationcanbeimproved,andthustoanswerthelastresearchquestion:

WhatarethepolicyrecommendationssothattheactualsituationofCluj-NapocaDHScouldbeimproved?ItneedstobeemphasizedthattheproblemsfacedbytheCluj-NapocaDHSaresimilarthroughouttheentirecountryandtherefore,thesamerecommendationscouldbemadetoanyotherRomanianDHS.Next,themostimportantpolicyrecommendations

57

thathavebeenmadefollowingthepolicyanalysisinChapter6whichcouldpossibleimprovetheactualsituationoftheCluj-NapocaDHS,arepresentedbelow:

• AddingaregulatinglawwhichclearlystipulatesthetechnicalconditionsunderwhichanIMHUcanbeinstalled,includingfindingsolutionstheotherresidentsinthesamebuildingtonolongerbeaffectedbyfluegasemittedbytheIMHU.Atechnicalsolutionwouldbetofindatechnicalsolutionwherethefluegasesaredischargedatthetopofthebuildings;

• TheRomanianStateshouldstarttoinformitscitizensabouttheharmfuleffects

ofIMHUs,byinterviewingspecialistsandbyprovidingdetailedinformationthroughallthepossiblemeans;

• Amonthlytaxduringthecoldseasoncouldbeaddedtothedwelling

disconnectedfromDHS,dependingonsurfacetheysharewiththeheatedpartofthebuildingsincetheyarealsousingtheheatprovidedbythecentralizedheatingpowersupplysystem;

• Aregulatinglawcouldbemadetotightentheconditionsfordisconnecting

fromtheDHSsincethedisconnectionsareaffectingthewholeDHS.ApossiblesolutionwouldbethatthedisconnectiontorequiretheapprovalfromallthedwellingownersoftheentirebuildingorfromtheRomanianstate;

• AbettermanagementoftheRomanianDHSscouldbeachievedbymodernizing

theenergygovernancesystem.ApossiblesolutionwouldbetodesignateonlyoneministryunderwhichtheRomanianDHSsismanaged.CurrentlytheRomanianDHSsaremanagedbyfourministries;

• Insteadofsubsidizingtheheatpricewithalmostahalfofitsprice,investingin

modernizingthetransmissionanddistributionnetworkcouldleadtoreductionorevenastoppageofthissubventionsbyachievingabetteroverallefficiencyoftheDHSs;

• TheValueAddedTax(VAT)canbeloweredforthedistrictheatingasitis

happeninginotherEuropeancountriessuchasCzechRepublic,LithuaniaandLatvia;

• Interestofthecentralandlocalauthoritiesinfindingfinancingsolutionsforthe

energymodernizationofbuildingstockshouldbeincreased;

• TheEnergyMinistryshouldproposelawsandcomeupwiththefastestsolutionstopromotetherestorationofDHSsinRomaniainordertoavoidapossibleirreparableworseningofthesituation;

• The4thgenerationDHSshouldbestronglyencouragedbytheGovernmentof

RomaniabysubsidizingDHprojectswithhighshareofannualheatconsumptionfromrenewableenergysourcesorwasteheat,asitishappening

58

inotherEuropeancountriessuchasGermany,wheretheGermanMinistryforEconomicAffairsandEnergylaunchedanewsubsidyschemeforDistrictHeatingPilotProjects.

59

8 DiscussionTheoutcomeoftheprojectisaresultofcalculationsbasedonreliabledatagatheredfromofficialsourcescombinedwithseveralassumptionsandfutureprojectionsoftheCluj-Napocaheatingsector.Inordertoemphasizesomemethodologicalchoicesandtheassumptionsmadeinthisproject,adiscussionwillfollow.

• EnergyPLANregulationTheresultsoftheprojectshowedthatitwouldbefeasibletoinvestinafutureenergysystembased100%onrenewableenergysourcesbutitshouldberemindedthatEnergyPLANofferstwodifferentstrategiesforanalyzingtheenergysystem:TechnicalStrategyandMarket-EconomicStrategy.Inthisprojecthasbeenusedthefirststrategy,whichistechnicalone.ItisexpectedthatamarketeconomicsimulationoftheCluj-Napocawouldgiveadifferentoutcome,leadstothequestionofwhatwouldhavebeentheresultsifthesecondstrategywouldhavebeenusedinthisproject.Themostimportantdifferencebetweenthetwostrategiesisthatfirststrategyisbasedontheenergydemandwhilethesecondoneisbasedonthemarginalcostsandmarketprice.

• ShareofdwellingsusingDHIntheBusiness-as-Usual2050scenariocreatedinEnergyPLAN,theshareofDHhasnotbeenincreased.ItisexpectedthatabiggershareintheuseofDHwouldhaveincreasedalsotheDHSefficiencyinthisscenarioandwouldhaveledtoadifferentoutcomebutsincethecurrenttrendisopposite,peoplecurrentlydisconnectingfromtheCluj-NapocaDHS,itcouldn’tbeconsideredthatinthenextperiod,theoppositewillhappen.

• LackofdataOneofthegreatestchallengeswasthelackofdataregardingthehourlyelectricityandheatdemanddistributiondataset.ThedistributiondatasetswereobtainedfromtheStrategoProjectforRomaniaandthenscaleddownbyusingtheratioofpopulation,whichmaynotbeanaccuraterepresentationofthereality.

• ReferenceyearTheresultsoftheprojectarebasedondatafrom2012whichdefinedthereferencescenario.TheyearwasusedbecauseisthemostrecentyearwhichcouldofferofficialdataontherealsituationoftheheatingsectorinCluj-Napoca.ItisnotthemostrecentdataandtheenergysystemhasundergonechangesuptonowintermsofelectricityandheatdemandandintheshareofpeopleusingDHandmaybeanimplementationintheenergysystemof2017wouldhaveledtodifferentresults,butinprinciple,itcanbeassumedthattheresultsfollowthesametrend.

60

• NationalEnergySystemAnalysisInthismasterthesis,itwaschosentoanswertheresearchquestionbasedonacasestudy.Analternativeapproachcouldhavebeentoanswerthequestionbyusinganationalenergysystemanalysiswheremoredatacouldhavebeenavailableandthus,itisexpectedthattheresultswouldhavebeenmoreaccurate.Thisdoesnotnecessarilymean,thattheresultsofthisprojectcouldnotserveasanexamplecaseoftheDHSofRomania.

• CostsusedtocalculatetotalsystemcostsThecostsusedintheenergysystemanalysiswereusedfromtheEnergyPLANlibrary.ThecostsdatabasewhichincludesinvestmentsforRES,bothfixedandvariableO&Mcosts,fuelcostsandothercostswascreatedbytheDanishEnergyAgencyanditfitstheDanishcontext.ItisexpectedthattheresultswouldhavebeenmoreaccurateiftheactualcostsforRomaniawouldhavebeenavailable.

61

9 ListofFiguresFigure1.1:WorldEnergyConsumptionbysource,1990-2040,inquadrillionBtu..........1Figure1.2:NetimportsoffuelintheEU..........................................................................5Figure1.3:GrossconsumptioninRomaniain2015.........................................................6Figure1.4:FinalenergyconsumptioninRomaniain2015bysectors.............................6Figure1.5:EvolutionofthenumberoflocalitiesconnectedtoDHSinRomaniafrom

1989to2016............................................................................................................8Figure1.6:EvolutionofthenumberofflatsandpersonsconnectedtoDHSinRomania

from1989to2016....................................................................................................9Figure1.7:NumberofdwellingsconstructedinRomaniauntil2009..............................9Figure1.8:Energyresourcesinthecentralizedsystemofheatsupplyin2015in

Romania.................................................................................................................10Figure1.9:EvolutionofthenumberoflocalitiesconnectedtoDistrictHeatinginCluj-

Napocafrom2003to2015....................................................................................13Figure2.1:ThesisStructure............................................................................................17Figure4.1:LocationofCluj-Napocainnationalcontext................................................24Figure4.2:Simplifieddiagramofacondensingboilervs.anon-condensinggasboiler

................................................................................................................................29Figure4.3:Chimneysfromindividualmicro-heatingunits,protrudingthroughouter

walls.......................................................................................................................30Figure4.4:TotalannualbiomasspotentialinRomania.................................................33Figure4.5:Jelling,Danishdistrictheatingplant.............................................................34Figure4.6:TypicalSunCollectorusedinIndividualHeatingSector...............................35Figure4.7:AnnualGlobalHorizontalIrradiation(GHI)inRomania...............................36Figure5.1:ElectricitydemandcurveforCluj-Napoca....................................................43Figure5.3:Costsofscenarios.........................................................................................48Figure5.3:PrimaryEnergySupply.................................................................................49Figure5.4:SensitivityAnalysisondifferentdiscountratesofinvestmentcosts...........50

62

10 ListofTablesTable4.1:CurrentcostofheatinginCluj-Napoca,2017................................................25Table4.2:TheannualenergypotentialofRESinRomania............................................32Table5.1:OverviewoftheScenarios.............................................................................40Table5.2DemandSideData..........................................................................................41Table5.3SupplySideData.............................................................................................42Table5.4:ComparisonofCO2emissionsforenergysystemofCluj-Napoca.................47Table5.5:Overviewofthemainresultsofscenarios....................................................49

63

11 BibliographyCluj-NapocaMunicipality.(2015).STATUTEOFCLUJ-NAPOCAMUNICIPALITY.Leca,A.(2012).CONSIDERAŢIIPRIVINDSISTEMULDEALIMENTARECENTRALIZATĂCU

ENERGIETERMICĂALMUNICIPIULUIBUCUREŞTI.CenterforConstitutionalLawandPoliticalInstitutions-Romania.(1991).The

ConstitutionofRomania.Hentetfrahttp://www.constitutiaromaniei.ro/art-31-dreptul-la-informatie/

CenterforRegionalDevelopmentAgency-Romania.(2014).ACTIONPLANFORBIOENERGY/BIOMASSOFTHEREGIONCENTERINROMANIA2014-2020.

LocalCouncilofCluj-Napoca.(2013).SustainableEnergyActionPlan2011-2020Cluj-Napoca,Romania.

Connolly,D.,Hansen,K.,&Drysdale,D.(2015).TheSTRATEGOproject-Multi-levelactionsforenhancedHeating&Coolingplans.

Lund,H.A.(2014).RenewableEnergySystems-ASmartEnergySystemsApproachtotheChoiceandModellingof100%RenewableSolutions(2udg.).

Lund,H.B.(June2014).EnergyPLAN-AdvancedEnergySystemsAnalysisComputerModel.HentetfraEnergyPLAN'sWebsite.

Lund,H.,Werner,S.,Wiltshire,R.,Svendsen,S.,Thorsen,J.E.,Hvelplund,F.,&Mathiesen,B.V.(2014).4thGenerationDistrictHeating(4GDH)Integratingsmartthermalgridsintofuturesustainableenergysystems.

Euroheat&Power.(2005).EcoheatcoolWorkPackage1-TheEuropeanHeatMarketFinalReport.Euroheat&Power.

A.EuropeOffice.(2009).Typesofresearch-Thefourmainapproaches.HentetfraAlzheimerEuropeWebpage:http://www.alzheimer-europe.org/Research/Understanding-dementia-research/Types-of-research/The-four-main-approaches

AutonomousDistrictHeatingCompanyCluj-Napoca.(2017).AutonomousDistrictHeatingCompanyCluj-Napoca'sWebpage.HentetfraAutonomousDistrictHeatingCompanyCluj-Napoca:http://www.ratcj.ro/despre.html

Baškarada,S.(2014).QualitativeCaseStudyGuidelines.BaxiHeatingUKLimited.(2017).CondesingGasBoilers.HentetfraBaxiHeatingUK

Limited'sWebsite:http://www.baxi.co.uk/gas-boilers/boiler-information/condensing-boilers.htm

Benga,G.,Fowler,D.,Haiduc,I.,&Nastase,I.M.(2004).MultiplenegativeeffectsofthereplacementofcentralizedheatingsystemsofresidentialblocksinRomaniawithindividualheatpumpspoweredbynaturalgas(Årg.1).Cluj-Napoca:EdituraMedicalaUniversitara"IuliuHateganu"ClujNapoca.

Bogdan,R.,&Biklen,S.K.(2006).Qualitativeresearchineducation:Anintroductiontotheoryandmethods.Allyn&Bacon.Pearson.

E.ONEnergyRomania.(092017).Tarrifs.HentetfraE.ONEnergyRomania'sWebsite:https://www.eon-energie-romania.ro/clienti-casnici/informatii-utile/tarife

64

EuropeanComission.(April2009).OfficialJournaloftheEuropeanUnion-RenewableEnergyDirective.HentetfraEuropeanComission:http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=EN

EuropeanComission.(December2011).EnergyRoadmap2050.HentetfraEuropeanComission:http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0885&from=EN

EuropeanComission.(October2012).OfficialJournaloftheEuropeanUnion-EnergyEfficiencyDirective.HentetfraEuropeanComission:http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012L0027&from=EN

EuropeanComission.(2015).TowardsanEnergyUnion-AssessmentofcountryperformanceandopportunitiesfromtheEnergyUnion-Romania.

EuropeanComission.(022016).AnEUStrategyonHeatingandCooling.HentetfraCOMMUNICATIONFROMTHECOMMISSIONTOTHEEUROPEANPARLIAMENT,THECOUNCIL,THEEUROPEANECONOMICANDSOCIALCOMMITTEEANDTHECOMMITTEEOFTHEREGIONS:https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf

EuropeanCommission.(2016).EnergySavingsCalculationMethodsunderArticle7oftheEnergyEfficiencyDirective.

EuropeanCommission.(2017).EuropeanCommission'sWebpage.HentetfraHeatingandcooling:http://ec.europa.eu/energy/en/topics/energy-efficiency/heating-and-cooling

EuropeanBankforReconstructionandDevelopment.(2015).SustainableUrbanMobilityPlanCluj-Napoca.Hentetfrahttp://www.primariaclujnapoca.ro/userfiles/files/Plan%20mobilitate%20Cluj%20Napoca.pdf

EuropeanEnvironmentAgency.(2015).OverviewoftheEuropeanenergysystem.EuropeanEnvironmentAgency.

EuropeanNetworkofTransmissionSystemOperatorsforElectricity.(2017).ENTSO-E'sWebpage.HentetfraENTSO-E'sWebpage:https://www.entsoe.eu/Pages/default.aspx

Eurostat.(2017).Energyproductionandimports.FlaviusIacobescu,V.B.(2011).Metamorphosesofcogeneration-baseddistrictheating

inRomania:Acasestudy.FocusEconomics.(2017).InterestRateinRomania.GlobalHealthObservatory.(2017).GlobalHealthObservatory(GHO)data.Hentetfra

GlobalHealthObservatory(GHO)'sWebpage:http://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/

GoGreenaLTD.(2013).Simplifieddiagramofacondensingboiler.GoogleMaps.(2017).GoogleMaps.Group-Vaillant.(2017).Gascondensingboilers.HentetfraVaillantGroup'sWebpage:

https://www.vaillant.com/what-we-do/technologies-to-make-people-feel-good/how-different-technologies-work/gas-condensing-boilers/index.en_gb.html

65

HomerEnergy’.(Seen2017).HOMERPro3.10-RealDiscountRate.HentetfraHomerEnergy’sWebsite:http://www.homerenergy.com/support/docs/3.10/real_discount_rate.html

InternationalEnergyAgency.(2006).EnergyPoliciesofIEACountries.InternationalEnergyAgency.(2016).EnergyandAirPollutionExecutiveSummary-

WorldEnergyOutlookSpecialReport.InternationalEnergyAgency.InternationalEnergyAgency.(2017).Unitconverter.HentetfraInternationalEnergy

Agency'sWebsite:https://www.iea.org/statistics/resources/unitconverter/InternationalRenewableEnergyAgency.(2017).RenewableEnergyinDISTRICT

HEATINGANDCOOLING-ASECTORROADMAPFORREMAP.InternationalUnionforConservationofNature.(n.d.).SituationAnalysis–An

ApproachandMethodforAnalyzingtheContextofProjectsandProgramme.IPCC.(2014).Climatechange2014-Synthesisreport.IPCC.(2014).ClimateChange2014SynthesisReport-SummaryforPolicymakers.IPCC.

Hentetfrahttp://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf

Jack,S.,&Baxter,P.(2008).QualitativeCaseStudyMethodology:StudyDesignandImplementationforNoviceResearchers.

MinistryofDefenseandInternalAffairs.(2008).GENERALINFORMATIONABOUTROMANIA.HentetfraSchengenRomania:http://www.schengen.mai.gov.ro/index10.htm

MinistryofEnergy-Romania.(2016).EnergyStrategyofRomania2016-2030,withtheperspectiveof2050.

MinistryofRegionalDevelopmentandPublicAdministration.(2013).ImprovingEnergyEfficiencyinCluj-Napoca,Romania-CityEnergyEfficiencyDiagnosticStudy-ToolforRapidAssessmentofCityEnergy.

MinistryofRegionalDevelopmentandPublicAdministration&MinistryofEnergy-Romania.(Decembrie2015).Reportontheassessmentofthenationalpotentialfortheimplementationofhigh-efficiencycogenerationandefficientdistrictheatingandcooling.

MunicipalityofCluj-Napoca.(2014).REFERATprivindaprobareapreţurilorşitarifelorlocalepentruenergiatermicălivratăpopulaţieişiagenţiloreconomicidecătreRegiaAutonomădeTermoficareCluj-Napoca,apreţuluilocalalenergieitermicefacturatăpopulaţieişiacordareaajutoarelorpentruîncălzirealocuinţei.

NationalBankofRomania.(092017).CurrencyExchangeRates.HentetfraNationalBankofRomania'sWebsite:http://www.bnro.ro

NationalRegulatoryAuthorityforCommunityUtilitiesServices.(2016).THECURRENTSITUATIONOFTHERMALENERGYSERVICEINACENTRALIZEDSYSTEM.

RATCJ.(Seen2017).Hentetfrahttp://www.habitaturban.ro/wp-content/uploads/Campanie%20rebransare%20RAT.pdf

RomanianNationalInstituteofStatistics.(2015).Romaniainfigures2015.RomanianParliament.(2006).MinistryofJustice’sWebsite.HentetfraMinistryof

Justice’sWebsite:http://legislatie.just.ro/Public/DetaliiDocument/70015RomanianParliament.(2006).RomaniaLegislativeCouncil’sWebsite.Hentetfra

RomaniaLegislativeCouncil’sWebsite:http://www.clr.ro/rep_htm/L325_2006.htm

66

RomanianParliament.(2016).MinistryofJustice’sWebsite.HentetfraMinistryofJustice’sWebsite:http://legislatie.just.ro/Public/DetaliiDocument/139677

RomanianParliament.(2016).MinistryofJustice’sWebsite.HentetfraMinistryofJustice’sWebsite:http://legislatie.just.ro/Public/DetaliiDocument/160331

Solargis.(2017).Methodology-Solarradiationmodeling.SolargisMaps.(2017).GlobalHorizontalIrradiation(GHI)-Romania.Solites.(072017).Newsubsidyprogramfor4thgenerationdistrictheatingin

Germany.HentetfraSolarDistrictHeating'sWebsite:http://solar-district-heating.eu/NewsEvents/News/tabid/68/ArticleId/531/New-subsidy-program-for-4th-generation-district-heating-in-Germany.aspx

SolitesGermany.(2017).SupplyingRenewableZero-emissionHeat.HentetfraSolarDistrictHeating:http://solar-district-heating.eu/Portals/0/NewFolder/SDHplus%20Brochure%20Download.pdf

Soy,S.K.(1997).Thecasestudyasaresearchmethod.UniversityofTexasatAustin.Srinivas,H.(2017).Whatisagreenorsustainablebuilding?GlobalDevelopment

ResearchCenter,Japan.TheGovernmentofRomania.(2004).TheNationalStrategyof3June2004Regarding

theheatsupplyoflocalitiesthroughcentralizedproductionanddistributionsystems.

TheGreenHome.(2013).Non-condensingvs.condensinghouseholdboiler.UK.TheParliamentofRomania.(1995).Lawno.10/1995regardingthequalityin

constructions.Hentetfrahttps://lege5.ro/Gratuit/hayteny/legea-nr-10-1995-privind-calitatea-in-constructii

TheRomanianGovernment.(2009).TheRomanianGovernment’sWebsite.HentetfraTheRomanianGovernment’sWebsite:http://sgg.gov.ro/new/wp-content/uploads/2017/03/HG-20.pdf

TheRomanianParliament.(1996).HousingLawno.114/1996.Hentetfrahttps://lege5.ro/Gratuit/ge3dgmru/legea-locuintei-nr-114-1996

TheWorldBank.(1998).PARTICIPATIONANDSOCIALASSESSMENT-TOOLSANDTECHNIQUES.

U.S.DepartmentofEnergy.(2017).SmartGrid.HentetfraSmartGrid:https://www.smartgrid.gov/the_smart_grid/smart_grid.html

U.S.EnergyInformationAdministration.(May2016).EIAprojects48%increaseinworldenergyconsumptionby2040.HentetfraU.S.EnergyInformationAdministration'sWebpage.

U.S.EnergyInformationAdministration.(2016).InternationalEnergyOutlook2016.UnitedNations.(2015).ParisAgreement.HentetfraParisAgreement:

http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf

Vaida,V.(2014).CENTRALELETERMOELECTRICEȘIDETERMOFICAREÎNROMÂNIA.Hentetfrahttp://tineret.sier.ro/istorie/Documente/termo.pdf

WorldHealthOrganisation.(2005).AirQualityGuidelinesGlobalUpdate2005.Particulatematter,ozone,nitrogendioxideandsulfurdioxide.WHO.

Yin,R.K.(2009).CaseStudyResearch:DesignandMethods.FourthEdition.(Årg.5).SagePublications.

67

Østergaard,P.A.,&Andersen,A.N.(2016).Boosterheatpumpsandcentralheatpumpsindistrictheating.AppliedEnergy,184,1374–1388,2016.ISSN03062619.

Zainal,Z.(2007).Casestudyasaresearchmethod.

68

12 Appendix12.1 A1.ReferenceScenario–Cluj-Napoca

69

12.2 A2.Scenario2:Business-as-Usual2050

70

12.3 A3.Scenario3:Biomass+Solar2050

71

12.4 A4.Scenario4:Biomass+Solar+SolarDistrictHeating2050

72

Recommended