December 1983 Effect of Thrust Reverser Operation on the

Preview:

Citation preview

NASA Technical Paper 2234

December 1983

NASA

; NASA I TP i 2234

Effect of Thrust Reverser Operation on the Lateral- Directional Characteristics of a Three-Surface F-15 Model at Transonic Speeds

E. Ann Bare and Odis C. Pendergraft, Jr.

25th Anniversary 1958-1983

I

https://ntrs.nasa.gov/search.jsp?R=19840005097 2020-03-21T01:54:06+00:00Z

NASA Technical Paper 2234

1983

National Aeronautics and Space Administration

Scientific and Technical Information Branch

1983

TECH LIBRARY KAFB, NU

Effect of Thrust Reverser Operation on the Lateral- Directional Characteristics of a Three-Surface F-15 Model at Transonic Speeds

E. Ann Bare and Odis C. Pendergraft, Jr. Langley Research Center Hampton, Virginia

SUMMARY

An i nves t iga t ion w a s conducted i n t h e Langley 16-Foot Transonic Tunnel t o de t e rmine t he l a t e ra l -d i r ec t iona l aerodynamic c h a r a c t e r i s t i c s o f a f u l l y metric 0.047-scale model o f t h e F-15 three-surface Configurat ion (canards, wing, horizon- t a l ta i ls) wi th twin nonaxisymmetr ic or two-dimensional (2-D) nozzles and twin axi- symmetr ic nozzles instal led. The e f f e c t s o f 2-D n o z z l e i n - f l i g h t t h r u s t r e v e r s i n g and rudder def lect ion were also determined. Test da t a were obtained a t s t a t i c conditions and a t Mach numbers from 0.60 t o 1.20 over an angle-of-at tack range f rom -2O t o 150. Reynolds number var ied f rom 2.6 x 106 t o 3.8 X 10 . Angle of s i d e s l i p w a s se t a t approximately Oo and -5O f o r a l l configurat ions and a t approximately -100 € o r s e l e c t e d conf iqu ra t ions .

6

R e s u l t s o f t h e i n v e s t i g a t i o n i n d i c a t e t h a t t h r u s t r e v e r s i n g h a d o n l y s m a l l e f f e c t s on l a t e r a l - d i r e c t i o n a l s t a b i l i t y a n d d i r e c t i o n a l c o n t r o l a t t h e s u b s o n i c / t r anson ic f l i gh t speeds t e s t ed . The configuration with axisymmetric nozzles w a s s l i g h t l y more stable than the configuration with two-dimensional convergent-divergent nozzles.

INTRODUCTION

Recent s tud ie s o f tw in -eng ine f i gh te r a i r c ra f t ( r e f s . 1 t o 5 ) have i den t i f i ed a number of potential advantages of nonaxisymmetric nozzles as compared t o c o n v e n t i o n a l round or axisymmetric nozzles. One important benefit of nonaxisymmetric nozzles i s t h e a d a p t a b i l i t y o f t h e d e s i g n t o i n c l u d e t h r u s t v e c t o r i n g a n d r e v e r s i n g w i t h less weight penalty than conventional axisymmetric nozzles (refs. 5 and 6 ) . The a d d i t i o n o f t h r u s t r e v e r s i n g c a p a b i l i t i e s t o most c u r r e n t a n d f u t u r e f i g h t e r a i r c r a f t would g rea t ly enhance sho r t f i e ld t ake -o f f and l and ing (STOL) performance. Also, the use o f i n - f l i g h t t h r u s t r e v e r s i n g h a s t h e p o t e n t i a l t o improve a i r p l a n e a g i l i t y d u r i n g a i r - t o - a i r combat.

The performance of nonaxisymmetric nozzle thrust reversers a t s t a t i c and sub- sonic f l igh t condi t ions has been de te rmined in severa l exper imenta l inves t iga t ions ( r e f s . 7 t o 12) . These resu l t s ind ica te tha t h ighly e f f ic ien t nonaxisymmetr ic nozzles with thrust reversers can he designed. However, u s e o f t h e i n - f l i g h t t h r u s t reverser could cause s ign i f icant changes in a i rp lane t a i l l o a d s , p a r t i c u l a r l y f o r tw in -ve r t i ca l - t a i l conf i q u r a t i o n s ( r e f . 1 3 ) and could a lso degrade the cont ro l e f fec- t i v e n e s s o f h o r i z o n t a l - t a i l ( r e f . 11) and rudder surfaces ( ref . 1 4 ) .

A 0.047-scale sting-mounted aerodynamic model o f t h e F-15 three-surface confiqu- r a t ion ( cana rds , wing, ho r i zon ta l t a i l s ) w i t h t h e c o r r e c t i n l e t s h a p e a n d mass flow w a s p r e v i o u s l y t e s t e d i n t h e 16-Foot Transonic Tunnel , and the resu l t s a re repor ted i n r e f e r e n c e 15. Aerodynamic force and moment cor rec t ions for the s t ing-mounted aerodynamic model (canards o f f ) da ta to account for ax isymmetr ic nozz le-exhaus t f low can be found i n r e f e r e n c e 16. S t ing i n t e r f e rence and a f t - end d i s to r t ion co r rec t ions for the aerodynamic model without canards can be found i n re ference 17, a n d t h e e f f e c t s of a f t -end modi f ica t ions on the same aerodynamic model, such as v e r t i c a l t a i l s i z e a n d d o r s a l f i n a d d i t i o n , c a n b e f o u n d i n r e f e r e n c e 18. The longi tudinal aerody- namic da t a and t he s t a t i c nozz le per formance da ta for the subjec t model ( three- su r face F-15) o f t h i s r e p o r t a r e p r e s e n t e d i n r e f e r e n c e 19.

I

The purpose o f t he p re sen t i nves t iga t ion w a s t o d e t e r m i n e t h e e f f e c t of t h r u s t r eve r s ing on t he l a t e ra l -d i r ec t iona l ae rodynamic cha rac t e r i s t i c s o f a three-surface F- 15 propulsion model (canards, wing, h o r i z o n t a l t a i l s ) having fa i red-over in le t s . The model w a s tes ted with axisymmetr ic nozzles instal led and with two-dimensional convergent-divergent (2-D C-D) nozz le s i n s t a l l ed . Each nozz le type w a s t e s t e d i n t h e p o s i t i v e - t h r u s t mode, and t he 2-D C-D nozzles were a lso t e s t e d i n p a r t i a l a n d f u l l r eve r se - th rus t modes.

T h i s i n v e s t i g a t i o n w a s conducted i n t h e Langley 16-Foot Transonic Tunnel a t s ta t ic conditions and a t Mach numbers from 0.60 t o 1.20. Reynolds number var ied f rom 2 .6 X l o 6 t o 3.8 X l o6 ; angle o f a t tack w a s var ied f rom -2O t o 150. Angle of s ide- s l i p was set a t approximately Oo and - 5 O fo r the ax isymmetr ic nozz le conf igura t ion and a t approximately O o , - 5 O , and - l o o f o r s e v e r a l of t h e 2-D C-D nozzle configura- t i ons . Nozz le p re s su re r a t io was v a r i e d f r o m j e t o f f ( 1 . 0 ) t o about 6.5 depending on Mach nunber . D i f f e ren t i a l t h rus t r eve r s ing and t he e f f ec t o f rudde r de f l ec t ion were also invest igated. Further information on the instal la t ion of two-dimensional nozzles on t h e F-15 can be found i n r e f e r e n c e 20.

Ae

At

b

- C

C nhR

M

Pa

SYMBOLS

nozzle-exi t area, c m 2

nozzle- throat area, c m 2

wing span, 0.612 m

mean aerodynamic chord, c m

s ide - fo rce coe f f i c i en t , T o t a l s ide f o r c e

'rn side-force parameter , ( f rom pi tch tests a t B = 00 and -50 ) , per deg D-

rol l ing-moment coeff ic ient , T o t a l r o l l i n g moment qmSb

Acl l a t e r a l - s t a b i l i t y p a r a m e t e r , - ( f rom p i tch tes ts a t P = Oo and -So), A S per deg

yawing-moment c o e f f i c i e n t , T o t a l yawing moment

qmSb

"n d i r ec t iona l - s t ab i l i t y pa rame te r , - ( f rom p i tch tests a t

A P f3 = Oo and - 5 O ) , per deg

AC rudder power, - n ( f rom p i tch tests with 6, = Oo and -1 00 ) , per deg

f ree-stream Mach number

ambient s t a t i c p res su re , Pa

2

9, f ree-stream dynamic pressure , Pa

S wing r e fe rence area, 0.124 m2

a angle of a t tack, deg

B angle of s idesl ip , deg

6,

&REV nozz le th rus t - reverser f lap angle , deg ( f ig . IO)

rudde r de f l ec t ion ang le (nega t ive r i gh t ) , deg

Abbreviations:

ASME American Society of Mechanical Engineers

B.L. b u t t l i n e , cm

C-D convergent-divergent

F.S. f u s e l a g e s t a t i o n , cm

L.E. leading edge

L.H. l e f t hand

NPR nozz le p re s su re r a t io , Jet t o t a l p r e s s u r e Tunnel stat%- pressure

R.H. r i g h t hand

W.L. wa te r l ine

2 -D two-dimensional (nonaxisymmetric)

APPARATUS AND PROCEDURE

Wind Tunnel

Th i s i nves t iga t ion was conducted i n t h e Langley 16-Foot Transonic Tunnel, which is a single-return, continuous-flow, atmospheric wind tunnel wi th a s lo t t ed , oc t ago- n a l t e s t s e c t i o n m e a s u r i n g 4.8 m d i a m e t r i c a l l y t o m i d f l a t c e n t e r l i n e . With t h e a i d of a compressor system, which draws a i r o u t t h r o u g h s l o t s i n t h e t e s t s e c t i o n f o r M > 1.05, t h e t e s t - s e c t i o n a i r s p e e d i s continuously variable between Mach numbers of 0.20 and 1.30. F u r t h e r d e t a i l s on d imens ions and the opera t ing charac te r i s t ics o f t h e Langley 16-Foot Transonic Tunnel can be found i n r e f e r e n c e 21.

Support System

The model was s u p p o r t e d i n t h e t u n n e l by the s t i ng - s t ru t suppor t sys t em shown i n f i g u r e 1. High-pressure a i r l i n e s a n d a l l i n s t r u m e n t a t i o n were rou ted t h rough t h i s support system. The complete model w a s mounted on a n i n t e r n a l , six-component s t r a i n - gage ba l ance t h rough an adap te r t o t he s t i ng s t ru t . A yaw c l u t c h mechanism ( see f i g . 2) a t t a c h e d t o t h e s t r u t t o p was used t o yaw t h e model on t h e s t r u t .

3

I

f l e x i b l e metal bellows bellows ( la te ra l ) se rve f i c i e n t f l e x i b i l i t y f o r

The model u sed fo r

Propulsion Simulation System

The f a c i l i t y h i g h - p r e s s u r e a i r system provided a cont inuous f low of c lean, dry, hea ted a i r t o t h e model. This high-pressure a i r i s t r ans fe r r ed f rom a common high- pressure plenum i n t h e f r o n t o f t h e model t o the nozz le s by means of dual flow- t ransfer assembl ies . A sketch of the assembly i s shown i n f i g u r e 2. The two sets of

( l o n g i t u d i n a l ) i n c o n j u n c t i o n w i t h t h e two side-mounted metal t o minimize pressurizat ion ta res while still maintaining suf- prope r fo rce ba l ance ope ra t ion i n a l l s i x components.

Mode 1

t h i s i n v e s t i g a t i o n w a s a 0.047-scale model of an F-15 th ree - sur face conf igura t ion (canards , wing, h o r i z o n t a l t a i l s ) . T h i s model i s a f u l l y metric j e t - e f f e c t s model w i th f a i r ed -ove r i n l e t s t o a l l ow p ropu l s ion s imula t ion . A ske tch o f t he model i s shown i n f i g u r e 3. Figure 4 shows a photograph of the model i n s t a l l e d i n t h e Langley 16-Foot Transonic Tunnel. Wdel geometric characteristics a re given i n t a b l e I. The conf igura t ion i s charac te r ized by boom-mounted tw in ve r t i - c a l t a i l s ( t o e a n g l e , L.E. ou t , o f 2 O ) , a f t - l oca t ed boom-mounted ho r i zon ta l t a i l s , c losely spaced twin engines , and forward inlet-mounted canards. For t h i s i n v e s t i g a - t i o n , t h e c a n a r d s were s e t a t a nominal angle of - 6 O ( leading edge down) - the min i - mum d r a g a n g l e f o r s u b s o n i c c r u i s e f l i g h t as determined from unpublished wind-tunnel data . The i n t e r n a l t r a n s i t i o n d u c t ( f r o m r o u n d t o r e c t a n g u l a r c r o s s s e c t i o n € o r t h e 2-D C-D nozzles) w a s terminated a t f u s e l a g e s t a t i o n 91.592, which was t h e common connect po in t for a l l two-dimens iona l nozz les . Externa l hardware in te r fa i r ings w e r e added t o a d a p t t h e model a f t e rbody fo r smooth in tegra t ion of the rec tangular nozz le shape with 2-D C-D nozz le s i n s t a l l ed . The axisymmetr ic nozzles used an external ly t a p e r e d r i n g t o f a i r between F.S. 93.259 and F.S. 94.488.

Baseline axisymmetric noz-zles-.- A ske tch of t h e dry-power axisymmetric nozzle s h a w i m ~ i n f i g u r e 5. A ske t ch and t he coord ina te s o f t he f i xed shroud around the nacel le ahead of the movable n o z z l e b o a t t a i l s (movable on f l i g h t ha rdware on ly ) a r e g iven i n f i gu re 6. For t h i s i n v e s t i g a t i o n , o n l y t h e dry-power n o z z l e f l a p p o s i t i o n s were tes ted , us ing f ixed nozz le hardware .

Two-dimensional convergent-divergent nozzles.- The 2-D C-D nozzle design used f o r t h e c u r r e n t test s imula tes a var iab le-area in te rna l expans ion nozz le . The t h r o a t area and t h e e x i t area of the ful l -scale hardware would be independent ly control led by the separate actuat ion of the convergent and divergent nozzle f laps . Thrust r e v e r s a l would be accoTQlished by ac tua t ion o f t he conve rgen t f l aps , c lo s ing t he throat area while s imultaneously opening the reverse f low ports upstream. For a comple te descr ip t ion of th i s nozz le mechanism, see reference 8.

~ .~ ~" . " .

A photograph of the two-dimensional convergent-divergent nozzles installed on t h e F-15 model i s shown i n f i g u r e 7. A ske tch o f the forward- thrus t , dry-power 2-D C-D nozzle i s shown i n f i g u r e 8. The n o z z l e h a s f i x e d , s t r a i g h t ( p a r a l l e l i n s i d e sur face) s idewal l s which represent s idewal l s tha t do not change shape as the nozz le power se t t ing changes . Thus, when t h e n o z z l e b o a t t a i l f l a p s ( t o p a n d b o t t o m ) a re c losed down t o cruise o r dry-power se t t ing , the s idewal l s form channels over the f l ap surfaces . (See photograph i n f i g . 7 . ) A var iab le geometry s idewal l would be r e q u i r e d t o e l i m i n a t e t h e s e c h a n n e l s .

4

Figure 9 i s a photograph of the fully deployed 2-D C-D t h r u s t r e v e r s e r s i n s t a l - l e d on t h e F-15 model. Sketches of t h e two reverser deployments t es ted a re shown i n f i g u r e 10. The pa r t i a l ly dep loyed r eve r se r ( 6 = 900 ) was d e s i g n e d t o s p o i l a l l fo rward t h rus t , wh i l e t he fu l ly dep loyed r eve r se r (6,, = 1300 ) was des igned to p ro- duce approximately 50 p e r c e n t r e v e r s e t h r u s t a t M = 0.

REV

Instrumentation

Model forces and moments, i nc lud ing nozz le t h rus t con t r ibu t ions , were measured by an internal s ix-component s t ra in-gage balance. Internal cavi ty pressures w e r e measured a t two locations forward and two l o c a t i o n s a f t o f t h e yaw clutch. The mass- f low ra te (bo th nozz les ) was measured by a turb ine f low meter (ex terna l to the tun- n e l ) . The flow conditions in each nozzle were determined by two to t a l -p re s su re probes - one from t h e t o p and one from t h e s i d e o f e a c h t a i l p i p e - and one t o t a l - temperature probe in each nozzle . All pres su res were measured with individual pres- su re t r ansduce r s .

Tes t s

T e s t d a t a were taken a t Mach numbers of 0 .60 and 0 . 9 0 f o r a l l c o n f i g u r a t i o n s a n d a t 1.20 f o r s e l e c t e d c o n f i g u r a t i o n s . Angle of a t t a c k was ya r i ed from - 2 O t o 15O depending upon Mach number; n o z z l e p r e s s u r e r a t i o v a r i e d from approximately 1.0 ( j e t o f f ) t o a b o u t 6.5 depending upon Mach number. Data were t a k e n a t a nominal s i d e s l i p angle p of Oo f o r a l l c o n f i g u r a t i o n s a n d a t - 5 O and - loo for se lec ted conf igura- t i o n s . The model was p r e s e t a t a s e l ec t ed s ides l ip ang le be fo re each run by f i x i n g t h e model on t h e yaw c l u t c h mechanism. Basic data were obta ined by holding nozzle p re s su re r a t io cons t an t and va ry ing ang le of attack. Undeflected rudders were tested with a l l c o n f i g u r a t i o n s , a n d s e l e c t e d c o n f i g u r a t i o n s were t e s t ed w i th t he rudde r s d e f l e c t e d a t -1 00.

Boundary-layer t r a n s i t i o n was f ixed on the model by means of 0.25-cm-wide s t r i p s of N o . 120 carborundum g r i t . These s t r i p s were loca ted 1.91 cm a f t ( s t r e a m i s e ) of t h e n o s e a n d t h e i n l e t f a i r i n g s . T r a n s i t i o n s t r i p s were a l s o l o c a t e d on a l l l i f t i n g su r faces a t 5 percent o f the loca l chord . The methods d e s c r i b e d i n r e f e r e n c e s 2 2 and 23 were used t o d e t e r m i n e t h e l o c a t i o n s of t h e s e s t r i p s a n d t h e g r i t s i z e .

Data Reduction

All d a t a f o r b o t h t h e model and t h e wind tunne l were recorded simultaneously on magnetic tape. For each data point, approximately 50 frames of data, taken a t a r a t e of 10 frames per second, were used to ob ta in average recorded da ta . The average data were used t o compute s tandard force and moment c o e f f i c i e n t s u s i n g wing area and span f o r r e f e r e n c e area and length. Correct ions w e r e made t o t h e f o r c e d a t a t o a c c o u n t fo r he l lows /ba lance i n t e rac t ion t a r e s ( r e f s . 7 and 11). I n addi t ion , ba lance cor rec- t i o n s were a l s o made t o a c c o u n t f o r i n t e r n a l c a v i t y p r e s s u r e / a r e a t a r e s .

Model ang le o f a t t ack and s ides l ip were co r rec t ed by a p p l y i n g s t i n g d e f l e c t i o n terms caused by bending under aerodynamic load. A f low angular i ty adjustment of 0. l o , which is the average upflow angle measured in the Langley 16-Foot Transonic

5

Tunnel, w a s a p p l i e d t o a n g l e o f a t t a c k . No sidef low angle adjustment was made; how- eve r , pas t expe r i ence has shown s i d e f l o w i n t h e 16-Foot Transonic Tunnel t o be gener- a l l y 0.10 or less.

Mass-flow rate through the nozzles w a s determined by us ing to ta l -pressure and total- temperature measurements in the f low-transfer assemblies and f low constants determined from pretest c a l i b r a t i o n s w i t h ASME s tandard nozz les .

Jet t o t a l - p r e s s u r e p r o f i l e s were de termined for ax isymnet r ic nozz les and the 2-D C-D nozz le s w i th s t r a igh t s idewa l l s by use of movable Kiel p r o b e s ( t o t a l pres- s u r e ) . Each in t e rna l t o t a l -p re s su re p robe w a s c o r r e c t e d t o t h e i n t e g r a t e d v a l u e o f j e t t o t a l p r e s s u r e a t the nozz le t h roa t .

PRESENTATION OF RESULTS

The r e s u l t s o f t h i s i n v e s t i g a t i o n a r e p r e s e n t e d i n p l o t t e d c o e f f i c i e n t f o r m . Unless o therwise no ted on the f igures , da ta a re €or the base l ine conf igura t ion wi th boom-mounted t w i n v e r t i c a l t a i l s ( t o e a n g l e , L.E. out , of 2O) and boom-mounted h o r i - z o n t a l t a i l s a t Oo def l ec t ion .

The b a s i c l a t e r a l - d i r e c t i o n a l p e r f o r m a n c e d a t a f o r a l l c o n f i g u r a t i o n s a r e p r e - sen ted i n t he fo l lowing f i gu res :

Figure

Baseline configuration with axisymmetric nozzles - @ = Oo; M = 0.60, 0.90, 1.20 ............................................. 11 @ = -50; r4 = 0.60, 0.90 .................................................. 12

Baseline conf igura t ion wi th 2-D C-D nozzles - @ = O O ; M = 0.60, 0.90, 1.20 ............................................. 13 @ = - 5 O ; M = 0.60, 0.90 .................................................. 14 @ = -IOo; M = 0.60, 0 .90 ................................................. 1 5

2-D C-D nozzles and rudders def lected - 6 = -IOo; M = 0.60, 0.90, 1.-20 .......................................... 16 R

2-D C-D nozz le s and ve r t i ca l tai ls removed - M = 0.60, 0.90, 1.20 ...................................................... 17

2-D C-D nozz le s w i th t h rus t r eve r s ing - @ = 0 0 ; 6,, = 900; M = 0.60, 0.90, 1.20 ................................ 18

@ = 00; 6,, = 1300; M = 0.60, 0.90, 1.20 ............................... 20 @ = -50; 6,, = 90°; M = 0.60, 0.90 ..................................... 19

@ = -50. . 6,, = 1300; M = 0.60, 0.90 .................................... 21 @ = -100; 6,, = 1300; M = 0.60, 0.90 ................................... 22

2-D C-D n o z z l e s w i t h d i f f e r e n t i a l r e v e r s i n g - ......................... 6,V

6, = -100; 6," = 900; M = 0.60, 0.90, 1.20 ............................. 2 4

= Oo (L.H.), 130' ( R . H . ) ; M = 0, 0.60, 0.90 23

2-D C-D nozz les wi th th rus t reversers and rudders def lec ted - 6, = - l o o ; 6,, = 1300; M = 0.60, 0.90, 1.20 ............................ 2 5

6

Figure

2-D C-D nozz le s w i th t h rus t r eve r se r s and ve r t i ca l and ho r i zon ta l t a i l s removed - .......................... 6R, 6R,

= 1 30°; v e r t i c a l t a i l s o f f ; M = 0.60, 0.90 26 = 1 30°; ho r i zon ta l t a i l s o f f ; M = 0.60, 0.90, 1.20 27

6,, = 1 30°; v e r t i c a l a n d h o r i z o n t a l tails o f f ; M = 0.60, 0.90 ........... 28 ..................

S t a t i c s t a b i l i t y d e r i v a t i v e s are presented i n t he fo l lowing f i gu res :

2-D C-D nozzles - 14 = 0.60, 0.90 ............................................................ 30

S ta t ic s t a b i l i t y d e r i v a t i v e s w i t h 2-D C-D nozzle , thrust reversers deployed - 6,, = goo; M = 0.60, 0.90 ............................................... 32 6,, = 130O; M = 0.60, 0.90 .............................................. 33 Effect of 2-D C-D n o z z l e t h r u s t r e v e r s e r s on s t a t i c s t a b i l i t y d e r i v a t i v e s ;

M = 0.60, 0.90 .......................................................... 34

Effec t o f 2-D C-D n o z z l e t h r u s t r e v e r s e r s on d i r e c t i o n a l c o n t r o l - M = 0.60, 0.90, 1.20 ...................................................... 38

DISCUSSION

Basic Data

Forward-thrust mode.- The l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the th ree- su r face F-15 conf igura t ion wi th the nozz les in the forward- thrus t mode a re presented i n aerodynamic coef f ic ien t form, inc luding th rus t cont r ibu t ions i f any , in f igures 11 t o 17. Data a re shown a t f3 = Oo i n f i g u r e s 1 1 , 13, 16, and 17, a t f3 = -5' i n f i g u r e s 1 2 and 14, and a t f3 = -1 Oo i n f i g u r e 15. The d a t a a re p lo t t ed ve r sus ang le of a t t a c k a t c o n s t a n t s i d e s l i p a n g l e a n d a t va r ious nozz le p re s su re r a t io s . For

, f3 = Oo a symmetrical model ( l e f t t o r i g h t ) w i t h t h e l a t e r a l - d i r e c t i o n a l c o n t r o l . sur faces s e t a t Oo should have la te ra l -d i rec t iona l force and moments of zero. How-

e v e r , f o r t h i s c o n f i g u r a t i o n ( f i g s . l l and 13) , t h e d a t a show t h a t small va lues were measured f o r e a c h l a t e r a l - d i r e c t i o n a l component. Poss ib l e r ea sons fo r t hese va lues are small d i f f e r e n c e s i n model symmetry or s l igh t misa l ignment . S ince mos t o f the conclus ions o f th i s s tudy are based on i n c r e m e n t a l data f rom f3 = Oo , it i s be l ieved t h a t t h e s e small values w i l l n o t a f f e c t t h e r e s u l t s .

7

tha t the ax isymmetr ic nozz les were properly alignecl and of equal thrust . For the forward-thrust 2-D C-D nozzle configurat ion, j e t operation produced similar r e s u l t s , t h a t is, l i t t l e o r no e f f e c t on t h e b a s i c l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a t p = 00 ( f i g . 1 3 ) , p = -5O ( f ig . 14) , and p = - IOo ( f i g . 1 5 ) .

Comparing t h e d a t a i n f i g u r e s 13 t o 15 shows inc reas ing s ide - fo rce coe f f i c i en t , more negative yawing moment (except a t M = 0.90 above a = IOo ), and more p o s i t i v e r o l l i n g moment as t h e s i d e s l i p a n g l e becomes more negative. This would be expected f o r a l a t e r a l l y a n d d i r e c t i o n a l l y s t a b l e a i r c r a f t .

The e f f e c t of NPR on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the configura- t ion wi th 2-D C-D nozzles and rudder deflected -1 Oo i s shown i n f i g u r e 16. Jet operation had only small e f f e c t s on a l l parameters , as was previous ly no ted for the other configurat ions with 2-D C-D nozzles and undeflected rudders. Comparing f i g - u r e 16 wi th f igure 13 shows, a s would be expected, that def lect ing the rudder pro- duces more nega t ive s ide force and a l a r g e p o s i t i v e i n c r e a s e i n yawinglnoment coe f f i c i en t .

Data for the conf igura t ion wi th 2-D C-D nozz les and ver t ica l t a i l s removed a r e presented i n f i g u r e 17. The e f f e c t s of j e t o p e r a t i o n a r e s i m i l a r t o t h o s e a l r e a d y n o t e d f o r t h e same c o n f i g u r a t i o n w i t h v e r t i c a l t a i l s i n s t a l l e d ( f i g . 1 3 ) . Note t h a t removing t h e v e r t i c a l t a i l s c a u s e s a change i n s ign of t h e yawing-moment c o e f f i c i e n t . (Compare f i g . 17 wi th f ig . 13. ) This yawing-moment s h i f t c a n b e l a r g e l y a t t r i b u t e d t o a m i s a l i g n m e n t o f t h e v e r t i c a l t a i l s s i n c e t h e v e r t i c a l - t a i l s - o f f , s i d e - f o r c e d a t a are nearer zero. This would a l so exp la in t he sma l l l a t e ra l -d i r ec t iona l fo rce and moments a t = Oo n o t e d e a r l i e r .

Reverse-thrust mode.- L a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the configurat ion with 2-D C-D nozz les wi th par t ia l ly deployed th rus t reversers ( 6 R m = 90°) a r e p r e - sented i n f i g u r e s 18 and 19. J e t o p e r a t i o n of t he pa r t i a l ly dep loyed t h r u s t revers- e r s a t @ = Oo h a s l i t t l e e f f e c t on the rol l ing-moment and s ide-force coeff ic ients . Yawing-moment c o e f f i c i e n t shows l i t t l e e f f e c t a t M = 0.60; however, the yawing- moment c o e f f i c i e n t i s reduced a t M = 0.90 and M = 1 .20. A s s i d e s l i p a n g l e i s decreased to - 5 O , t h e r e i s a g r e a t e r e f f e c t of NPR on yawing moment. A t s i d e s l i p t h e inboard surface of t h e windward v e r t i c a l t a i l i s s h e l t e r e d from the free-stream flow, and the decrease i n yawing moment i s probably due t o t h e impingement of the reverse flow plume on th i s i nboa rd su r f ace of t h e v e r t i c a l t a i l . S i d e - f o r c e c o e f f i c i e n t i s unaffected by operat ion of t h e j e t , and t h e r e i s a s l i g h t r e d u c t i o n i n r o l l i n g moment .

The e f f e c t of fu l ly dep loyed t h rus t r eve r se r s (6mv = 130°) on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the conf igura t ion wi th 2-D C-D nozzles i s presented i n f i gu res 20 t o 22. As shown by f i g u r e 2 0 , full deployment increases t h e e f f e c t o f j e t operat ion on yawing moment a t = 00. (Compare wi th f ig . 18. ) There i s a l s o some small e f f e c t on roll ing-moment and side-force coefficients. However, as angle of s i d e s l i p is decreased to -So ( f i g . Z I ) , t h e r e is no corresponding increase i n t h e e f f e c t of reverser opera t ion on yawing moment a s was n o t e d f o r r e v e r s e r p a r t i a l l y deployed (6mv = goo) . I n f a c t , t h e r e is a decrease i n t h e magnitude of t h e e f f e c t of NPR on yawing moment a t 8 = - 5 O . The trend of yawing moment with angle of a t tack i s a l so d i f f e ren t w i th t h rus t r eve r se r fu l ly dep loyed . A t h igher angles of a t tack (above 1 2 O a t M = 0.60, and above 8O a t M = 0.90), yawing moment increases with inc reas ing NPR. A t a s i d e s l i p a n g l e of -100 ( f i g . 22) , the c rossover i n yawing moment occurs a t a = 00. At p = -50, j e t operat ion caused a s l i g h t d e c r e a s e i n s ide - fo rce coe f f i c i en t and a s i g n i f i c a n t r e d u c t i o n i n roll ing-moment coefficient

8

( f ig . 21 ) . The e f f e c t i n c r e a s e s w i t h d e c r e a s i n g a n g l e o f s i d e s l i p ( f i g . 2 2 ) , p a r t i c - u l a r l y on roll ing-moment coefficient. These t r e n d s i n d i c a t e t h a t t h e j e t plumes from the fu l ly dep loyed t h rus t r eve r se r s (6mv = 1300) inf luence the ver t ica l t a i l s and a f t e rbody , and a l so t he wing.

The e f f e c t s o f d i f f e r e n t i a l r e v e r s i n g o n t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s are p r e s e n t e d i n f i g u r e 23. D i f f e r e n t i a l r e v e r s i n g w a s simulated by o p e r a t i n g t h e l e f t -hand nozz le i n t he fo rward - th rus t mode (6mv = O o ) and by o p e r a t i n g t h e r i g h t - hand nozz le wi th th rus t reverser fu l ly deployed (fjmV = 130° ). Data are shown a t M = 0 i n f i g u r e 2 3 ( a ) t o i n d i c a t e t h e m a g n i t u d e o f t h e s t a t i c t h r u s t c o n t r i b u t i o n t o e a c h l a t e r a l - d i r e c t i o n a l component as a func t ion of NPR. S ide- force coef f ic ien t varied from approximately 0, j e t o f f , t o a maximum of -0.0016 a t NPR = 5.0; yawing- moment coe f f i c i en t i nc reased f rom 0 t o 0.0024 a t NPR = 6.2. mlling-moment coef- f i c i e n t r e m a i n e d e s s e n t i a l l y 0. A t s t a t i c cond i t ions ( M = 01, computed c o e f f i c i e n t s a re based on the ambient s t a t i c p r e s s u r e s i n c e t h e dynamic p res su re i s 0 a t M = 0 ; f o r example,

-~ - Total._yawing moment 'n I M= o PaSb

The values of j e t t o t a l p r e s s u r e e q u i v a l e n t t o t h e o p e r a t i n g NPR a t M = 0.60 and M = 0 .90 are i n d i c a t e d i n f i g u r e 2 3 ( a ) . A t M = 0.60 ( f i g . 2 3 ( b ) ) , d i f f e r e n t i a l t h r u s t r e v e r s i n g c a u s e s a n i n c r e a s e i n s i d e f o r c e a n d r o l l i n g moment and a decrease i n yawing moment. The t r ends o f yawing moment and s ide fo rce a r e oppos i te those e x p e c t e d f r o m t h e s t a t i c t h r u s t c o n t r i b u t i o n s . In add i t ion , no e f f ec t on r o l l i n g moment would be expected. Thus, the trends observed a t M = 0.60 i n d i c a t e a n i n t e r - a c t i o n of t he d i f f e ren t i a l r eve r se f l ow wi th t he ex te rna l ae rodynamics which more t h a n o f f s e t s t h e t h r u s t c o n t r i b u t i o n . A t M = 0.90 ( f i g . 2 3 ( c ) ) , d i f f e r e n t i a l t h r u s t r e v e r s i n g h a s a l a r g e r e f f e c t on yawing moment and a s m a l l e r e f f e c t on s i d e f o r c e t h a n o b s e r v e d a t M = 0.60, thus ind ica t ing tha t the j e t -p lume/ f ree-s t ream f low i n t e r a c t i o n s are very Mach number dependent.

The l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s o f t h e c o n f i g u r a t i o n w i t h d e f l e c t e d rudders ( 6 , = - loo ) and dep loyed t h rus t r eve r se r a r e shown i n f i g u r e 24 (hmV = g o o ) and f i gu re 25 (6mv = 1300) . Opera t ion of the th rus t reversers wi th def lec ted rud- d e r s ( f i g s . 24 and 25) produced trends similar t o t h o s e d i s c u s s e d p r e v i o u s l y f o r t h e same conf igura t ions wi th 6, = 00 ( f i g s . 18 and 2 0 ) . Side-force and rolling-moment c o e f f i c i e n t s a re on ly s l i gh t ly a f f ec t ed . The r e d u c t i o n i n yawing moment f o r r e v e r s e r pa r t i a l ly dep loyed i s s l i g h t l y g r e a t e r t h a n n o t e d f o r u n d e f l e c t e d r u d d e r ( M = 1.20); however, a g r e a t e r r e d u c t i o n i n yawing-moment coe f f i c i en t occu r red a t a l l Mach num- b e r s w i t h t h e r e v e r s e r o p e r a t i n g i n i t s fu l ly dep loyed pos i t i on .

Figures 26, 27, and 2 8 p re sen t t he e f f ec t s o f r emov ing empennage s u r f a c e s ( v e r t i c a l t a i l s on ly , ho r i zon ta l ta i ls on ly , and bo th ve r t i ca l and ho r i zon ta l t a i l s ) f o r t h e c o n f i g u r a t i o n w i t h t h r u s t r e v e r s e r s f u l l y d e p l o y e d (hmV = 130° ) . With t h e ver t ica l t a i l s removed ( f i g . 2 6 ) , o p e r a t i o n of t h e j e t has very little e f f e c t on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a t e i t h e r M = 0.60 o r M = 0.90. This w a s a l s o t h e case f o r a l l tai ls removed ( f ig . 28 ) . When t h e h o r i z o n t a l t a i l s are removed ( f i g . 271, t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a re ve ry similar t o t h o s e w i t h a l l t a i l s i n p l a c e . (Compare f ig. 27 wi th f i g . 20. ) This would indicate that most of t h e t h r u s t r e v e r s i n g e f f e c t s on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a r e a s soc i - a t e d w i t h t h e r e v e r s e - t h r u s t j e t - p l u m e i n t e r a c t i o n w i t h t h e f l o w f i e l d a n d t h a t t h e r e i s some misalignment i n t h e i n s t a l l a t i o n o f t h e v e r t i c a l ta i ls .

9

I . I I 1, ,,,,...- .,.,,. ,..._.."".."..._. "

Comparison and Summary Data

Static s t a b i l i t y d e r i v a t i v e s . - F i g u r e s 29 and 30 show t h e e f f e c t o f j e t opera- t i o n on t h e s ta t ic s t a b i l i t y d e r i v a t i v e s f o r t h e c o n f i g u r a t i o n w i t h a x i s y m m e t r i c nozzles and with 2-D C-D nozzles . In general , j e t ope ra t ion shows no e f f e c t on t h e d i h e d r a l e f f e c t C . D i r e c t i o n a l s t a b i l i t y shows little o r no e f f e c t of j e t

opera t ion a t M = 0.60. A t M = 0.90, t h e r e i s a small i n c r e a s e i n t h e d i r e c t i o n a l s t a b i l i t y w i t h j e t operat ion.

( 4 (end

Figure 31 shows t h e e f f e c t of afterbody/nozzle shape on s ta t ic s t a b i l i t y d e r i v a - t i ves . D ihedra l e f f ec t is unaf fec ted , whi le the conf igura t ion wi th ax isymmetr ic noz- z l e s is more d i r e c t i o n a l l y s t a b l e a t both M = 0 .60 and M = 0.90.

Figures 32 and 33 show t h e e f f e c t s o f j e t o p e r a t i o n o n t h e s t a t i c s t a b i l i t y d e r i v a t i v e s of t h e 2-D C-D conf igura t ions wi th th rus t reversers deployed . As would be expec ted , j e t opera t ion had a l a rge r e f f ec t w i th r eve r se r dep loyed t han w i th r eve r se r stowed. The impact of reverser operation i s p a r t i c u l a r l y e v i d e n t on t h e d i r e c t i o n a l - s t a b i l i t y d e r i v a t i v e C . D i r e c t i o n a l s t a b i l i t y is genera l ly increased

by t h r u s t r e v e r s e r o p e r a t i o n a t low angles o f a t tack . A t h igher angles of a t t a c k , j e t operation produces a s m a l l e r i n c r e a s e i n d i r e c t i o n a l S t a b i l i t y t o t h e p o i n t t h a t the j e t -on curve c rosses the j e t -of f curve and a d e c r e a s e i n d i r e c t i o n a l s t a b i l i t y occurs ( f igs . 32(b) and 33) . The c rossover po in t of t h e j e t - o n a n d j e t - o f f d i r e c t i o n a l - s t a b i l i t y c u r v e s t e n d s t o move t o a lower angle of a t tack with increasing Mach number and i nc reas ing r eve r se r deployment. I n f i g u r e 3 2 ( a ) t h e c u r v e s do n o t c ros s , bu t it is e x p e c t e d t h a t a t a higher angle of a t tack they probably would. The i n c r e a s e i n d i r e c t i o n a l s t a b i l i t y a t low angles o f a t tack i s probably due t o a block- age of the free-stream flow by the reverse f low plume which causes an increase i n v e r t i c a l - t a i l s i d e f o r c e ( r e f . 2 0 ) . This i s p a r t i c u l a r l y e v i d e n t ( f i g . 3 2 ) f o r t h e r eve r se r pa r t i a l ly dep loyed (6mv = 9 0 ° ) a s most of the reverse f low i s contained between t h e v e r t i c a l t a i l s . With i n c r e a s i n g a n g l e o f a t t a c k , d i r e c t i o n a l s t a b i l i t y ( j e t off and j e t on) decreases as a s m a l l e r a r e a o f t h e v e r t i c a l t a i l i s exposed t o the f ree-s t ream f low. During reverser operat ion, there i s a l s o i n c r e a s i n g impinge- ment by t h e r e v e r s e f l o w plume inboard of the windward v e r t i c a l t a i l which causes an even sharper l o s s i n s t a b i l i t y . The Configuration becomes d i r e c t i o n a l l y u n s t a b l e wi th t he r eve r se r fu l ly dep loyed a t M = 0.90 and a > 1 2 O .

n B

There is a s l i g h t d e c r e a s e i n t h e d i h e d r a l e f f e c t w i t h t h e o p e r a t i o n o f t h e th rus t r eve r se r s pa r t i a l ly dep loyed ( f ig . 32 ) . The re is a somewhat l a rge r dec rease i n d i h e d r a l e f f e c t w i t h t h e t h r u s t r e v e r s e r s f u l l y d e p l o y e d ( f i g . 3 3 ) . The r e v e r s e r e x h a u s t e x i t p o r t s a r e l o c a t e d a s h o r t d i s t a n c e a f t of t h e wing t r a i l i n g edge. The r e s u l t s shown i n f i g u r e s 32 and 33 i nd ica t e i n t e r f e rence e f f ec t s of t he r eve r se f l ow plume on t h e wing flow f i e l d c a u s i n g a l o s s i n l i f t on t h e windward wing. As would b e e x p e c t e d , t h e e f f e c t of j e t o p e r a t i o n i n c r e a s e s w i t h i n c r e a s i n g r e v e r s e r deployment.

Figure 34 summarizes t h e e f f e c t of t h r u s t r e v e r s e r deployment on t h e l a t e r a l - d i r e c t i o n a l s t a b i l i t y d e r i v a t i v e s a t o p e r a t i n g NPR. The same e f f ec t s a l r eady no ted are seen when p a r t i a l l y a n d f u l l y d e p l o y e d t h r u s t r e v e r s e r s a r e compared wi th reverser stowed a t o p e r a t i n g NPR.

Rudder d i r ec t iona l - con t ro l e f f ec t iveness . - - A major concern of using in-f l ight t h r u s t r e v e r s e r s i s t h e e f f e c t of-the reverse f low on control s u r f a c e s , s u c h a s t h e r u d d e r o r v e r t i c a l t a i l , and ho r i zon ta l t a i l s . (See r e f . 7 . ) When rudde r s a r e de f l ec t ed on t h e t w i n v e r t i c a l t a i l s , o n e i s de f l ec t ed i nboa rd between t h e v e r t i c a l

10

t a i l s and one is d e f l e c t e d o u t b o a r d o f t h e v e r t i c a l t a i l . F i g u r e s 35 t o 37 s h w t h e e f f e c t of j e t opera t ion on rudder cont ro l power. Jet ope ra t ion w i th t he r eve r se r s towed caused an increase in rudder power a t M = 0 .60 but had only small e f f e c t s a t M = 0.90 and 1.20. With th rus t r eve r se r s pa r t i a l ly and fu l ly dep loyed , j e t oper- a t ion causes a dec rease i n rudde r power. As might be expected, the effect of j e t o p e r a t i o n t e n d s t o i n c r e a s e w i t h i n c r e a s i n g r e v e r s e r deployment. Figure 38 summa- r i z e s t h e e f f e c t of t h r u s t r e v e r s i n g on rudde r d i r ec t iona l - con t ro l e f f ec t iveness a t opera t ing NPR. S ince t he r eve r se r exhaus t ex i t po r t s are located forward of the rudder , there should be no reverser exhaust f low impingement on the rudder . Any e f f e c t of t h e t h r u s t r e v e r s e r on rudder cont ro l e f fec t iveness p robably resu l t s f rom blockage of the f ree-stream flow by the reverse f low plumes. As would be expected, t h e l a r g e s t l o s s i n r u d d e r e f f e c t i v e n e s s o c c u r r e d a t the l owes t Mach number, 0.60 , w i t h e s s e n t i a l l y no e f f e c t a t M = 1.20. The l o s s i n r u d d e r e f f e c t i v e n e s s d u e t o th rus t revers ing , though no t iceable , would p robab ly no t g rea t ly a f f ec t t he hand l ing q u a l i t i e s of t h e F- 15. There is a l s o no ind ica t ion of the t o t a l loss i n t h e c o n t r o l - su r f ace e f f ec t iveness , as was n o t e d i n r e f e r e n c e 7 , f o r a genera l research a f te rbody model w i t h t h e v e r t i c a l tai ls loca ted fo rward o f t he r eve r se r ex i t po r t s .

CONCLUSIONS

An invest igat ion has been conducted in the Langley 16-Foot Transonic Tunnel t o de te rmine the l a te ra l -d i rec t iona l aerodynamic charac te r i s t ics o f a f u l l y metric 0.047-scale model of t h e F-15 th ree-sur face conf igura t ion (canards , wing, ho r i zon ta l tai ls) with twin two-dimensional (2-D) nozzles and twin axisymmetric nozzles instal- led. The e f f e c t s o f 2-D nozz le i n - f l i gh t t h rus t r eve r s ing and rudde r de f l ec t ion were also determined. Test data were obta ined a t s t a t i c c o n d i t i o n s a n d a t Mach numbers from 0.60 t o 1.20 over an angle-of-attack range from -2O t o 15O. Angle of s i d e s l i p w a s s e t a t approximately Oo and -5O f o r a l l configurat ions and a t approximately - l o o f o r s e l e c t e d c o n f i g u r a t i o n s . R e s u l t s from t h i s i n v e s t i g a t i o n i n d i c a t e t h e f o l l o w i n g :

1 . Dif fe ren t i a l r eve r s ing ( l e f t -hand r eve r se r s towed , r i gh t -hand r eve r se r fu l ly deployed) reduced yawing moment f o r Mach 0.60, an oppos i te e f fec t f rom tha t expec ted from t h e s t a t i c t h r u s t c o n t r i b u t i o n . This ind ica t e s t ha t t he e f f ec t o f t he j e t -p lume f low in te rac t ing wi th the f ree-s t ream f low on external aerodynamics more t h a n o f f s e t s t h e t h r u s t c o n t r i b u t i o n f o r e a c h component.

2. The configuration with axisymmetric nozzles w a s s l i g h t l y more d i r e c t i o n a l l y s table than the configurat ion with two-dimensional convergent-divergent nozzles .

3. D i r e c t i o n a l s t a b i l i t y i s genera l ly increased by j e t o p e r a t i o n w i t h t h r u s t reverser deployed a t low angles of a t tack. The i n c r e a s e i n s t a b i l i t y becomes small a t i nc reas ing ang le s of a t t a c k u n t i l t h e j e t - o n c u r v e c r o s s e s t h e j e t - o f f c u r v e a n d a d e c r e a s e i n d i r e c t i o n a l s t a b i l i t y o c c u r s . T h i s c r o s s o v e r p o i n t t e n d s t o move t o a lower angle o f a t tack wi th increas ing Mach number.

4. Dihedra l e f fec t is dec reased s l i gh t ly by thrust reverser deployment .

5. D i r e c t i o n a l c o n t r o l power is reduced by j e t o p e r a t i o n w i t h t h r u s t r e v e r s e r s deployed, but probably not enough t o b e s i g n i f i c a n t i n a i r c r a f t h a n d l i n g q u a l i t i e s .

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 October 18, 1983

1 1

REFERENCES

1. Martens, Richard E.: F-15 Nozzle/Afterbody Integration. J. Aircr., vol. 13, no. 5, May 1976, pp. 327-333.

2. Hiley, P. E.; Wallace, H. W.; and BOOZ, D. E . : Nonaxisymmetric Nozzles Instal- l e d i n Advanced Fighter Ai rcraf t . J. Aircr., vol. 13, no. 12, Dec. 1976, pp. 1000-1006.

3. Berrier, Bobby L.; Palcza, J. Lawrence; and Richey, G. Keith: Nonaxisymmetric Nozzle Technology Program - An Overview. A I A A Paper 77-1225, Aug. 1977.

4. Capone, Franc is J. : The Nonaxisymmetric Nozzle - It Is f o r Real. AIAA Paper 79-1810, Aug. 1979.

5. Miller, Eugene H.; and Protopapas, John: Nozzle Design and Integration in an Advanced Supersonic Fighter. A I A A Paper 79-1813, Aug. 1979.

6. Stevens, H. L.: F-l5/Nonaxisymmetric Nozzle System Integration Study Support Program. NASA CR-135252, 1978.

7. Capone, Franc is J.; and Maiden, Donald L.: Performance of Twin Two-Dimensional Wedge Nozzles Including Thrust Vectoring and Reversing Effects a t Speeds up t o Mach 2.20. NASA T N D-8449, 1977.

8. Capone, Franc is J. : Static Performance of Five Twin-Engine Nonaxisymmetric Noz- z l e s With Vectoring and Reversing Capabili ty. NASA TP-1224, 1978.

9. Hiley, P. E. ; Kitmiller, D. E.; and Willard, C. M.: Installed Performance of Vectoring/Reversing Nonaxisymmetric Nozzles. J. Aircr. , vol. 16, no. 8, AUg. 1979, pp. 532-538.

10. Pendergraf t , 0. C . : Comparison of Axisymmetric and Nonaxisymmetric Nozzles I n s t a l l e d o n t h e F-15 Configuration. A I A A Paper 77-842, July 1977.

11. Capone, Franc is J. ; and Berrier, Bobby L. : Inves t iga t ion of Axisymmetric and Nonaxisymmetric Nozzles Ins ta l led on a 0.10-Scale F-18 Prototype A i r p l a n e Model. NASA TP-1638, 1980.

12. Re, Richard J. ; and Berrier, Bobby L. : Sta t ic Internal Performance of S ingle Expansion-Ramp Nozzles With Thrust Vectoring and Reversing. NASA TP-1962, 1982.

13. Bare, E. Ann; Berrier, Bobby L.; and Capone, Franc is J. : Effect of Simulated In-Flight Thrust Reversing on Vertical-Tail Loads of F-18 and F-15 X r p l a n e Models. NASA TP-1890, 1981.

14. Capone, Franc is J.; Re, Richard J.; and Bare, E. Ann: Tnrust Reversing Effects on Twin-Engine Ai rc ra f t Having Nonaxisymmetric Nozzles. AIAA-8 1-2639, Dec. 1981.

15. Henderson, W i l l i a m P. ; and Leavitt , Laurence D. : S t a b i l i t y a n d C o n t r o l Charac- teristics of a Three-Surface Advanced Fighter Configuration a t Angles of A t t a c k Up to 45O. NASA TM-83171, 1981.

1 2

16.

17.

18.

19.

20.

2 1.

22.

23.

Berrier, Bobby L. ; and Maiden, Donald L. : Effect of Nozzle-Exhaust Flow on t h e Longitudinal Aerodynamic Characteristics of a Fixed-Wing, Twin-Jet F igh te r Airplane Model. NASA TM X-2389, 1971.

Maiden, Donald L. ; and Ber r ie r , Bobby L. : E f f e c t s of Afterbody Closure and Sting In te r fe rence on the Longi tudina l Aerodynamic C h a r a c t e r i s t i c s of a Fixed-Wing, Twin-Jet Fighter Airplane Model. NASA TM X-24 15, 197 1.

Maiden, Donald L. ; and Berrier, Bobby L. : Effect of Airframe Modifications on Longitudinal Aerodynamic Charac t e r i s t i c s o f a Fixed-Wing, Twin-Jet F igh te r Airplane Model. NASA TM X-2523, 1972.

Pendergraft, Odis C . , Jr.; and Bare, E. Ann: Effect of Nozzle and Vertical-Tail Variables on t h e Performance of a Three-Surface F-15 Model a t Transonic Mach Numbers. NASA TF-2043, 1982.

F-15 2-D Nozzle System Integrat ion Study. Volume I - Technical Report. NASA CR-145295, 1978.

Corson, Blake W . , Jr. ; Runckel, Jack F.; and Igoe, W i l l i a m B.: Ca l ibra t ion of t h e Langley 16-Foot Transonic Tunnel With Test Section Air Removal. NASA TR R-423, 1994-

Braslow, Albert L.; Hicks, Raymond M.; and Harr is , Roy V., Jr. : U s e of Grit-Type Boundary-Layer-Transition Trips on Wind-Tunnel Models. Conference on A i r c r a f t Aerodynamics, NASA SP-124, 1966, pp. 19-36. (A l so ava i l ab le as NASA T N D-3579.)

Braslow, Albert L. ; and Knox, Eugene C. : Simplif ied Method for Determination of Cr i t i ca l Height of Distributed Roughness P a r t i c l e s f o r Boundary-Layer Transi- t i o n a t Mach Numbers From 0 t o 5. NACA T N 4363, 1958.

13

TABLE 1.- MODEL GEOMETRIC CHARACTERISTICS

Overal l mode1 length. m ........................................................ 0.93

Wing: Span. m ..................................................................... 0.612 Area. m 0.124 Root chord ( theore t ica l ) . m .................................................. 0.33 Tip chord ( theore t ica l ) . m .................................................. 0.082 Mean geometric chord. m ..................................................... 0.228 Aspect r a t i o .................................................................. 3.0 Taper r a t i o .................................................................. 0.25 Sweepback of leading edge. deg ................................................. 45 A i r f o i l s e c t i o n ..................................... NACA 64A-series with modified

c o n i c a l camber L.E.

2 ....................................................................

Hor izon ta l t a i l ( exposed each s ide ) : Span. m ..................................................................... 0.113 Area. m 2 .................................................................... 0.012 Root chord ( t h e o r e t i c a l ) . rn ................................................. 0.165 T i p c h o r d ( t h e o r e t i c a l ) . m .................................................. 0.055 Sweepback of l ead ing edge. deg ................................................. 50 A i r f o i l s e c t i o n .................................................... NACA 64-ser ies

V e r t i c a l t a i l (exposed each panel) : Span. m ..................................................................... 0.146 Area. m2 .................................................................... 0.013 Root chord. m ............................................................... 0.137 Tip chord. m ................................................................ 0.037 Sweepback of leading edge. deg .............................................. 36.57 Toe-out angle (base l ine on ly) . deg .............................................. 2 Air fo i l Sec t ion .................................................... NACA 64-ser ies

Canard (exposed each panel): Span. m ..................................................................... 0.088 Area. m2 .................................................................... 0.006 Root chord. m ............................................................... 0.113 Tip chord. m ................................................................ 0.028 Sweepback of l ead ing edge. deg ................................................. 50 A i r f o i l s e c t i o n .................................................... NACA 64-ser ies Dihedral angle. deg ............................................................ 20

14

680-2042

Figure 1.- Photograph showing s t ing - s t ru t arrangement of 0.047-scale F-15 propulsion mode1 i n s t a l l e d i n Langley 16-Foot Transonic Tunnel.

Flexure housing Air transfer tube

Lateral axis

Strut-balance

f

Nonmetric hardware

\ Nonmetric sonic nozzles (typical 8 places - 3 shown)

@ Metric hardware

Two opposed flexible bellows bridging metric to nonmetric hardware

Figure 2.- Sketch showing high-pressure a ir transfer methods of propulsion system.

16

. .” . . . . . .

B.L. 0.0 ~

W F. S . 13.86

L 93.00 ~- 4 F. S. 106.86

W. L. 12.58-

Moment re ference

W.L. 13.88

I \ - - 1 \Moment re ference F. S . 66.51 W.L. 13.88 B.L. 0.0

center

Figure 3.- Sketch of 0.047-scale three-surface F-15 model. All dimensions are in centimeters unless otherwise noted.

17

680-20 19

Figure 4.- Photograph of baseline three-surface F-15 model with axisymmetric dry-power nozzles.

F. S. 88.900 F. S. 97.718 (exit)

F. S. 95.204 I

I

A ,

4.826 -

4.059 A , * -

I

19.180 F. S. 93.972

F. S. 95.258 (throat)

Figure 5.- Sketch of axisymmetric nozzle. All dimensions are in centimeters unless otherwise noted.

N 0

92*242 F. S. 94.488

F. S. Radius

93.259 2.858 93.668 94.079

2.779

, 2.494 94.488 2.644

radius I ' I ' 1

t- -I

Nozzle outl ine \See table for contour

F. S. 93.259

Figure 6.- Sketch of axisymmetr ic external nozzle shroud. All dimensions are i n c e n t i m e t e r s .

6 8 0 - 2 0 3 8 Figure 7.- Photograph of model with two-dimensional convergent-divergent (2-D C-D) s t ra ight-s idewall

dry-power nozz les ins ta l led .

---PLAN VIEW

F. S. 91.592

22. 11°

W. L. 13.879 A /A = 1.15 e t

SIDE VIEW

(a) Dry-power 2-D C-D nozz le f l aps .

Figure 8 . - Sketches of dry-power 2-D C-D n o z z l e f l a p s and s idewal l s . All dimensions are in centimeters unless otherwise noted.

22

.635

PLAN VI EW t

SI DE V I E W -

I F. S.. 92.05 I

I F. S. 96.596

3.581 .432 R

5.135 L +:

9O (typ. 1 F. S. 94.323

Fixed, s tra ight s idewal l (L.H.

Figure 8 . - Concluded.

s i d e ) .

23

24

F. S . 92.913

F. S. 92.481 (a) Ful ly deployed reverser ( 1 30° 1.

Figure 10.- Side-view sketches of 2-D C-D nozz le t h rus t - r eve r se r f l a p s . All dimensions are in cen t ime te r s un le s s o the rwise no ted .

25

F. S . 92.913

P- I I

__I- I

b" J

I

(b) Par t i a l ly dep loyed

- . -. . . . -

t 2.743

9

r e v e r s e r (90° 1.

Figure IO. - Concluded.

26

.. . .

NPR

0 1.00 0 1.25 r l 1.60 0 3.50 0 5.00

3 0 -. 05 0 .05

"" "3

L

" "i t -~ t"""

-. 005 0 .005 .010 - n- Ir n

( a ) M = 0.60.

m . 0 1 0 -.005 0 .005

Figure 11.- m t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of configurat ion with axisymmetric nozzles, $ = oo , and 6, = O o .

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 1.25 D 2.00 0 3.50 0 5.00

005 0 .005 . 010 ,010 -. 005 0 .005

C n

(b) M = 0.90.

Figure 1 1 .- Continued.

N PR

0 1.00 0 2.25 0 3.50

A 6.50 0 5.00

”” 1 --” -

“e_”

”““- C”i““’”1 I“ 4”I- __I “

-. 10 -. 05 0 .05

“___1--I-I

-. 005 0 .005 . 010 -. 010 -. 005 0 II

c 2 L n

( c ) M = 1.20.

11.- Conc lude d .

W 0

NPR

20

15

10

0 . 0 5 ,10

0 1.00 0 3.50

= Y c" (a) M = 0.60.

0 .005 . 010 .015 .020

Figure 12.- Lateral-directional characteristics of configuration with axisymmetric nozzles, fj = -50, and 6, = Oo.

NPR

0 1.00 0 5.00

" - "" - . ".

"" ~ _ _ _ _ _ _ _ , _

a

15 7-

0

-c;

'0 . 0 5 . 10 0 -.015 -.010 -.005 0

C n

(b) M = 0.90.

F igu re 12. - Concluded.

.005 . 010 .015

5

.020 .025

NPR

-. 10 -. 05 0 .05

0 1.00 0 1.25 ll 1.60 0 3.50 0 5.00

-. 005 0

C n

(a ) M = 0.60.

.005 .010

c Z

NPR

0 1.00 0 1.25 0 2.00 0 3.50 0 5.00 20 """ - "" "." """, "7,

""__ .""" ""I

-i-I

-4"". !E- """

"""

""

-. 10 -. 05 0 .05

"+""--"L"""

"""""

" -" ____" '

""""",_ "-c" A

-. 005 0 .005 . 010

c n

(b) M = 0 . 9 0 -

Figure 13.- Continued.

-" -" " "- "i_ ""

"

"

"" "- -" "" "

"

-. 010 -. 005 0 .005 . . . . . . . . . . . ~ . . . . . . ~

W W

P W

NPR

-. 10 -. 05 0 .05

0 1.00 0 2.25 0 3.50 0 5.00 A 6.50

-. 005 0 .005 . 010 .. 010 - .005 0 .005

(c) M = 1.20.

Figure 13.- Conc lude d.

NPR

0 1.00 0 3.50

.'O 5 0 . 0 5 . 1 0

Figure

-. 010 -. 005

C n

( a ) M = 0.60.

0

c .005 . 010 .015

W ul

NPR 0 1.00 0 5.00

a

20

15

10

5

0

-3 0 . 0 5 . 10 -.015 -. 010 -. 005

c"

0 0 .005 . 010 .015 .020 L____LlI""""

c Z

(b) M = 0.90.

Figure 14. - Concluded.

,

NPR

"

5

0

-c. .'O 5 .10 . 1 5

0 1.00 0 3.50

"" -AI

-.02O -.015 -.010 -.005

C n

(a) M = 0.60.

. 010 .015 020

c Z

.025 .030 .035

Figure 15.- La tera l -d i rec t iona l charac te r i s t ics of configuration with 2-D C-D nozzles, fj = - I O o , and 6, = 00.

W 03

NPR

0 1.00 0 5.00

!

I . . . . I . . L. I " ..i

. . , , . . . . . .:I. . : . 1 . :.I - . 1 0 . 1 5 . 2 0

I . . . . . . . . . . . . . . ! "1 . . I . . .. 1

. . I. . . . . , . . - , -

+ - -

-.015 -.010 -.005 0 .@I5

L n

(b) M = 0.90.

Figure 15.- Concluded.

015 .020 .025 .030 .035 .045

n U

0 20 """"- """- ""-. - ti - - t

"""""""" ~~*zzI:zzz

( a ) M = 0.60.

NPR 1.00 3.50

-""I_". """"

"""i "" ". """". LL""". """"_ I"

"" " =E? I.

. 010 .015 .020

C n

Figure 16.- I a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of configurat ion with 2-D C-D nozzles , @ = O o , and 6, = - l o o .

e 0

NPR

20

15

10

5

0 I

-5 -. 10 -. 05 0 .05

0 1.00 0 5.00

0 .005 . O l O .015 .020

C n

(b) M = 0.90.

Figure 16.- Continued.

_e“”

“C””

”?“””

““

005 0 .005

!

N PR

0 1.00 A 6.50

20

15

10

5

0

""""

d"""kII~ """I - L"L".""""""

IC "" "+."_ "_ - y-."

""""L-""""""

"_._I"" ""

/"_""

__i"_ """"_ ""i" """_ "Le "_.", +" " "._ "" "_i_,_ _." "" -__ - "- ~" "_.___ """ "" "" "- ""

-I.""- __"" " j "1 A"""

~~ ~ ~

"i

""-A L_

"--"""A"- ""1"""""

-id "" ___." -.- -."_ """"4""""- 1"""" "." -__ ~--~-------- "_ "" =2"ZI--l"-:-= "-q "" "" - "" """" "- ""

""

0 .005 . 010 .015

C n

( c ) M = 1.20 .

Figure 16. - Concluded.

010 -.005 0 .005

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 1.25 0 3.50 0 5.00

,010 -. 005 0 .005 C n

( a ) M = 0.60.

Figure 17.- Lateral-directional characterist ics of configuration with 2 removed, and f3 = Oo.

-D

-. 010 -. 005 0 .005

cZ

C-D nozz les , ver t ica l . t a i l s

NPR

0 1.00 0 1.25 0 3.50 0 5.00 20""- """"""""",

"" 3 """".", """."I ""c-__""

""

"" "- ""

""

10

5

0

-5 . -. 05 0 .05 10 -. 010 -. 005 0 .005 -. 010 -. 005 0 .005

C n

Figure 17. - Continued.

P W

P P

NPR

20

15

10

-. 10 -. 05 0 .05

C n

010 -. 005 0 .005

(c) M = 1.20.

17. - Concluded.

NPR

0 1.00 0 3.50

p""""

20

15 .r-* """e ""fc "",

10 .".L "- ._I"____.

". ""..

". ."""- T"i+". +L"+-

0

-5 - 10 -. 05 0 . 0 5 -. 005 0 .005 010 -.010 -. 005 0 .005 C n

Figure 18.- La tera l -d i rec t iona l charac te r i s t ics of configurat ion with r e v e r s e r s p a r t i a l l y deployed = 9 0 ° ) , p = O o , and 6, = 00.

NPR

-7 -. 10 -. 05 0 . 0 5

0 1.00 0 5.00

-. 005 0 .005 .OlO

C n

(b) M = 0.90 .

Figure 18.- Continued.

-. 010 -. 005 0 .005

NPR

-: 10 -. 05 0 . 0 5

0 1.00 6.50

"3 "". __-. 1"- 1" """-"""4.

-. 005 0 005 .OlO '. 010 -. 005 . . . . . . . . . . . . . . ~ . "

0 .005

( c ) M = 1.20.

18.- Conc lude d.

N PR

20

15

1 1

. . . " ~ -5 I - . . - . . . . ... . . . . . .

1 . - . . . . . . . . . . . ~. .

0 . 0 5 . 10 . 1 5

0 1.00 a 3.50

-. 010 -. 005

C

( a ) M = 0.60. n

0 0 .005 . 010 .015 .020

Figure 19.- Lateral-directional characterist ics of configuration with reversers partially deployed (?jmV = 90° I l f3 = -5O and 6, = Oo.

NPR

0 1.00 0 5.00

-.020 -. 015 -.010 -. 005 0

C n

(b) M = 0.90.

Figure 19. - Concluded.

-1"- .. - ""

0 .005 010 015 .020

NPR

20

15

5

0

-5 . -. 10 -. 05 0 .05

0 1.00 0 3.50

-. 005 0 .005 . 010 c n

(a ) M = 0.60.

-. 010 -. 005 0 .005

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 5.00

-. 005 0 .005 . 010

""",

-. 010 -. 005 0 .005

(b) M = 0.90.

20.- Continued.

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 A 6.50

-. 005 0 .005 ,010

C n

( c ) M = 1.20.

Figure 20.- Conc lude d.

,010 -. 005 0 .005

NPR 0 1.00

20 --- - _"__ 1

Figure 21.-

. 0 5 .10

0 3.50

C n

Lateral-directional

( a ) M = 0.60.

character is t ics of configuration

0 .005 .010 .015 .020

w i t h reversers

c Z

f u l l y deployed

ul P

NPR

0 1.00 0 5.00

20

/

0 . 0 5 . 10 -. 015 -. 010 -. 005

C n

0

(b) M = 0.90.

Figure 21. - Concluded.

0 .005 . 010 .015 .020

NPR

. , . . . , _ . I . , . . . I ........ .

".", ~. - . "

.... * . . . ._I. . . . . . ., . . . . .

. . . . I .. ""I

, .

. . . . . . . . . . . . . * _ . . . . . . . . .~ .,.. . . . . . . . . . . . . . . ........ . . . . . . . . . " _ " ~

. . . . . . . . . . . . . . . . . .

~ _ . " . . . . . . . . . . . . - , . . * * . . . . . . . . . ~ _ " + . . . . . . . . . ~~ . . " ~ "" .". . . .

+ , * . ~ . . . . . . . . . . , . . . , . * . . . . . L l ; f j : - l T i i , . , , . + , + ~ . : . 4 . - * * . . . . . . . .

-i..L.U1L.8 , 1 , , , I - 1

-.020 -.015 -.010 -.005 0

c " (a) M = 0.60.

.010

Figure 22.- utera l -d i rec t iona l charac te r i s t ics o f conf igura t ion wi th reversers fu l ly deployed

( 6REv = 1 3 0 ° ) , $ = - l o 0 , and 6, = O o .

NPR 0 1.00 0 5.00

.'lo .15 .20 - .020 ,025 .030 .035 .040 .045

I; 1

(b) M = 0.90.

Figure 22. - Concluded.

7

6

5

4

NPR

-. 005 0 .005 -. 005 0 C n

.005 . 010 -. 005 0

cZ ( a ) M = 0, a = 00. Indica ted po in ts are je t to t a l -p re s su re va lues equ iva len t t o

opera t ing NPR a t Mach numbers shown.

Figure 23.- Late ra l -d i r ec t iona l cha rac t e r i s t i c s o f con f igu ra t ion w i th d i f f e ren t i a l r eve r s ing (6mv = Oo f o r L.H. nozzle and 6,, = 130° f o r R.H. nozz le) , fi = 00, and 6, = 0 0 .

.005

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 3.50

b 010 -. 005 0 .005 C n

-. 005 0 .005 .010

(b) M = 0.60.

Figure 23.- mnt inue d .

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 5.00

-. 010 -. 005 0 .005 C n

-. 010 -. 005 0 .005

Figure 23.- Concluded.

cn 0

NPR

0 1.00 0 3.50

-. 15 -. 10 -. 05 0 0 .005 . 010

(a) M = 0.60.

,015 .020 I 005 0 .005

cZ

Figure 24.- Iateral-directional characteristics of configuration with reversers partially deployed (6mv = 90° ), B = 0°, and 6, = -100.

NPR

2 0 "" --- """ "."*.+" ..-. C.".""",

- 3 0 -. 05 P

0 05

0 1.00 0 3.50

-I""""""""""""""-,

"_"","" - ""-+-."""+"-.-"I".

"" d." ___

0 005 010

C n

(b) M = 0.90.

Figure 24. - Continued.

,015 020 025 - .005 0 .005

NPR

2 0

15

10

-5 -. 10 -. 05 0 .05

0 1.00 0 6.50

0 . 0 5 . 010 .015 .020

c n

Figure Concluded.

-. 005 0 .005

NPR

0 1.00 20 y7,'-" """"

"""""r""""" """

""""" "4 ""+ i + . " - c C " o """"r- """."""' 7"

a, deg ""- ""

I-

?

0 3.50 """""""""" ~""~+"c-"""".""" - "_"".." -..- - ( . _ ~ _" ""c""+""""""

""" """ ""

"* - _."_ """-A """_ f3"" "

".-"""""."_A ""fs:"

~ - -IC-"-

0 .005 . 010 .015 .020

crl

"""" ""

-I- "JL" "

." -u--

-. 005 0 .005 n

(a ) PI = 0.60.

Figure 25.- Lateral-directional characteristics of configuration with reversers fully deployed p = 00, and 6 = - 1 0 0 . R

NPR 0 1.00 0 5.00 20

15

""

"" I----"-

5 i_" ""-"-

""Cru- ',""" """C -i"-

I""

""II

0

-5 -. 10 -. 05 0 .05 0 .005 010 015 .020 .025 005 0 .005

Figure 25.- Continued.

N PR

0 1.00 0 6.50 20

15

10

5

0

-5 -. 10 - .05 0 . 0 5 0 .005 010 .015

.C,“F+“”””

.C“.””“I

.L .”_” “““”“”-.‘-“l

.”?- ”__, “____

.“”, ”I

“-.

-. 010 -. 005 0 .005

L n

( C ) M = 1.20.

25.- Concluded.

NPR

0 1.00 0 3.50

-. 010 -. 005 0 .005 . 010

C n ( a ) M = 0.60.

.005 0 .005

Figure 26.- Lateral-directional characterist ics of configuration with reversers fully deployed (6mv = 130° 1, v e r t i c a l t a i l s removed, and p = 00.

NPR

0 1.00 0 5.00

20

15

10

a, d e g

5

0

ttttfi-tttSiti-1-t-fStt-t~t~~i-ttt-1 -505 0 . 0 5 . 1 0

(b) M = 0.90-

Figure 26. - Concluded.

L""""""

"" i_""

-. 010 -. 005 0

c Z

.005

NPR

20

15

10

a, d e g

5

0

-5 -. 05 0 . 0 5 . 1 0

0 1.00 0 3.50

-. 010 -. 005 0 .005

C n (a) M = 0.60.

-. 010 -. 005 0 .005

NPR

0 1.00 0 5.00

a

-. 010 -. 005

C n

0

(b) M = 0.90.

Figure 27.- Continued.

005 -. 010 -. 005 0 .005

4 0

NPR

0 1.00 D 6.50

20

15

10

5

0

- (10 -. 05 0 . 05 -.OlO -. 005

C n

0

( C ) M = 1.20.

Figure 27.- Conc lude d .

& ! ! ' ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I

005 -.010 -. 005 0 .005

NPR

20

0 1.00 0 3.50

15

10

0

-5 - 05 0 . 0 5 .10 -. 010 -. 005 0

c "

( a ) M = 0.60.

.005 -. 010 -. 005 0 .005

Figure 28.- La tera l -d i rec t iona l charac te r i s t ics of configurat ion with reversers ful ly deployed (6,, = 130° ), v e r t i c a l t a i l s and h o r i z o n t a l t a i l s removed, and = Oo.

NPR

0 5.00 20

15

10

5

-. 010 -. 005 0 -005 -.010 - .005 0 005

P L n

(b) M = 0.90.

Figure 28. - Concluded.

-. 010

C -.015

-. 020

003

.002

C "P

.001

l l 1 1

/ I / I

I

0

1 NPR

1.00 3.50

' I l l

0 5

M 0.60.

15 20

Figure 29.- Static stability derivatives of baseline configuration with axisymmetric nozzles and 6 = 0 0 . R

73

NPR

0 1.00 0 5.00

-. 010

p -.015

-. 020

C

.003

.002

.CHI1

0

czP

-. 001

-. 002

-. 003

-. 004

-. 005 -5 5 10 15 20

74

a, deg

M = 0.90.

Figure 29.- Concluded.

NPR 0 1.00 0 3.50

-. 010

"ys -.015

-. 020

-. 001

C zp -.002

- .003

-.004 . -5 0 5 10

a. deg

15 20

Figure 30.- Static stability derivatives of configuration with 2-D C-D nozzles and

75

NPR

1.00 5.00

0 0

-. 010

-. 015

-. 020 i I i . "-

P

.003

.002

.001

0

C "P

i I I :

-. 002

C Zp -.003

-.004 1

i l 10 15 20 0 5

a.

Figure Conc lude d .

76

0 Axisyrnrnetric

0 2-D C-D

.003

.002 C

"P .001

0

0

-. 001

-. 003

-. 004 -5

/ I

I 1 1,

0

T

i

5

I ! i

4 I

I I

T

I

1

10

( a ) M = 0.60. ; NPR = 3.50.

Figure 3 1. - Effec t of axisymmetric and 2-D C-D afterbody/nozzle shapes on s t a t i c s t a b i l i t y de r iva t ives w i th 6 , = Oo and 6,,, = 00.

77

0 0

B

C "P

C

-. 010

-. 015

-. 020

.003

.002

.001

0

Axisymmetric

2-D C-D

-5 0 5 10

a, deg

15 20

(b) M = 0.90; NPR = 5.00.

Figure 3 1. - Concluded.

78

I

NPR

0 1.00 I3 3.50

003

.002

fool

0 T T I

- . 001

-. 003

-. 004 -5 5 10 15 20

M = 0.60.

Figure 32.- S t a t i c s t a b i l i t y d e r i v a t i v e s of configurat ion with 2-D C-D nozzles , reversers par t ia l ly deployed ( 6 = 900 ) , and 6, = 00.

RFV

79

NPR

0 1.00 0 5.00

-. 010

-.015

-. 920

0

-. 0 0 1

-. 002

-. 003

-. 004

-. 005 -5 0 5 10 15 20

a, de9

(b) M = 0.90.

Figure 32.- Concluded.

80

NPR 1.00 3.50

0 0

-. 005

I I

-. 010

-. 015

-. 020

.003 I 1 44 .M)2

C “D

0

0

-. 001

-. 002

-. 004 0 20 -5 5 10 15

a. deg (a) M = 0.60.

Figure 33.- S t a t i c s t a b i l i t y d e r i v a t i v e s of configurat ion with 2-D C-D nozzles , reversers ful ly deployed ( 6 = 130°) and 6, = O o .

8 1

I

NPR

0 1.00 0 5.00

-. 010

' Y -.015 B

-. 020

C "b

0

-. 001

-. 002

-. 003

-. 004

-. 005 -5 0 5 10 15 20

0, deg

(b) M = 0.90-

Figure 33. - Concluded.

82

C 5

C "P

-. 005

.003

.002

.001

0

0

-. 001

-. 003

-. 004 -!I

i I

0 0 0

!

i ll

6REV

00 900 1300

0

M = 0.60;

5 10 15 20

a, deg NPR = 3.50.

Figure 34.- Effect of thrust reversers on s t a t i c s t a b i l i t y der ivat ives of configuration w i t h 2-D C-D nozzles and 6 = 0 0 . R

83

P

C "P

BREV

0 0 0 0 9oo 0 130'

H

5 10 15 20

a, deg

(b) M = 0.90; NPR = 5.00.

Figure 3 4. - Conc lude d.

84

NPR

0 1.00 0 3.50 0 5.00 A 6.50

-. 0015

- .0020

-. 0025

- .0030

I I I I I I I I

M = 0.60

-. 0015

- .0020

- .0025

-. 0030

C

-. 0010

-. 0015 I- ll 1 1 4 15

l I I I I I I 1 I

M = 1.20

-. 0020 -5 5 10 20

Figure 35.- Rudder power fo r con f igu ra t ion w i th nozzles , = Oo, and 6,, = Oo.

2-D C-D

NPR

1.00 3.50 6.50

-. 0015

-. 0020

-. 0025

- .0030

0015

-. 0020

C "6,

-. 0025

- .0030

0 0 A

-. 0010

-. 0015

-. 0020 -5 0 5 10

a, deg

n

15 20

Figure 36.- Rudder power f o r c o n f i g u r a t i o n w i t h 2 - ~ C-D nozzles, $ = 00, and 6,, = 900.

86

NPR

0 1.00 0 3.50 0 5.00 A 6.50

-. 0015

-. 0020

- .0025

-. 0030

I

-. 0015

- .0020

-. 0025

-. 0030

T I M = 0.90

C "%

1 0

I I l l I l l

/ I / I Ill 5 -.0020 I

-5 10 15 20

C-D F i g u r e 37. - Rudder power fo r c o n f i g u r a t i o n w i t h 2-D n o z z l e s , $ = Oo, a n d 6,,v = 130°.

87

g~~~

0 oo 0 90° 0 130°

-. 0015

- .0020

-. 0025

-_ 0010

-. 0015

C -. 0020

n%

-. 0025

- .0030

M - 0 I 1

1

-. 0010

-. 0015

-. 0020 -5 0 5 10 15

I

I L

20

Figure 38.- Effect of th rus t reversers on d i rec t iona l control of configuration with 2-D C-D nozzles, and p = 00.

88

- ~~

1. Report No. 2. Government AccAion

N T r 1 - 3 ; Recipient's Catalog No.

"~ . ..

NASA TP-2234 4. Title and Subtitle

- " ~ .~ .

5. Report Date EFFECT OF THRUST REVERSER OPERATION ON THE LATERAG DIRECTIONAL CHARACTERISTICS OF A THREE-SURFACE F- 15 MODEL AT TRANSONIC SPEEDS

~"

7. Author(s) ~~~ .

8. Performing Organization Report No.

E. Ann Bare and Odis C. Pendergraf t , Jr. L- 15648

9. Performing Organization Name and Address

NASA Langley Research Center Hampton, VA 23665

13. Type of Report and Period Covered ~ ~ ~. ..

" ~" I Technical Paper National Aeronautics and Space Administration Washington, DC 20546

14. Sponsoring Agency Code

I 15. Supplementary Notes

~ " . . . ___

~~ ~ ~~ ~ "" - _1

16. Abstract I An i n v e s t i g a t i o n was conducted in the Langley 16-Foot Transonic Tunnel t o determine t h e l a t e r a l - d i r e c t i o n a l a e r o d y n a m i c c h a r a c t e r i s t i c s o f a f u l l y metric 0.047-scale model o f t he F-15 three-sur face conf igura t ion (canards , wing, h o r i z o n t a l t a i l s ) w i t h twin two-dimensional ( 2 - D ) nozzles and twin axisymmetr ic nozzles instal led. The e f f e c t s of 2-D n o z z l e i n - f l i g h t t h r u s t r e v e r s i n g a n d r u d d e r d e f l e c t i o n were a l s o determined. Test d a t a were ob ta ined a t s t a t i c c o n d i t i o n s a n d a t Mach numbers from 0.60 t o 1.20 over an angle-of-attack range from - 2 O t o 15O. Reynolds number v a r i e d from 2.6 x lo6 t o 3.8 x 10 . Angle o f s i d e s l i p w a s se t a t approximately O o and -5O f o r a l l conf igura t ions and a t -IOo fo r s e l ec t ed conf igu ra t ions .

6

~- ~- - ." J 17. Key Words (Suggested by Authoris) ) 18. Distribution Statement

Two-dimensional nozzles T h r u s t r e v e r s e r s

Unclassif ied - Unlimited

Rudder e f f e c t i v e n e s s P ropu l s ion e f f ec t s

Subject Category 02 Twin v e r t i c a l ta i ls

Unclassif ied Unclassif ied 89 I A05 . . _j ~.

19. Security Classif. (of this report1 20. Security Classif. (of this page) 21. No. of Pages 22. Price ~ . ." - "- "

"- ~ ." ~~~ . . ." . . - " . - .

For sale by the National Technical Information Service, Springfield, Virglnla 22161 NASA-Langley, 1983

National Aeronautics and Space Administration

Washington, D.C. 20546 Official Business Penalty for Private Use, $300

THIRD-CLASS BULK RATE Postage and Fees Paid National Aeronautics and Space Administration NASA451

U S W L

I

j

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

Recommended