92
NASA Technical Paper 2234 December 1983 NASA ; NASA I TP i 2234 Effect of Thrust Reverser Operation on the Lateral- Directional Characteristics of a Three-Surface F-15 Model at Transonic Speeds E. Ann Bare and Odis C. Pendergraft, Jr. 25th Anniversary 1958-1983 I https://ntrs.nasa.gov/search.jsp?R=19840005097 2020-03-21T01:54:06+00:00Z

December 1983 Effect of Thrust Reverser Operation on the

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: December 1983 Effect of Thrust Reverser Operation on the

NASA Technical Paper 2234

December 1983

NASA

; NASA I TP i 2234

Effect of Thrust Reverser Operation on the Lateral- Directional Characteristics of a Three-Surface F-15 Model at Transonic Speeds

E. Ann Bare and Odis C. Pendergraft, Jr.

25th Anniversary 1958-1983

I

https://ntrs.nasa.gov/search.jsp?R=19840005097 2020-03-21T01:54:06+00:00Z

Page 2: December 1983 Effect of Thrust Reverser Operation on the

NASA Technical Paper 2234

1983

National Aeronautics and Space Administration

Scientific and Technical Information Branch

1983

TECH LIBRARY KAFB, NU

Effect of Thrust Reverser Operation on the Lateral- Directional Characteristics of a Three-Surface F-15 Model at Transonic Speeds

E. Ann Bare and Odis C. Pendergraft, Jr. Langley Research Center Hampton, Virginia

Page 3: December 1983 Effect of Thrust Reverser Operation on the

SUMMARY

An i nves t iga t ion w a s conducted i n t h e Langley 16-Foot Transonic Tunnel t o de t e rmine t he l a t e ra l -d i r ec t iona l aerodynamic c h a r a c t e r i s t i c s o f a f u l l y metric 0.047-scale model o f t h e F-15 three-surface Configurat ion (canards, wing, horizon- t a l ta i ls) wi th twin nonaxisymmetr ic or two-dimensional (2-D) nozzles and twin axi- symmetr ic nozzles instal led. The e f f e c t s o f 2-D n o z z l e i n - f l i g h t t h r u s t r e v e r s i n g and rudder def lect ion were also determined. Test da t a were obtained a t s t a t i c conditions and a t Mach numbers from 0.60 t o 1.20 over an angle-of-at tack range f rom -2O t o 150. Reynolds number var ied f rom 2.6 x 106 t o 3.8 X 10 . Angle of s i d e s l i p w a s se t a t approximately Oo and -5O f o r a l l configurat ions and a t approximately -100 € o r s e l e c t e d conf iqu ra t ions .

6

R e s u l t s o f t h e i n v e s t i g a t i o n i n d i c a t e t h a t t h r u s t r e v e r s i n g h a d o n l y s m a l l e f f e c t s on l a t e r a l - d i r e c t i o n a l s t a b i l i t y a n d d i r e c t i o n a l c o n t r o l a t t h e s u b s o n i c / t r anson ic f l i gh t speeds t e s t ed . The configuration with axisymmetric nozzles w a s s l i g h t l y more stable than the configuration with two-dimensional convergent-divergent nozzles.

INTRODUCTION

Recent s tud ie s o f tw in -eng ine f i gh te r a i r c ra f t ( r e f s . 1 t o 5 ) have i den t i f i ed a number of potential advantages of nonaxisymmetric nozzles as compared t o c o n v e n t i o n a l round or axisymmetric nozzles. One important benefit of nonaxisymmetric nozzles i s t h e a d a p t a b i l i t y o f t h e d e s i g n t o i n c l u d e t h r u s t v e c t o r i n g a n d r e v e r s i n g w i t h less weight penalty than conventional axisymmetric nozzles (refs. 5 and 6 ) . The a d d i t i o n o f t h r u s t r e v e r s i n g c a p a b i l i t i e s t o most c u r r e n t a n d f u t u r e f i g h t e r a i r c r a f t would g rea t ly enhance sho r t f i e ld t ake -o f f and l and ing (STOL) performance. Also, the use o f i n - f l i g h t t h r u s t r e v e r s i n g h a s t h e p o t e n t i a l t o improve a i r p l a n e a g i l i t y d u r i n g a i r - t o - a i r combat.

The performance of nonaxisymmetric nozzle thrust reversers a t s t a t i c and sub- sonic f l igh t condi t ions has been de te rmined in severa l exper imenta l inves t iga t ions ( r e f s . 7 t o 12) . These resu l t s ind ica te tha t h ighly e f f ic ien t nonaxisymmetr ic nozzles with thrust reversers can he designed. However, u s e o f t h e i n - f l i g h t t h r u s t reverser could cause s ign i f icant changes in a i rp lane t a i l l o a d s , p a r t i c u l a r l y f o r tw in -ve r t i ca l - t a i l conf i q u r a t i o n s ( r e f . 1 3 ) and could a lso degrade the cont ro l e f fec- t i v e n e s s o f h o r i z o n t a l - t a i l ( r e f . 11) and rudder surfaces ( ref . 1 4 ) .

A 0.047-scale sting-mounted aerodynamic model o f t h e F-15 three-surface confiqu- r a t ion ( cana rds , wing, ho r i zon ta l t a i l s ) w i t h t h e c o r r e c t i n l e t s h a p e a n d mass flow w a s p r e v i o u s l y t e s t e d i n t h e 16-Foot Transonic Tunnel , and the resu l t s a re repor ted i n r e f e r e n c e 15. Aerodynamic force and moment cor rec t ions for the s t ing-mounted aerodynamic model (canards o f f ) da ta to account for ax isymmetr ic nozz le-exhaus t f low can be found i n r e f e r e n c e 16. S t ing i n t e r f e rence and a f t - end d i s to r t ion co r rec t ions for the aerodynamic model without canards can be found i n re ference 17, a n d t h e e f f e c t s of a f t -end modi f ica t ions on the same aerodynamic model, such as v e r t i c a l t a i l s i z e a n d d o r s a l f i n a d d i t i o n , c a n b e f o u n d i n r e f e r e n c e 18. The longi tudinal aerody- namic da t a and t he s t a t i c nozz le per formance da ta for the subjec t model ( three- su r face F-15) o f t h i s r e p o r t a r e p r e s e n t e d i n r e f e r e n c e 19.

I

Page 4: December 1983 Effect of Thrust Reverser Operation on the

The purpose o f t he p re sen t i nves t iga t ion w a s t o d e t e r m i n e t h e e f f e c t of t h r u s t r eve r s ing on t he l a t e ra l -d i r ec t iona l ae rodynamic cha rac t e r i s t i c s o f a three-surface F- 15 propulsion model (canards, wing, h o r i z o n t a l t a i l s ) having fa i red-over in le t s . The model w a s tes ted with axisymmetr ic nozzles instal led and with two-dimensional convergent-divergent (2-D C-D) nozz le s i n s t a l l ed . Each nozz le type w a s t e s t e d i n t h e p o s i t i v e - t h r u s t mode, and t he 2-D C-D nozzles were a lso t e s t e d i n p a r t i a l a n d f u l l r eve r se - th rus t modes.

T h i s i n v e s t i g a t i o n w a s conducted i n t h e Langley 16-Foot Transonic Tunnel a t s ta t ic conditions and a t Mach numbers from 0.60 t o 1.20. Reynolds number var ied f rom 2 .6 X l o 6 t o 3.8 X l o6 ; angle o f a t tack w a s var ied f rom -2O t o 150. Angle of s ide- s l i p was set a t approximately Oo and - 5 O fo r the ax isymmetr ic nozz le conf igura t ion and a t approximately O o , - 5 O , and - l o o f o r s e v e r a l of t h e 2-D C-D nozzle configura- t i ons . Nozz le p re s su re r a t io was v a r i e d f r o m j e t o f f ( 1 . 0 ) t o about 6.5 depending on Mach nunber . D i f f e ren t i a l t h rus t r eve r s ing and t he e f f ec t o f rudde r de f l ec t ion were also invest igated. Further information on the instal la t ion of two-dimensional nozzles on t h e F-15 can be found i n r e f e r e n c e 20.

Ae

At

b

- C

C nhR

M

Pa

SYMBOLS

nozzle-exi t area, c m 2

nozzle- throat area, c m 2

wing span, 0.612 m

mean aerodynamic chord, c m

s ide - fo rce coe f f i c i en t , T o t a l s ide f o r c e

'rn side-force parameter , ( f rom pi tch tests a t B = 00 and -50 ) , per deg D-

rol l ing-moment coeff ic ient , T o t a l r o l l i n g moment qmSb

Acl l a t e r a l - s t a b i l i t y p a r a m e t e r , - ( f rom p i tch tes ts a t P = Oo and -So), A S per deg

yawing-moment c o e f f i c i e n t , T o t a l yawing moment

qmSb

"n d i r ec t iona l - s t ab i l i t y pa rame te r , - ( f rom p i tch tests a t

A P f3 = Oo and - 5 O ) , per deg

AC rudder power, - n ( f rom p i tch tests with 6, = Oo and -1 00 ) , per deg

f ree-stream Mach number

ambient s t a t i c p res su re , Pa

2

Page 5: December 1983 Effect of Thrust Reverser Operation on the

9, f ree-stream dynamic pressure , Pa

S wing r e fe rence area, 0.124 m2

a angle of a t tack, deg

B angle of s idesl ip , deg

6,

&REV nozz le th rus t - reverser f lap angle , deg ( f ig . IO)

rudde r de f l ec t ion ang le (nega t ive r i gh t ) , deg

Abbreviations:

ASME American Society of Mechanical Engineers

B.L. b u t t l i n e , cm

C-D convergent-divergent

F.S. f u s e l a g e s t a t i o n , cm

L.E. leading edge

L.H. l e f t hand

NPR nozz le p re s su re r a t io , Jet t o t a l p r e s s u r e Tunnel stat%- pressure

R.H. r i g h t hand

W.L. wa te r l ine

2 -D two-dimensional (nonaxisymmetric)

APPARATUS AND PROCEDURE

Wind Tunnel

Th i s i nves t iga t ion was conducted i n t h e Langley 16-Foot Transonic Tunnel, which is a single-return, continuous-flow, atmospheric wind tunnel wi th a s lo t t ed , oc t ago- n a l t e s t s e c t i o n m e a s u r i n g 4.8 m d i a m e t r i c a l l y t o m i d f l a t c e n t e r l i n e . With t h e a i d of a compressor system, which draws a i r o u t t h r o u g h s l o t s i n t h e t e s t s e c t i o n f o r M > 1.05, t h e t e s t - s e c t i o n a i r s p e e d i s continuously variable between Mach numbers of 0.20 and 1.30. F u r t h e r d e t a i l s on d imens ions and the opera t ing charac te r i s t ics o f t h e Langley 16-Foot Transonic Tunnel can be found i n r e f e r e n c e 21.

Support System

The model was s u p p o r t e d i n t h e t u n n e l by the s t i ng - s t ru t suppor t sys t em shown i n f i g u r e 1. High-pressure a i r l i n e s a n d a l l i n s t r u m e n t a t i o n were rou ted t h rough t h i s support system. The complete model w a s mounted on a n i n t e r n a l , six-component s t r a i n - gage ba l ance t h rough an adap te r t o t he s t i ng s t ru t . A yaw c l u t c h mechanism ( see f i g . 2) a t t a c h e d t o t h e s t r u t t o p was used t o yaw t h e model on t h e s t r u t .

3

Page 6: December 1983 Effect of Thrust Reverser Operation on the

I

f l e x i b l e metal bellows bellows ( la te ra l ) se rve f i c i e n t f l e x i b i l i t y f o r

The model u sed fo r

Propulsion Simulation System

The f a c i l i t y h i g h - p r e s s u r e a i r system provided a cont inuous f low of c lean, dry, hea ted a i r t o t h e model. This high-pressure a i r i s t r ans fe r r ed f rom a common high- pressure plenum i n t h e f r o n t o f t h e model t o the nozz le s by means of dual flow- t ransfer assembl ies . A sketch of the assembly i s shown i n f i g u r e 2. The two sets of

( l o n g i t u d i n a l ) i n c o n j u n c t i o n w i t h t h e two side-mounted metal t o minimize pressurizat ion ta res while still maintaining suf- prope r fo rce ba l ance ope ra t ion i n a l l s i x components.

Mode 1

t h i s i n v e s t i g a t i o n w a s a 0.047-scale model of an F-15 th ree - sur face conf igura t ion (canards , wing, h o r i z o n t a l t a i l s ) . T h i s model i s a f u l l y metric j e t - e f f e c t s model w i th f a i r ed -ove r i n l e t s t o a l l ow p ropu l s ion s imula t ion . A ske tch o f t he model i s shown i n f i g u r e 3. Figure 4 shows a photograph of the model i n s t a l l e d i n t h e Langley 16-Foot Transonic Tunnel. Wdel geometric characteristics a re given i n t a b l e I. The conf igura t ion i s charac te r ized by boom-mounted tw in ve r t i - c a l t a i l s ( t o e a n g l e , L.E. ou t , o f 2 O ) , a f t - l oca t ed boom-mounted ho r i zon ta l t a i l s , c losely spaced twin engines , and forward inlet-mounted canards. For t h i s i n v e s t i g a - t i o n , t h e c a n a r d s were s e t a t a nominal angle of - 6 O ( leading edge down) - the min i - mum d r a g a n g l e f o r s u b s o n i c c r u i s e f l i g h t as determined from unpublished wind-tunnel data . The i n t e r n a l t r a n s i t i o n d u c t ( f r o m r o u n d t o r e c t a n g u l a r c r o s s s e c t i o n € o r t h e 2-D C-D nozzles) w a s terminated a t f u s e l a g e s t a t i o n 91.592, which was t h e common connect po in t for a l l two-dimens iona l nozz les . Externa l hardware in te r fa i r ings w e r e added t o a d a p t t h e model a f t e rbody fo r smooth in tegra t ion of the rec tangular nozz le shape with 2-D C-D nozz le s i n s t a l l ed . The axisymmetr ic nozzles used an external ly t a p e r e d r i n g t o f a i r between F.S. 93.259 and F.S. 94.488.

Baseline axisymmetric noz-zles-.- A ske tch of t h e dry-power axisymmetric nozzle s h a w i m ~ i n f i g u r e 5. A ske t ch and t he coord ina te s o f t he f i xed shroud around the nacel le ahead of the movable n o z z l e b o a t t a i l s (movable on f l i g h t ha rdware on ly ) a r e g iven i n f i gu re 6. For t h i s i n v e s t i g a t i o n , o n l y t h e dry-power n o z z l e f l a p p o s i t i o n s were tes ted , us ing f ixed nozz le hardware .

Two-dimensional convergent-divergent nozzles.- The 2-D C-D nozzle design used f o r t h e c u r r e n t test s imula tes a var iab le-area in te rna l expans ion nozz le . The t h r o a t area and t h e e x i t area of the ful l -scale hardware would be independent ly control led by the separate actuat ion of the convergent and divergent nozzle f laps . Thrust r e v e r s a l would be accoTQlished by ac tua t ion o f t he conve rgen t f l aps , c lo s ing t he throat area while s imultaneously opening the reverse f low ports upstream. For a comple te descr ip t ion of th i s nozz le mechanism, see reference 8.

~ .~ ~" . " .

A photograph of the two-dimensional convergent-divergent nozzles installed on t h e F-15 model i s shown i n f i g u r e 7. A ske tch o f the forward- thrus t , dry-power 2-D C-D nozzle i s shown i n f i g u r e 8. The n o z z l e h a s f i x e d , s t r a i g h t ( p a r a l l e l i n s i d e sur face) s idewal l s which represent s idewal l s tha t do not change shape as the nozz le power se t t ing changes . Thus, when t h e n o z z l e b o a t t a i l f l a p s ( t o p a n d b o t t o m ) a re c losed down t o cruise o r dry-power se t t ing , the s idewal l s form channels over the f l ap surfaces . (See photograph i n f i g . 7 . ) A var iab le geometry s idewal l would be r e q u i r e d t o e l i m i n a t e t h e s e c h a n n e l s .

4

Page 7: December 1983 Effect of Thrust Reverser Operation on the

Figure 9 i s a photograph of the fully deployed 2-D C-D t h r u s t r e v e r s e r s i n s t a l - l e d on t h e F-15 model. Sketches of t h e two reverser deployments t es ted a re shown i n f i g u r e 10. The pa r t i a l ly dep loyed r eve r se r ( 6 = 900 ) was d e s i g n e d t o s p o i l a l l fo rward t h rus t , wh i l e t he fu l ly dep loyed r eve r se r (6,, = 1300 ) was des igned to p ro- duce approximately 50 p e r c e n t r e v e r s e t h r u s t a t M = 0.

REV

Instrumentation

Model forces and moments, i nc lud ing nozz le t h rus t con t r ibu t ions , were measured by an internal s ix-component s t ra in-gage balance. Internal cavi ty pressures w e r e measured a t two locations forward and two l o c a t i o n s a f t o f t h e yaw clutch. The mass- f low ra te (bo th nozz les ) was measured by a turb ine f low meter (ex terna l to the tun- n e l ) . The flow conditions in each nozzle were determined by two to t a l -p re s su re probes - one from t h e t o p and one from t h e s i d e o f e a c h t a i l p i p e - and one t o t a l - temperature probe in each nozzle . All pres su res were measured with individual pres- su re t r ansduce r s .

Tes t s

T e s t d a t a were taken a t Mach numbers of 0 .60 and 0 . 9 0 f o r a l l c o n f i g u r a t i o n s a n d a t 1.20 f o r s e l e c t e d c o n f i g u r a t i o n s . Angle of a t t a c k was ya r i ed from - 2 O t o 15O depending upon Mach number; n o z z l e p r e s s u r e r a t i o v a r i e d from approximately 1.0 ( j e t o f f ) t o a b o u t 6.5 depending upon Mach number. Data were t a k e n a t a nominal s i d e s l i p angle p of Oo f o r a l l c o n f i g u r a t i o n s a n d a t - 5 O and - loo for se lec ted conf igura- t i o n s . The model was p r e s e t a t a s e l ec t ed s ides l ip ang le be fo re each run by f i x i n g t h e model on t h e yaw c l u t c h mechanism. Basic data were obta ined by holding nozzle p re s su re r a t io cons t an t and va ry ing ang le of attack. Undeflected rudders were tested with a l l c o n f i g u r a t i o n s , a n d s e l e c t e d c o n f i g u r a t i o n s were t e s t ed w i th t he rudde r s d e f l e c t e d a t -1 00.

Boundary-layer t r a n s i t i o n was f ixed on the model by means of 0.25-cm-wide s t r i p s of N o . 120 carborundum g r i t . These s t r i p s were loca ted 1.91 cm a f t ( s t r e a m i s e ) of t h e n o s e a n d t h e i n l e t f a i r i n g s . T r a n s i t i o n s t r i p s were a l s o l o c a t e d on a l l l i f t i n g su r faces a t 5 percent o f the loca l chord . The methods d e s c r i b e d i n r e f e r e n c e s 2 2 and 23 were used t o d e t e r m i n e t h e l o c a t i o n s of t h e s e s t r i p s a n d t h e g r i t s i z e .

Data Reduction

All d a t a f o r b o t h t h e model and t h e wind tunne l were recorded simultaneously on magnetic tape. For each data point, approximately 50 frames of data, taken a t a r a t e of 10 frames per second, were used to ob ta in average recorded da ta . The average data were used t o compute s tandard force and moment c o e f f i c i e n t s u s i n g wing area and span f o r r e f e r e n c e area and length. Correct ions w e r e made t o t h e f o r c e d a t a t o a c c o u n t fo r he l lows /ba lance i n t e rac t ion t a r e s ( r e f s . 7 and 11). I n addi t ion , ba lance cor rec- t i o n s were a l s o made t o a c c o u n t f o r i n t e r n a l c a v i t y p r e s s u r e / a r e a t a r e s .

Model ang le o f a t t ack and s ides l ip were co r rec t ed by a p p l y i n g s t i n g d e f l e c t i o n terms caused by bending under aerodynamic load. A f low angular i ty adjustment of 0. l o , which is the average upflow angle measured in the Langley 16-Foot Transonic

5

Page 8: December 1983 Effect of Thrust Reverser Operation on the

Tunnel, w a s a p p l i e d t o a n g l e o f a t t a c k . No sidef low angle adjustment was made; how- eve r , pas t expe r i ence has shown s i d e f l o w i n t h e 16-Foot Transonic Tunnel t o be gener- a l l y 0.10 or less.

Mass-flow rate through the nozzles w a s determined by us ing to ta l -pressure and total- temperature measurements in the f low-transfer assemblies and f low constants determined from pretest c a l i b r a t i o n s w i t h ASME s tandard nozz les .

Jet t o t a l - p r e s s u r e p r o f i l e s were de termined for ax isymnet r ic nozz les and the 2-D C-D nozz le s w i th s t r a igh t s idewa l l s by use of movable Kiel p r o b e s ( t o t a l pres- s u r e ) . Each in t e rna l t o t a l -p re s su re p robe w a s c o r r e c t e d t o t h e i n t e g r a t e d v a l u e o f j e t t o t a l p r e s s u r e a t the nozz le t h roa t .

PRESENTATION OF RESULTS

The r e s u l t s o f t h i s i n v e s t i g a t i o n a r e p r e s e n t e d i n p l o t t e d c o e f f i c i e n t f o r m . Unless o therwise no ted on the f igures , da ta a re €or the base l ine conf igura t ion wi th boom-mounted t w i n v e r t i c a l t a i l s ( t o e a n g l e , L.E. out , of 2O) and boom-mounted h o r i - z o n t a l t a i l s a t Oo def l ec t ion .

The b a s i c l a t e r a l - d i r e c t i o n a l p e r f o r m a n c e d a t a f o r a l l c o n f i g u r a t i o n s a r e p r e - sen ted i n t he fo l lowing f i gu res :

Figure

Baseline configuration with axisymmetric nozzles - @ = Oo; M = 0.60, 0.90, 1.20 ............................................. 11 @ = -50; r4 = 0.60, 0.90 .................................................. 12

Baseline conf igura t ion wi th 2-D C-D nozzles - @ = O O ; M = 0.60, 0.90, 1.20 ............................................. 13 @ = - 5 O ; M = 0.60, 0.90 .................................................. 14 @ = -IOo; M = 0.60, 0 .90 ................................................. 1 5

2-D C-D nozzles and rudders def lected - 6 = -IOo; M = 0.60, 0.90, 1.-20 .......................................... 16 R

2-D C-D nozz le s and ve r t i ca l tai ls removed - M = 0.60, 0.90, 1.20 ...................................................... 17

2-D C-D nozz le s w i th t h rus t r eve r s ing - @ = 0 0 ; 6,, = 900; M = 0.60, 0.90, 1.20 ................................ 18

@ = 00; 6,, = 1300; M = 0.60, 0.90, 1.20 ............................... 20 @ = -50; 6,, = 90°; M = 0.60, 0.90 ..................................... 19

@ = -50. . 6,, = 1300; M = 0.60, 0.90 .................................... 21 @ = -100; 6,, = 1300; M = 0.60, 0.90 ................................... 22

2-D C-D n o z z l e s w i t h d i f f e r e n t i a l r e v e r s i n g - ......................... 6,V

6, = -100; 6," = 900; M = 0.60, 0.90, 1.20 ............................. 2 4

= Oo (L.H.), 130' ( R . H . ) ; M = 0, 0.60, 0.90 23

2-D C-D nozz les wi th th rus t reversers and rudders def lec ted - 6, = - l o o ; 6,, = 1300; M = 0.60, 0.90, 1.20 ............................ 2 5

6

Page 9: December 1983 Effect of Thrust Reverser Operation on the

Figure

2-D C-D nozz le s w i th t h rus t r eve r se r s and ve r t i ca l and ho r i zon ta l t a i l s removed - .......................... 6R, 6R,

= 1 30°; v e r t i c a l t a i l s o f f ; M = 0.60, 0.90 26 = 1 30°; ho r i zon ta l t a i l s o f f ; M = 0.60, 0.90, 1.20 27

6,, = 1 30°; v e r t i c a l a n d h o r i z o n t a l tails o f f ; M = 0.60, 0.90 ........... 28 ..................

S t a t i c s t a b i l i t y d e r i v a t i v e s are presented i n t he fo l lowing f i gu res :

2-D C-D nozzles - 14 = 0.60, 0.90 ............................................................ 30

S ta t ic s t a b i l i t y d e r i v a t i v e s w i t h 2-D C-D nozzle , thrust reversers deployed - 6,, = goo; M = 0.60, 0.90 ............................................... 32 6,, = 130O; M = 0.60, 0.90 .............................................. 33 Effect of 2-D C-D n o z z l e t h r u s t r e v e r s e r s on s t a t i c s t a b i l i t y d e r i v a t i v e s ;

M = 0.60, 0.90 .......................................................... 34

Effec t o f 2-D C-D n o z z l e t h r u s t r e v e r s e r s on d i r e c t i o n a l c o n t r o l - M = 0.60, 0.90, 1.20 ...................................................... 38

DISCUSSION

Basic Data

Forward-thrust mode.- The l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the th ree- su r face F-15 conf igura t ion wi th the nozz les in the forward- thrus t mode a re presented i n aerodynamic coef f ic ien t form, inc luding th rus t cont r ibu t ions i f any , in f igures 11 t o 17. Data a re shown a t f3 = Oo i n f i g u r e s 1 1 , 13, 16, and 17, a t f3 = -5' i n f i g u r e s 1 2 and 14, and a t f3 = -1 Oo i n f i g u r e 15. The d a t a a re p lo t t ed ve r sus ang le of a t t a c k a t c o n s t a n t s i d e s l i p a n g l e a n d a t va r ious nozz le p re s su re r a t io s . For

, f3 = Oo a symmetrical model ( l e f t t o r i g h t ) w i t h t h e l a t e r a l - d i r e c t i o n a l c o n t r o l . sur faces s e t a t Oo should have la te ra l -d i rec t iona l force and moments of zero. How-

e v e r , f o r t h i s c o n f i g u r a t i o n ( f i g s . l l and 13) , t h e d a t a show t h a t small va lues were measured f o r e a c h l a t e r a l - d i r e c t i o n a l component. Poss ib l e r ea sons fo r t hese va lues are small d i f f e r e n c e s i n model symmetry or s l igh t misa l ignment . S ince mos t o f the conclus ions o f th i s s tudy are based on i n c r e m e n t a l data f rom f3 = Oo , it i s be l ieved t h a t t h e s e small values w i l l n o t a f f e c t t h e r e s u l t s .

7

Page 10: December 1983 Effect of Thrust Reverser Operation on the

tha t the ax isymmetr ic nozz les were properly alignecl and of equal thrust . For the forward-thrust 2-D C-D nozzle configurat ion, j e t operation produced similar r e s u l t s , t h a t is, l i t t l e o r no e f f e c t on t h e b a s i c l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a t p = 00 ( f i g . 1 3 ) , p = -5O ( f ig . 14) , and p = - IOo ( f i g . 1 5 ) .

Comparing t h e d a t a i n f i g u r e s 13 t o 15 shows inc reas ing s ide - fo rce coe f f i c i en t , more negative yawing moment (except a t M = 0.90 above a = IOo ), and more p o s i t i v e r o l l i n g moment as t h e s i d e s l i p a n g l e becomes more negative. This would be expected f o r a l a t e r a l l y a n d d i r e c t i o n a l l y s t a b l e a i r c r a f t .

The e f f e c t of NPR on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the configura- t ion wi th 2-D C-D nozzles and rudder deflected -1 Oo i s shown i n f i g u r e 16. Jet operation had only small e f f e c t s on a l l parameters , as was previous ly no ted for the other configurat ions with 2-D C-D nozzles and undeflected rudders. Comparing f i g - u r e 16 wi th f igure 13 shows, a s would be expected, that def lect ing the rudder pro- duces more nega t ive s ide force and a l a r g e p o s i t i v e i n c r e a s e i n yawinglnoment coe f f i c i en t .

Data for the conf igura t ion wi th 2-D C-D nozz les and ver t ica l t a i l s removed a r e presented i n f i g u r e 17. The e f f e c t s of j e t o p e r a t i o n a r e s i m i l a r t o t h o s e a l r e a d y n o t e d f o r t h e same c o n f i g u r a t i o n w i t h v e r t i c a l t a i l s i n s t a l l e d ( f i g . 1 3 ) . Note t h a t removing t h e v e r t i c a l t a i l s c a u s e s a change i n s ign of t h e yawing-moment c o e f f i c i e n t . (Compare f i g . 17 wi th f ig . 13. ) This yawing-moment s h i f t c a n b e l a r g e l y a t t r i b u t e d t o a m i s a l i g n m e n t o f t h e v e r t i c a l t a i l s s i n c e t h e v e r t i c a l - t a i l s - o f f , s i d e - f o r c e d a t a are nearer zero. This would a l so exp la in t he sma l l l a t e ra l -d i r ec t iona l fo rce and moments a t = Oo n o t e d e a r l i e r .

Reverse-thrust mode.- L a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the configurat ion with 2-D C-D nozz les wi th par t ia l ly deployed th rus t reversers ( 6 R m = 90°) a r e p r e - sented i n f i g u r e s 18 and 19. J e t o p e r a t i o n of t he pa r t i a l ly dep loyed t h r u s t revers- e r s a t @ = Oo h a s l i t t l e e f f e c t on the rol l ing-moment and s ide-force coeff ic ients . Yawing-moment c o e f f i c i e n t shows l i t t l e e f f e c t a t M = 0.60; however, the yawing- moment c o e f f i c i e n t i s reduced a t M = 0.90 and M = 1 .20. A s s i d e s l i p a n g l e i s decreased to - 5 O , t h e r e i s a g r e a t e r e f f e c t of NPR on yawing moment. A t s i d e s l i p t h e inboard surface of t h e windward v e r t i c a l t a i l i s s h e l t e r e d from the free-stream flow, and the decrease i n yawing moment i s probably due t o t h e impingement of the reverse flow plume on th i s i nboa rd su r f ace of t h e v e r t i c a l t a i l . S i d e - f o r c e c o e f f i c i e n t i s unaffected by operat ion of t h e j e t , and t h e r e i s a s l i g h t r e d u c t i o n i n r o l l i n g moment .

The e f f e c t of fu l ly dep loyed t h rus t r eve r se r s (6mv = 130°) on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of the conf igura t ion wi th 2-D C-D nozzles i s presented i n f i gu res 20 t o 22. As shown by f i g u r e 2 0 , full deployment increases t h e e f f e c t o f j e t operat ion on yawing moment a t = 00. (Compare wi th f ig . 18. ) There i s a l s o some small e f f e c t on roll ing-moment and side-force coefficients. However, as angle of s i d e s l i p is decreased to -So ( f i g . Z I ) , t h e r e is no corresponding increase i n t h e e f f e c t of reverser opera t ion on yawing moment a s was n o t e d f o r r e v e r s e r p a r t i a l l y deployed (6mv = goo) . I n f a c t , t h e r e is a decrease i n t h e magnitude of t h e e f f e c t of NPR on yawing moment a t 8 = - 5 O . The trend of yawing moment with angle of a t tack i s a l so d i f f e ren t w i th t h rus t r eve r se r fu l ly dep loyed . A t h igher angles of a t tack (above 1 2 O a t M = 0.60, and above 8O a t M = 0.90), yawing moment increases with inc reas ing NPR. A t a s i d e s l i p a n g l e of -100 ( f i g . 22) , the c rossover i n yawing moment occurs a t a = 00. At p = -50, j e t operat ion caused a s l i g h t d e c r e a s e i n s ide - fo rce coe f f i c i en t and a s i g n i f i c a n t r e d u c t i o n i n roll ing-moment coefficient

8

Page 11: December 1983 Effect of Thrust Reverser Operation on the

( f ig . 21 ) . The e f f e c t i n c r e a s e s w i t h d e c r e a s i n g a n g l e o f s i d e s l i p ( f i g . 2 2 ) , p a r t i c - u l a r l y on roll ing-moment coefficient. These t r e n d s i n d i c a t e t h a t t h e j e t plumes from the fu l ly dep loyed t h rus t r eve r se r s (6mv = 1300) inf luence the ver t ica l t a i l s and a f t e rbody , and a l so t he wing.

The e f f e c t s o f d i f f e r e n t i a l r e v e r s i n g o n t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s are p r e s e n t e d i n f i g u r e 23. D i f f e r e n t i a l r e v e r s i n g w a s simulated by o p e r a t i n g t h e l e f t -hand nozz le i n t he fo rward - th rus t mode (6mv = O o ) and by o p e r a t i n g t h e r i g h t - hand nozz le wi th th rus t reverser fu l ly deployed (fjmV = 130° ). Data are shown a t M = 0 i n f i g u r e 2 3 ( a ) t o i n d i c a t e t h e m a g n i t u d e o f t h e s t a t i c t h r u s t c o n t r i b u t i o n t o e a c h l a t e r a l - d i r e c t i o n a l component as a func t ion of NPR. S ide- force coef f ic ien t varied from approximately 0, j e t o f f , t o a maximum of -0.0016 a t NPR = 5.0; yawing- moment coe f f i c i en t i nc reased f rom 0 t o 0.0024 a t NPR = 6.2. mlling-moment coef- f i c i e n t r e m a i n e d e s s e n t i a l l y 0. A t s t a t i c cond i t ions ( M = 01, computed c o e f f i c i e n t s a re based on the ambient s t a t i c p r e s s u r e s i n c e t h e dynamic p res su re i s 0 a t M = 0 ; f o r example,

-~ - Total._yawing moment 'n I M= o PaSb

The values of j e t t o t a l p r e s s u r e e q u i v a l e n t t o t h e o p e r a t i n g NPR a t M = 0.60 and M = 0 .90 are i n d i c a t e d i n f i g u r e 2 3 ( a ) . A t M = 0.60 ( f i g . 2 3 ( b ) ) , d i f f e r e n t i a l t h r u s t r e v e r s i n g c a u s e s a n i n c r e a s e i n s i d e f o r c e a n d r o l l i n g moment and a decrease i n yawing moment. The t r ends o f yawing moment and s ide fo rce a r e oppos i te those e x p e c t e d f r o m t h e s t a t i c t h r u s t c o n t r i b u t i o n s . In add i t ion , no e f f ec t on r o l l i n g moment would be expected. Thus, the trends observed a t M = 0.60 i n d i c a t e a n i n t e r - a c t i o n of t he d i f f e ren t i a l r eve r se f l ow wi th t he ex te rna l ae rodynamics which more t h a n o f f s e t s t h e t h r u s t c o n t r i b u t i o n . A t M = 0.90 ( f i g . 2 3 ( c ) ) , d i f f e r e n t i a l t h r u s t r e v e r s i n g h a s a l a r g e r e f f e c t on yawing moment and a s m a l l e r e f f e c t on s i d e f o r c e t h a n o b s e r v e d a t M = 0.60, thus ind ica t ing tha t the j e t -p lume/ f ree-s t ream f low i n t e r a c t i o n s are very Mach number dependent.

The l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s o f t h e c o n f i g u r a t i o n w i t h d e f l e c t e d rudders ( 6 , = - loo ) and dep loyed t h rus t r eve r se r a r e shown i n f i g u r e 24 (hmV = g o o ) and f i gu re 25 (6mv = 1300) . Opera t ion of the th rus t reversers wi th def lec ted rud- d e r s ( f i g s . 24 and 25) produced trends similar t o t h o s e d i s c u s s e d p r e v i o u s l y f o r t h e same conf igura t ions wi th 6, = 00 ( f i g s . 18 and 2 0 ) . Side-force and rolling-moment c o e f f i c i e n t s a re on ly s l i gh t ly a f f ec t ed . The r e d u c t i o n i n yawing moment f o r r e v e r s e r pa r t i a l ly dep loyed i s s l i g h t l y g r e a t e r t h a n n o t e d f o r u n d e f l e c t e d r u d d e r ( M = 1.20); however, a g r e a t e r r e d u c t i o n i n yawing-moment coe f f i c i en t occu r red a t a l l Mach num- b e r s w i t h t h e r e v e r s e r o p e r a t i n g i n i t s fu l ly dep loyed pos i t i on .

Figures 26, 27, and 2 8 p re sen t t he e f f ec t s o f r emov ing empennage s u r f a c e s ( v e r t i c a l t a i l s on ly , ho r i zon ta l ta i ls on ly , and bo th ve r t i ca l and ho r i zon ta l t a i l s ) f o r t h e c o n f i g u r a t i o n w i t h t h r u s t r e v e r s e r s f u l l y d e p l o y e d (hmV = 130° ) . With t h e ver t ica l t a i l s removed ( f i g . 2 6 ) , o p e r a t i o n of t h e j e t has very little e f f e c t on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a t e i t h e r M = 0.60 o r M = 0.90. This w a s a l s o t h e case f o r a l l tai ls removed ( f ig . 28 ) . When t h e h o r i z o n t a l t a i l s are removed ( f i g . 271, t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a re ve ry similar t o t h o s e w i t h a l l t a i l s i n p l a c e . (Compare f ig. 27 wi th f i g . 20. ) This would indicate that most of t h e t h r u s t r e v e r s i n g e f f e c t s on t h e l a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s a r e a s soc i - a t e d w i t h t h e r e v e r s e - t h r u s t j e t - p l u m e i n t e r a c t i o n w i t h t h e f l o w f i e l d a n d t h a t t h e r e i s some misalignment i n t h e i n s t a l l a t i o n o f t h e v e r t i c a l ta i ls .

9

Page 12: December 1983 Effect of Thrust Reverser Operation on the

I . I I 1, ,,,,...- .,.,,. ,..._.."".."..._. "

Comparison and Summary Data

Static s t a b i l i t y d e r i v a t i v e s . - F i g u r e s 29 and 30 show t h e e f f e c t o f j e t opera- t i o n on t h e s ta t ic s t a b i l i t y d e r i v a t i v e s f o r t h e c o n f i g u r a t i o n w i t h a x i s y m m e t r i c nozzles and with 2-D C-D nozzles . In general , j e t ope ra t ion shows no e f f e c t on t h e d i h e d r a l e f f e c t C . D i r e c t i o n a l s t a b i l i t y shows little o r no e f f e c t of j e t

opera t ion a t M = 0.60. A t M = 0.90, t h e r e i s a small i n c r e a s e i n t h e d i r e c t i o n a l s t a b i l i t y w i t h j e t operat ion.

( 4 (end

Figure 31 shows t h e e f f e c t of afterbody/nozzle shape on s ta t ic s t a b i l i t y d e r i v a - t i ves . D ihedra l e f f ec t is unaf fec ted , whi le the conf igura t ion wi th ax isymmetr ic noz- z l e s is more d i r e c t i o n a l l y s t a b l e a t both M = 0 .60 and M = 0.90.

Figures 32 and 33 show t h e e f f e c t s o f j e t o p e r a t i o n o n t h e s t a t i c s t a b i l i t y d e r i v a t i v e s of t h e 2-D C-D conf igura t ions wi th th rus t reversers deployed . As would be expec ted , j e t opera t ion had a l a rge r e f f ec t w i th r eve r se r dep loyed t han w i th r eve r se r stowed. The impact of reverser operation i s p a r t i c u l a r l y e v i d e n t on t h e d i r e c t i o n a l - s t a b i l i t y d e r i v a t i v e C . D i r e c t i o n a l s t a b i l i t y is genera l ly increased

by t h r u s t r e v e r s e r o p e r a t i o n a t low angles o f a t tack . A t h igher angles of a t t a c k , j e t operation produces a s m a l l e r i n c r e a s e i n d i r e c t i o n a l S t a b i l i t y t o t h e p o i n t t h a t the j e t -on curve c rosses the j e t -of f curve and a d e c r e a s e i n d i r e c t i o n a l s t a b i l i t y occurs ( f igs . 32(b) and 33) . The c rossover po in t of t h e j e t - o n a n d j e t - o f f d i r e c t i o n a l - s t a b i l i t y c u r v e s t e n d s t o move t o a lower angle of a t tack with increasing Mach number and i nc reas ing r eve r se r deployment. I n f i g u r e 3 2 ( a ) t h e c u r v e s do n o t c ros s , bu t it is e x p e c t e d t h a t a t a higher angle of a t tack they probably would. The i n c r e a s e i n d i r e c t i o n a l s t a b i l i t y a t low angles o f a t tack i s probably due t o a block- age of the free-stream flow by the reverse f low plume which causes an increase i n v e r t i c a l - t a i l s i d e f o r c e ( r e f . 2 0 ) . This i s p a r t i c u l a r l y e v i d e n t ( f i g . 3 2 ) f o r t h e r eve r se r pa r t i a l ly dep loyed (6mv = 9 0 ° ) a s most of the reverse f low i s contained between t h e v e r t i c a l t a i l s . With i n c r e a s i n g a n g l e o f a t t a c k , d i r e c t i o n a l s t a b i l i t y ( j e t off and j e t on) decreases as a s m a l l e r a r e a o f t h e v e r t i c a l t a i l i s exposed t o the f ree-s t ream f low. During reverser operat ion, there i s a l s o i n c r e a s i n g impinge- ment by t h e r e v e r s e f l o w plume inboard of the windward v e r t i c a l t a i l which causes an even sharper l o s s i n s t a b i l i t y . The Configuration becomes d i r e c t i o n a l l y u n s t a b l e wi th t he r eve r se r fu l ly dep loyed a t M = 0.90 and a > 1 2 O .

n B

There is a s l i g h t d e c r e a s e i n t h e d i h e d r a l e f f e c t w i t h t h e o p e r a t i o n o f t h e th rus t r eve r se r s pa r t i a l ly dep loyed ( f ig . 32 ) . The re is a somewhat l a rge r dec rease i n d i h e d r a l e f f e c t w i t h t h e t h r u s t r e v e r s e r s f u l l y d e p l o y e d ( f i g . 3 3 ) . The r e v e r s e r e x h a u s t e x i t p o r t s a r e l o c a t e d a s h o r t d i s t a n c e a f t of t h e wing t r a i l i n g edge. The r e s u l t s shown i n f i g u r e s 32 and 33 i nd ica t e i n t e r f e rence e f f ec t s of t he r eve r se f l ow plume on t h e wing flow f i e l d c a u s i n g a l o s s i n l i f t on t h e windward wing. As would b e e x p e c t e d , t h e e f f e c t of j e t o p e r a t i o n i n c r e a s e s w i t h i n c r e a s i n g r e v e r s e r deployment.

Figure 34 summarizes t h e e f f e c t of t h r u s t r e v e r s e r deployment on t h e l a t e r a l - d i r e c t i o n a l s t a b i l i t y d e r i v a t i v e s a t o p e r a t i n g NPR. The same e f f ec t s a l r eady no ted are seen when p a r t i a l l y a n d f u l l y d e p l o y e d t h r u s t r e v e r s e r s a r e compared wi th reverser stowed a t o p e r a t i n g NPR.

Rudder d i r ec t iona l - con t ro l e f f ec t iveness . - - A major concern of using in-f l ight t h r u s t r e v e r s e r s i s t h e e f f e c t of-the reverse f low on control s u r f a c e s , s u c h a s t h e r u d d e r o r v e r t i c a l t a i l , and ho r i zon ta l t a i l s . (See r e f . 7 . ) When rudde r s a r e de f l ec t ed on t h e t w i n v e r t i c a l t a i l s , o n e i s de f l ec t ed i nboa rd between t h e v e r t i c a l

10

Page 13: December 1983 Effect of Thrust Reverser Operation on the

t a i l s and one is d e f l e c t e d o u t b o a r d o f t h e v e r t i c a l t a i l . F i g u r e s 35 t o 37 s h w t h e e f f e c t of j e t opera t ion on rudder cont ro l power. Jet ope ra t ion w i th t he r eve r se r s towed caused an increase in rudder power a t M = 0 .60 but had only small e f f e c t s a t M = 0.90 and 1.20. With th rus t r eve r se r s pa r t i a l ly and fu l ly dep loyed , j e t oper- a t ion causes a dec rease i n rudde r power. As might be expected, the effect of j e t o p e r a t i o n t e n d s t o i n c r e a s e w i t h i n c r e a s i n g r e v e r s e r deployment. Figure 38 summa- r i z e s t h e e f f e c t of t h r u s t r e v e r s i n g on rudde r d i r ec t iona l - con t ro l e f f ec t iveness a t opera t ing NPR. S ince t he r eve r se r exhaus t ex i t po r t s are located forward of the rudder , there should be no reverser exhaust f low impingement on the rudder . Any e f f e c t of t h e t h r u s t r e v e r s e r on rudder cont ro l e f fec t iveness p robably resu l t s f rom blockage of the f ree-stream flow by the reverse f low plumes. As would be expected, t h e l a r g e s t l o s s i n r u d d e r e f f e c t i v e n e s s o c c u r r e d a t the l owes t Mach number, 0.60 , w i t h e s s e n t i a l l y no e f f e c t a t M = 1.20. The l o s s i n r u d d e r e f f e c t i v e n e s s d u e t o th rus t revers ing , though no t iceable , would p robab ly no t g rea t ly a f f ec t t he hand l ing q u a l i t i e s of t h e F- 15. There is a l s o no ind ica t ion of the t o t a l loss i n t h e c o n t r o l - su r f ace e f f ec t iveness , as was n o t e d i n r e f e r e n c e 7 , f o r a genera l research a f te rbody model w i t h t h e v e r t i c a l tai ls loca ted fo rward o f t he r eve r se r ex i t po r t s .

CONCLUSIONS

An invest igat ion has been conducted in the Langley 16-Foot Transonic Tunnel t o de te rmine the l a te ra l -d i rec t iona l aerodynamic charac te r i s t ics o f a f u l l y metric 0.047-scale model of t h e F-15 th ree-sur face conf igura t ion (canards , wing, ho r i zon ta l tai ls) with twin two-dimensional (2-D) nozzles and twin axisymmetric nozzles instal- led. The e f f e c t s o f 2-D nozz le i n - f l i gh t t h rus t r eve r s ing and rudde r de f l ec t ion were also determined. Test data were obta ined a t s t a t i c c o n d i t i o n s a n d a t Mach numbers from 0.60 t o 1.20 over an angle-of-attack range from -2O t o 15O. Angle of s i d e s l i p w a s s e t a t approximately Oo and -5O f o r a l l configurat ions and a t approximately - l o o f o r s e l e c t e d c o n f i g u r a t i o n s . R e s u l t s from t h i s i n v e s t i g a t i o n i n d i c a t e t h e f o l l o w i n g :

1 . Dif fe ren t i a l r eve r s ing ( l e f t -hand r eve r se r s towed , r i gh t -hand r eve r se r fu l ly deployed) reduced yawing moment f o r Mach 0.60, an oppos i te e f fec t f rom tha t expec ted from t h e s t a t i c t h r u s t c o n t r i b u t i o n . This ind ica t e s t ha t t he e f f ec t o f t he j e t -p lume f low in te rac t ing wi th the f ree-s t ream f low on external aerodynamics more t h a n o f f s e t s t h e t h r u s t c o n t r i b u t i o n f o r e a c h component.

2. The configuration with axisymmetric nozzles w a s s l i g h t l y more d i r e c t i o n a l l y s table than the configurat ion with two-dimensional convergent-divergent nozzles .

3. D i r e c t i o n a l s t a b i l i t y i s genera l ly increased by j e t o p e r a t i o n w i t h t h r u s t reverser deployed a t low angles of a t tack. The i n c r e a s e i n s t a b i l i t y becomes small a t i nc reas ing ang le s of a t t a c k u n t i l t h e j e t - o n c u r v e c r o s s e s t h e j e t - o f f c u r v e a n d a d e c r e a s e i n d i r e c t i o n a l s t a b i l i t y o c c u r s . T h i s c r o s s o v e r p o i n t t e n d s t o move t o a lower angle o f a t tack wi th increas ing Mach number.

4. Dihedra l e f fec t is dec reased s l i gh t ly by thrust reverser deployment .

5. D i r e c t i o n a l c o n t r o l power is reduced by j e t o p e r a t i o n w i t h t h r u s t r e v e r s e r s deployed, but probably not enough t o b e s i g n i f i c a n t i n a i r c r a f t h a n d l i n g q u a l i t i e s .

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 October 18, 1983

1 1

Page 14: December 1983 Effect of Thrust Reverser Operation on the

REFERENCES

1. Martens, Richard E.: F-15 Nozzle/Afterbody Integration. J. Aircr., vol. 13, no. 5, May 1976, pp. 327-333.

2. Hiley, P. E.; Wallace, H. W.; and BOOZ, D. E . : Nonaxisymmetric Nozzles Instal- l e d i n Advanced Fighter Ai rcraf t . J. Aircr., vol. 13, no. 12, Dec. 1976, pp. 1000-1006.

3. Berrier, Bobby L.; Palcza, J. Lawrence; and Richey, G. Keith: Nonaxisymmetric Nozzle Technology Program - An Overview. A I A A Paper 77-1225, Aug. 1977.

4. Capone, Franc is J. : The Nonaxisymmetric Nozzle - It Is f o r Real. AIAA Paper 79-1810, Aug. 1979.

5. Miller, Eugene H.; and Protopapas, John: Nozzle Design and Integration in an Advanced Supersonic Fighter. A I A A Paper 79-1813, Aug. 1979.

6. Stevens, H. L.: F-l5/Nonaxisymmetric Nozzle System Integration Study Support Program. NASA CR-135252, 1978.

7. Capone, Franc is J.; and Maiden, Donald L.: Performance of Twin Two-Dimensional Wedge Nozzles Including Thrust Vectoring and Reversing Effects a t Speeds up t o Mach 2.20. NASA T N D-8449, 1977.

8. Capone, Franc is J. : Static Performance of Five Twin-Engine Nonaxisymmetric Noz- z l e s With Vectoring and Reversing Capabili ty. NASA TP-1224, 1978.

9. Hiley, P. E. ; Kitmiller, D. E.; and Willard, C. M.: Installed Performance of Vectoring/Reversing Nonaxisymmetric Nozzles. J. Aircr. , vol. 16, no. 8, AUg. 1979, pp. 532-538.

10. Pendergraf t , 0. C . : Comparison of Axisymmetric and Nonaxisymmetric Nozzles I n s t a l l e d o n t h e F-15 Configuration. A I A A Paper 77-842, July 1977.

11. Capone, Franc is J. ; and Berrier, Bobby L. : Inves t iga t ion of Axisymmetric and Nonaxisymmetric Nozzles Ins ta l led on a 0.10-Scale F-18 Prototype A i r p l a n e Model. NASA TP-1638, 1980.

12. Re, Richard J. ; and Berrier, Bobby L. : Sta t ic Internal Performance of S ingle Expansion-Ramp Nozzles With Thrust Vectoring and Reversing. NASA TP-1962, 1982.

13. Bare, E. Ann; Berrier, Bobby L.; and Capone, Franc is J. : Effect of Simulated In-Flight Thrust Reversing on Vertical-Tail Loads of F-18 and F-15 X r p l a n e Models. NASA TP-1890, 1981.

14. Capone, Franc is J.; Re, Richard J.; and Bare, E. Ann: Tnrust Reversing Effects on Twin-Engine Ai rc ra f t Having Nonaxisymmetric Nozzles. AIAA-8 1-2639, Dec. 1981.

15. Henderson, W i l l i a m P. ; and Leavitt , Laurence D. : S t a b i l i t y a n d C o n t r o l Charac- teristics of a Three-Surface Advanced Fighter Configuration a t Angles of A t t a c k Up to 45O. NASA TM-83171, 1981.

1 2

Page 15: December 1983 Effect of Thrust Reverser Operation on the

16.

17.

18.

19.

20.

2 1.

22.

23.

Berrier, Bobby L. ; and Maiden, Donald L. : Effect of Nozzle-Exhaust Flow on t h e Longitudinal Aerodynamic Characteristics of a Fixed-Wing, Twin-Jet F igh te r Airplane Model. NASA TM X-2389, 1971.

Maiden, Donald L. ; and Ber r ie r , Bobby L. : E f f e c t s of Afterbody Closure and Sting In te r fe rence on the Longi tudina l Aerodynamic C h a r a c t e r i s t i c s of a Fixed-Wing, Twin-Jet Fighter Airplane Model. NASA TM X-24 15, 197 1.

Maiden, Donald L. ; and Berrier, Bobby L. : Effect of Airframe Modifications on Longitudinal Aerodynamic Charac t e r i s t i c s o f a Fixed-Wing, Twin-Jet F igh te r Airplane Model. NASA TM X-2523, 1972.

Pendergraft, Odis C . , Jr.; and Bare, E. Ann: Effect of Nozzle and Vertical-Tail Variables on t h e Performance of a Three-Surface F-15 Model a t Transonic Mach Numbers. NASA TF-2043, 1982.

F-15 2-D Nozzle System Integrat ion Study. Volume I - Technical Report. NASA CR-145295, 1978.

Corson, Blake W . , Jr. ; Runckel, Jack F.; and Igoe, W i l l i a m B.: Ca l ibra t ion of t h e Langley 16-Foot Transonic Tunnel With Test Section Air Removal. NASA TR R-423, 1994-

Braslow, Albert L.; Hicks, Raymond M.; and Harr is , Roy V., Jr. : U s e of Grit-Type Boundary-Layer-Transition Trips on Wind-Tunnel Models. Conference on A i r c r a f t Aerodynamics, NASA SP-124, 1966, pp. 19-36. (A l so ava i l ab le as NASA T N D-3579.)

Braslow, Albert L. ; and Knox, Eugene C. : Simplif ied Method for Determination of Cr i t i ca l Height of Distributed Roughness P a r t i c l e s f o r Boundary-Layer Transi- t i o n a t Mach Numbers From 0 t o 5. NACA T N 4363, 1958.

13

Page 16: December 1983 Effect of Thrust Reverser Operation on the

TABLE 1.- MODEL GEOMETRIC CHARACTERISTICS

Overal l mode1 length. m ........................................................ 0.93

Wing: Span. m ..................................................................... 0.612 Area. m 0.124 Root chord ( theore t ica l ) . m .................................................. 0.33 Tip chord ( theore t ica l ) . m .................................................. 0.082 Mean geometric chord. m ..................................................... 0.228 Aspect r a t i o .................................................................. 3.0 Taper r a t i o .................................................................. 0.25 Sweepback of leading edge. deg ................................................. 45 A i r f o i l s e c t i o n ..................................... NACA 64A-series with modified

c o n i c a l camber L.E.

2 ....................................................................

Hor izon ta l t a i l ( exposed each s ide ) : Span. m ..................................................................... 0.113 Area. m 2 .................................................................... 0.012 Root chord ( t h e o r e t i c a l ) . rn ................................................. 0.165 T i p c h o r d ( t h e o r e t i c a l ) . m .................................................. 0.055 Sweepback of l ead ing edge. deg ................................................. 50 A i r f o i l s e c t i o n .................................................... NACA 64-ser ies

V e r t i c a l t a i l (exposed each panel) : Span. m ..................................................................... 0.146 Area. m2 .................................................................... 0.013 Root chord. m ............................................................... 0.137 Tip chord. m ................................................................ 0.037 Sweepback of leading edge. deg .............................................. 36.57 Toe-out angle (base l ine on ly) . deg .............................................. 2 Air fo i l Sec t ion .................................................... NACA 64-ser ies

Canard (exposed each panel): Span. m ..................................................................... 0.088 Area. m2 .................................................................... 0.006 Root chord. m ............................................................... 0.113 Tip chord. m ................................................................ 0.028 Sweepback of l ead ing edge. deg ................................................. 50 A i r f o i l s e c t i o n .................................................... NACA 64-ser ies Dihedral angle. deg ............................................................ 20

14

Page 17: December 1983 Effect of Thrust Reverser Operation on the

680-2042

Figure 1.- Photograph showing s t ing - s t ru t arrangement of 0.047-scale F-15 propulsion mode1 i n s t a l l e d i n Langley 16-Foot Transonic Tunnel.

Page 18: December 1983 Effect of Thrust Reverser Operation on the

Flexure housing Air transfer tube

Lateral axis

Strut-balance

f

Nonmetric hardware

\ Nonmetric sonic nozzles (typical 8 places - 3 shown)

@ Metric hardware

Two opposed flexible bellows bridging metric to nonmetric hardware

Figure 2.- Sketch showing high-pressure a ir transfer methods of propulsion system.

16

Page 19: December 1983 Effect of Thrust Reverser Operation on the

. .” . . . . . .

B.L. 0.0 ~

W F. S . 13.86

L 93.00 ~- 4 F. S. 106.86

W. L. 12.58-

Moment re ference

W.L. 13.88

I \ - - 1 \Moment re ference F. S . 66.51 W.L. 13.88 B.L. 0.0

center

Figure 3.- Sketch of 0.047-scale three-surface F-15 model. All dimensions are in centimeters unless otherwise noted.

17

Page 20: December 1983 Effect of Thrust Reverser Operation on the

680-20 19

Figure 4.- Photograph of baseline three-surface F-15 model with axisymmetric dry-power nozzles.

Page 21: December 1983 Effect of Thrust Reverser Operation on the

F. S. 88.900 F. S. 97.718 (exit)

F. S. 95.204 I

I

A ,

4.826 -

4.059 A , * -

I

19.180 F. S. 93.972

F. S. 95.258 (throat)

Figure 5.- Sketch of axisymmetric nozzle. All dimensions are in centimeters unless otherwise noted.

Page 22: December 1983 Effect of Thrust Reverser Operation on the

N 0

92*242 F. S. 94.488

F. S. Radius

93.259 2.858 93.668 94.079

2.779

, 2.494 94.488 2.644

radius I ' I ' 1

t- -I

Nozzle outl ine \See table for contour

F. S. 93.259

Figure 6.- Sketch of axisymmetr ic external nozzle shroud. All dimensions are i n c e n t i m e t e r s .

Page 23: December 1983 Effect of Thrust Reverser Operation on the

6 8 0 - 2 0 3 8 Figure 7.- Photograph of model with two-dimensional convergent-divergent (2-D C-D) s t ra ight-s idewall

dry-power nozz les ins ta l led .

Page 24: December 1983 Effect of Thrust Reverser Operation on the

---PLAN VIEW

F. S. 91.592

22. 11°

W. L. 13.879 A /A = 1.15 e t

SIDE VIEW

(a) Dry-power 2-D C-D nozz le f l aps .

Figure 8 . - Sketches of dry-power 2-D C-D n o z z l e f l a p s and s idewal l s . All dimensions are in centimeters unless otherwise noted.

22

Page 25: December 1983 Effect of Thrust Reverser Operation on the

.635

PLAN VI EW t

SI DE V I E W -

I F. S.. 92.05 I

I F. S. 96.596

3.581 .432 R

5.135 L +:

9O (typ. 1 F. S. 94.323

Fixed, s tra ight s idewal l (L.H.

Figure 8 . - Concluded.

s i d e ) .

23

Page 26: December 1983 Effect of Thrust Reverser Operation on the

24

Page 27: December 1983 Effect of Thrust Reverser Operation on the

F. S . 92.913

F. S. 92.481 (a) Ful ly deployed reverser ( 1 30° 1.

Figure 10.- Side-view sketches of 2-D C-D nozz le t h rus t - r eve r se r f l a p s . All dimensions are in cen t ime te r s un le s s o the rwise no ted .

25

Page 28: December 1983 Effect of Thrust Reverser Operation on the

F. S . 92.913

P- I I

__I- I

b" J

I

(b) Par t i a l ly dep loyed

- . -. . . . -

t 2.743

9

r e v e r s e r (90° 1.

Figure IO. - Concluded.

26

.. . .

Page 29: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 1.25 r l 1.60 0 3.50 0 5.00

3 0 -. 05 0 .05

"" "3

L

" "i t -~ t"""

-. 005 0 .005 .010 - n- Ir n

( a ) M = 0.60.

m . 0 1 0 -.005 0 .005

Figure 11.- m t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of configurat ion with axisymmetric nozzles, $ = oo , and 6, = O o .

Page 30: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 1.25 D 2.00 0 3.50 0 5.00

005 0 .005 . 010 ,010 -. 005 0 .005

C n

(b) M = 0.90.

Figure 1 1 .- Continued.

Page 31: December 1983 Effect of Thrust Reverser Operation on the

N PR

0 1.00 0 2.25 0 3.50

A 6.50 0 5.00

”” 1 --” -

“e_”

”““- C”i““’”1 I“ 4”I- __I “

-. 10 -. 05 0 .05

“___1--I-I

-. 005 0 .005 . 010 -. 010 -. 005 0 II

c 2 L n

( c ) M = 1.20.

11.- Conc lude d .

Page 32: December 1983 Effect of Thrust Reverser Operation on the

W 0

NPR

20

15

10

0 . 0 5 ,10

0 1.00 0 3.50

= Y c" (a) M = 0.60.

0 .005 . 010 .015 .020

Figure 12.- Lateral-directional characteristics of configuration with axisymmetric nozzles, fj = -50, and 6, = Oo.

Page 33: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 5.00

" - "" - . ".

"" ~ _ _ _ _ _ _ _ , _

a

15 7-

0

-c;

'0 . 0 5 . 10 0 -.015 -.010 -.005 0

C n

(b) M = 0.90.

F igu re 12. - Concluded.

.005 . 010 .015

5

.020 .025

Page 34: December 1983 Effect of Thrust Reverser Operation on the

NPR

-. 10 -. 05 0 .05

0 1.00 0 1.25 ll 1.60 0 3.50 0 5.00

-. 005 0

C n

(a ) M = 0.60.

.005 .010

c Z

Page 35: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 1.25 0 2.00 0 3.50 0 5.00 20 """ - "" "." """, "7,

""__ .""" ""I

-i-I

-4"". !E- """

"""

""

-. 10 -. 05 0 .05

"+""--"L"""

"""""

" -" ____" '

""""",_ "-c" A

-. 005 0 .005 . 010

c n

(b) M = 0 . 9 0 -

Figure 13.- Continued.

-" -" " "- "i_ ""

"

"

"" "- -" "" "

"

-. 010 -. 005 0 .005 . . . . . . . . . . . ~ . . . . . . ~

W W

Page 36: December 1983 Effect of Thrust Reverser Operation on the

P W

NPR

-. 10 -. 05 0 .05

0 1.00 0 2.25 0 3.50 0 5.00 A 6.50

-. 005 0 .005 . 010 .. 010 - .005 0 .005

(c) M = 1.20.

Figure 13.- Conc lude d.

Page 37: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 3.50

.'O 5 0 . 0 5 . 1 0

Figure

-. 010 -. 005

C n

( a ) M = 0.60.

0

c .005 . 010 .015

W ul

Page 38: December 1983 Effect of Thrust Reverser Operation on the

NPR 0 1.00 0 5.00

a

20

15

10

5

0

-3 0 . 0 5 . 10 -.015 -. 010 -. 005

c"

0 0 .005 . 010 .015 .020 L____LlI""""

c Z

(b) M = 0.90.

Figure 14. - Concluded.

,

Page 39: December 1983 Effect of Thrust Reverser Operation on the

NPR

"

5

0

-c. .'O 5 .10 . 1 5

0 1.00 0 3.50

"" -AI

-.02O -.015 -.010 -.005

C n

(a) M = 0.60.

. 010 .015 020

c Z

.025 .030 .035

Figure 15.- La tera l -d i rec t iona l charac te r i s t ics of configuration with 2-D C-D nozzles, fj = - I O o , and 6, = 00.

Page 40: December 1983 Effect of Thrust Reverser Operation on the

W 03

NPR

0 1.00 0 5.00

!

I . . . . I . . L. I " ..i

. . , , . . . . . .:I. . : . 1 . :.I - . 1 0 . 1 5 . 2 0

I . . . . . . . . . . . . . . ! "1 . . I . . .. 1

. . I. . . . . , . . - , -

+ - -

-.015 -.010 -.005 0 .@I5

L n

(b) M = 0.90.

Figure 15.- Concluded.

015 .020 .025 .030 .035 .045

Page 41: December 1983 Effect of Thrust Reverser Operation on the

n U

0 20 """"- """- ""-. - ti - - t

"""""""" ~~*zzI:zzz

( a ) M = 0.60.

NPR 1.00 3.50

-""I_". """"

"""i "" ". """". LL""". """"_ I"

"" " =E? I.

. 010 .015 .020

C n

Figure 16.- I a t e r a l - d i r e c t i o n a l c h a r a c t e r i s t i c s of configurat ion with 2-D C-D nozzles , @ = O o , and 6, = - l o o .

Page 42: December 1983 Effect of Thrust Reverser Operation on the

e 0

NPR

20

15

10

5

0 I

-5 -. 10 -. 05 0 .05

0 1.00 0 5.00

0 .005 . O l O .015 .020

C n

(b) M = 0.90.

Figure 16.- Continued.

_e“”

“C””

”?“””

““

005 0 .005

!

Page 43: December 1983 Effect of Thrust Reverser Operation on the

N PR

0 1.00 A 6.50

20

15

10

5

0

""""

d"""kII~ """I - L"L".""""""

IC "" "+."_ "_ - y-."

""""L-""""""

"_._I"" ""

/"_""

__i"_ """"_ ""i" """_ "Le "_.", +" " "._ "" "_i_,_ _." "" -__ - "- ~" "_.___ """ "" "" "- ""

-I.""- __"" " j "1 A"""

~~ ~ ~

"i

""-A L_

"--"""A"- ""1"""""

-id "" ___." -.- -."_ """"4""""- 1"""" "." -__ ~--~-------- "_ "" =2"ZI--l"-:-= "-q "" "" - "" """" "- ""

""

0 .005 . 010 .015

C n

( c ) M = 1.20 .

Figure 16. - Concluded.

010 -.005 0 .005

Page 44: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 1.25 0 3.50 0 5.00

,010 -. 005 0 .005 C n

( a ) M = 0.60.

Figure 17.- Lateral-directional characterist ics of configuration with 2 removed, and f3 = Oo.

-D

-. 010 -. 005 0 .005

cZ

C-D nozz les , ver t ica l . t a i l s

Page 45: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 1.25 0 3.50 0 5.00 20""- """"""""",

"" 3 """".", """."I ""c-__""

""

"" "- ""

""

10

5

0

-5 . -. 05 0 .05 10 -. 010 -. 005 0 .005 -. 010 -. 005 0 .005

C n

Figure 17. - Continued.

P W

Page 46: December 1983 Effect of Thrust Reverser Operation on the

P P

NPR

20

15

10

-. 10 -. 05 0 .05

C n

010 -. 005 0 .005

(c) M = 1.20.

17. - Concluded.

Page 47: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 3.50

p""""

20

15 .r-* """e ""fc "",

10 .".L "- ._I"____.

". ""..

". ."""- T"i+". +L"+-

0

-5 - 10 -. 05 0 . 0 5 -. 005 0 .005 010 -.010 -. 005 0 .005 C n

Figure 18.- La tera l -d i rec t iona l charac te r i s t ics of configurat ion with r e v e r s e r s p a r t i a l l y deployed = 9 0 ° ) , p = O o , and 6, = 00.

Page 48: December 1983 Effect of Thrust Reverser Operation on the

NPR

-7 -. 10 -. 05 0 . 0 5

0 1.00 0 5.00

-. 005 0 .005 .OlO

C n

(b) M = 0.90 .

Figure 18.- Continued.

-. 010 -. 005 0 .005

Page 49: December 1983 Effect of Thrust Reverser Operation on the

NPR

-: 10 -. 05 0 . 0 5

0 1.00 6.50

"3 "". __-. 1"- 1" """-"""4.

-. 005 0 005 .OlO '. 010 -. 005 . . . . . . . . . . . . . . ~ . "

0 .005

( c ) M = 1.20.

18.- Conc lude d.

Page 50: December 1983 Effect of Thrust Reverser Operation on the

N PR

20

15

1 1

. . . " ~ -5 I - . . - . . . . ... . . . . . .

1 . - . . . . . . . . . . . ~. .

0 . 0 5 . 10 . 1 5

0 1.00 a 3.50

-. 010 -. 005

C

( a ) M = 0.60. n

0 0 .005 . 010 .015 .020

Figure 19.- Lateral-directional characterist ics of configuration with reversers partially deployed (?jmV = 90° I l f3 = -5O and 6, = Oo.

Page 51: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 5.00

-.020 -. 015 -.010 -. 005 0

C n

(b) M = 0.90.

Figure 19. - Concluded.

-1"- .. - ""

0 .005 010 015 .020

Page 52: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

5

0

-5 . -. 10 -. 05 0 .05

0 1.00 0 3.50

-. 005 0 .005 . 010 c n

(a ) M = 0.60.

-. 010 -. 005 0 .005

Page 53: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 5.00

-. 005 0 .005 . 010

""",

-. 010 -. 005 0 .005

(b) M = 0.90.

20.- Continued.

Page 54: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 A 6.50

-. 005 0 .005 ,010

C n

( c ) M = 1.20.

Figure 20.- Conc lude d.

,010 -. 005 0 .005

Page 55: December 1983 Effect of Thrust Reverser Operation on the

NPR 0 1.00

20 --- - _"__ 1

Figure 21.-

. 0 5 .10

0 3.50

C n

Lateral-directional

( a ) M = 0.60.

character is t ics of configuration

0 .005 .010 .015 .020

w i t h reversers

c Z

f u l l y deployed

Page 56: December 1983 Effect of Thrust Reverser Operation on the

ul P

NPR

0 1.00 0 5.00

20

/

0 . 0 5 . 10 -. 015 -. 010 -. 005

C n

0

(b) M = 0.90.

Figure 21. - Concluded.

0 .005 . 010 .015 .020

Page 57: December 1983 Effect of Thrust Reverser Operation on the

NPR

. , . . . , _ . I . , . . . I ........ .

".", ~. - . "

.... * . . . ._I. . . . . . ., . . . . .

. . . . I .. ""I

, .

. . . . . . . . . . . . . * _ . . . . . . . . .~ .,.. . . . . . . . . . . . . . . ........ . . . . . . . . . " _ " ~

. . . . . . . . . . . . . . . . . .

~ _ . " . . . . . . . . . . . . - , . . * * . . . . . . . . . ~ _ " + . . . . . . . . . ~~ . . " ~ "" .". . . .

+ , * . ~ . . . . . . . . . . , . . . , . * . . . . . L l ; f j : - l T i i , . , , . + , + ~ . : . 4 . - * * . . . . . . . .

-i..L.U1L.8 , 1 , , , I - 1

-.020 -.015 -.010 -.005 0

c " (a) M = 0.60.

.010

Figure 22.- utera l -d i rec t iona l charac te r i s t ics o f conf igura t ion wi th reversers fu l ly deployed

( 6REv = 1 3 0 ° ) , $ = - l o 0 , and 6, = O o .

Page 58: December 1983 Effect of Thrust Reverser Operation on the

NPR 0 1.00 0 5.00

.'lo .15 .20 - .020 ,025 .030 .035 .040 .045

I; 1

(b) M = 0.90.

Figure 22. - Concluded.

Page 59: December 1983 Effect of Thrust Reverser Operation on the

7

6

5

4

NPR

-. 005 0 .005 -. 005 0 C n

.005 . 010 -. 005 0

cZ ( a ) M = 0, a = 00. Indica ted po in ts are je t to t a l -p re s su re va lues equ iva len t t o

opera t ing NPR a t Mach numbers shown.

Figure 23.- Late ra l -d i r ec t iona l cha rac t e r i s t i c s o f con f igu ra t ion w i th d i f f e ren t i a l r eve r s ing (6mv = Oo f o r L.H. nozzle and 6,, = 130° f o r R.H. nozz le) , fi = 00, and 6, = 0 0 .

.005

Page 60: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 3.50

b 010 -. 005 0 .005 C n

-. 005 0 .005 .010

(b) M = 0.60.

Figure 23.- mnt inue d .

Page 61: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

10

5

0

-5 -. 10 -. 05 0 .05

0 1.00 0 5.00

-. 010 -. 005 0 .005 C n

-. 010 -. 005 0 .005

Figure 23.- Concluded.

Page 62: December 1983 Effect of Thrust Reverser Operation on the

cn 0

NPR

0 1.00 0 3.50

-. 15 -. 10 -. 05 0 0 .005 . 010

(a) M = 0.60.

,015 .020 I 005 0 .005

cZ

Figure 24.- Iateral-directional characteristics of configuration with reversers partially deployed (6mv = 90° ), B = 0°, and 6, = -100.

Page 63: December 1983 Effect of Thrust Reverser Operation on the

NPR

2 0 "" --- """ "."*.+" ..-. C.".""",

- 3 0 -. 05 P

0 05

0 1.00 0 3.50

-I""""""""""""""-,

"_"","" - ""-+-."""+"-.-"I".

"" d." ___

0 005 010

C n

(b) M = 0.90.

Figure 24. - Continued.

,015 020 025 - .005 0 .005

Page 64: December 1983 Effect of Thrust Reverser Operation on the

NPR

2 0

15

10

-5 -. 10 -. 05 0 .05

0 1.00 0 6.50

0 . 0 5 . 010 .015 .020

c n

Figure Concluded.

-. 005 0 .005

Page 65: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 20 y7,'-" """"

"""""r""""" """

""""" "4 ""+ i + . " - c C " o """"r- """."""' 7"

a, deg ""- ""

I-

?

0 3.50 """""""""" ~""~+"c-"""".""" - "_"".." -..- - ( . _ ~ _" ""c""+""""""

""" """ ""

"* - _."_ """-A """_ f3"" "

".-"""""."_A ""fs:"

~ - -IC-"-

0 .005 . 010 .015 .020

crl

"""" ""

-I- "JL" "

." -u--

-. 005 0 .005 n

(a ) PI = 0.60.

Figure 25.- Lateral-directional characteristics of configuration with reversers fully deployed p = 00, and 6 = - 1 0 0 . R

Page 66: December 1983 Effect of Thrust Reverser Operation on the

NPR 0 1.00 0 5.00 20

15

""

"" I----"-

5 i_" ""-"-

""Cru- ',""" """C -i"-

I""

""II

0

-5 -. 10 -. 05 0 .05 0 .005 010 015 .020 .025 005 0 .005

Figure 25.- Continued.

Page 67: December 1983 Effect of Thrust Reverser Operation on the

N PR

0 1.00 0 6.50 20

15

10

5

0

-5 -. 10 - .05 0 . 0 5 0 .005 010 .015

.C,“F+“”””

.C“.””“I

.L .”_” “““”“”-.‘-“l

.”?- ”__, “____

.“”, ”I

“-.

-. 010 -. 005 0 .005

L n

( C ) M = 1.20.

25.- Concluded.

Page 68: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 3.50

-. 010 -. 005 0 .005 . 010

C n ( a ) M = 0.60.

.005 0 .005

Figure 26.- Lateral-directional characterist ics of configuration with reversers fully deployed (6mv = 130° 1, v e r t i c a l t a i l s removed, and p = 00.

Page 69: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 5.00

20

15

10

a, d e g

5

0

ttttfi-tttSiti-1-t-fStt-t~t~~i-ttt-1 -505 0 . 0 5 . 1 0

(b) M = 0.90-

Figure 26. - Concluded.

L""""""

"" i_""

-. 010 -. 005 0

c Z

.005

Page 70: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

15

10

a, d e g

5

0

-5 -. 05 0 . 0 5 . 1 0

0 1.00 0 3.50

-. 010 -. 005 0 .005

C n (a) M = 0.60.

-. 010 -. 005 0 .005

Page 71: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 5.00

a

-. 010 -. 005

C n

0

(b) M = 0.90.

Figure 27.- Continued.

005 -. 010 -. 005 0 .005

Page 72: December 1983 Effect of Thrust Reverser Operation on the

4 0

NPR

0 1.00 D 6.50

20

15

10

5

0

- (10 -. 05 0 . 05 -.OlO -. 005

C n

0

( C ) M = 1.20.

Figure 27.- Conc lude d .

& ! ! ' ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! I

005 -.010 -. 005 0 .005

Page 73: December 1983 Effect of Thrust Reverser Operation on the

NPR

20

0 1.00 0 3.50

15

10

0

-5 - 05 0 . 0 5 .10 -. 010 -. 005 0

c "

( a ) M = 0.60.

.005 -. 010 -. 005 0 .005

Figure 28.- La tera l -d i rec t iona l charac te r i s t ics of configurat ion with reversers ful ly deployed (6,, = 130° ), v e r t i c a l t a i l s and h o r i z o n t a l t a i l s removed, and = Oo.

Page 74: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 5.00 20

15

10

5

-. 010 -. 005 0 -005 -.010 - .005 0 005

P L n

(b) M = 0.90.

Figure 28. - Concluded.

Page 75: December 1983 Effect of Thrust Reverser Operation on the

-. 010

C -.015

-. 020

003

.002

C "P

.001

l l 1 1

/ I / I

I

0

1 NPR

1.00 3.50

' I l l

0 5

M 0.60.

15 20

Figure 29.- Static stability derivatives of baseline configuration with axisymmetric nozzles and 6 = 0 0 . R

73

Page 76: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 5.00

-. 010

p -.015

-. 020

C

.003

.002

.CHI1

0

czP

-. 001

-. 002

-. 003

-. 004

-. 005 -5 5 10 15 20

74

a, deg

M = 0.90.

Figure 29.- Concluded.

Page 77: December 1983 Effect of Thrust Reverser Operation on the

NPR 0 1.00 0 3.50

-. 010

"ys -.015

-. 020

-. 001

C zp -.002

- .003

-.004 . -5 0 5 10

a. deg

15 20

Figure 30.- Static stability derivatives of configuration with 2-D C-D nozzles and

75

Page 78: December 1983 Effect of Thrust Reverser Operation on the

NPR

1.00 5.00

0 0

-. 010

-. 015

-. 020 i I i . "-

P

.003

.002

.001

0

C "P

i I I :

-. 002

C Zp -.003

-.004 1

i l 10 15 20 0 5

a.

Figure Conc lude d .

76

Page 79: December 1983 Effect of Thrust Reverser Operation on the

0 Axisyrnrnetric

0 2-D C-D

.003

.002 C

"P .001

0

0

-. 001

-. 003

-. 004 -5

/ I

I 1 1,

0

T

i

5

I ! i

4 I

I I

T

I

1

10

( a ) M = 0.60. ; NPR = 3.50.

Figure 3 1. - Effec t of axisymmetric and 2-D C-D afterbody/nozzle shapes on s t a t i c s t a b i l i t y de r iva t ives w i th 6 , = Oo and 6,,, = 00.

77

Page 80: December 1983 Effect of Thrust Reverser Operation on the

0 0

B

C "P

C

-. 010

-. 015

-. 020

.003

.002

.001

0

Axisymmetric

2-D C-D

-5 0 5 10

a, deg

15 20

(b) M = 0.90; NPR = 5.00.

Figure 3 1. - Concluded.

78

I

Page 81: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 I3 3.50

003

.002

fool

0 T T I

- . 001

-. 003

-. 004 -5 5 10 15 20

M = 0.60.

Figure 32.- S t a t i c s t a b i l i t y d e r i v a t i v e s of configurat ion with 2-D C-D nozzles , reversers par t ia l ly deployed ( 6 = 900 ) , and 6, = 00.

RFV

79

Page 82: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 5.00

-. 010

-.015

-. 920

0

-. 0 0 1

-. 002

-. 003

-. 004

-. 005 -5 0 5 10 15 20

a, de9

(b) M = 0.90.

Figure 32.- Concluded.

80

Page 83: December 1983 Effect of Thrust Reverser Operation on the

NPR 1.00 3.50

0 0

-. 005

I I

-. 010

-. 015

-. 020

.003 I 1 44 .M)2

C “D

0

0

-. 001

-. 002

-. 004 0 20 -5 5 10 15

a. deg (a) M = 0.60.

Figure 33.- S t a t i c s t a b i l i t y d e r i v a t i v e s of configurat ion with 2-D C-D nozzles , reversers ful ly deployed ( 6 = 130°) and 6, = O o .

8 1

I

Page 84: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 5.00

-. 010

' Y -.015 B

-. 020

C "b

0

-. 001

-. 002

-. 003

-. 004

-. 005 -5 0 5 10 15 20

0, deg

(b) M = 0.90-

Figure 33. - Concluded.

82

Page 85: December 1983 Effect of Thrust Reverser Operation on the

C 5

C "P

-. 005

.003

.002

.001

0

0

-. 001

-. 003

-. 004 -!I

i I

0 0 0

!

i ll

6REV

00 900 1300

0

M = 0.60;

5 10 15 20

a, deg NPR = 3.50.

Figure 34.- Effect of thrust reversers on s t a t i c s t a b i l i t y der ivat ives of configuration w i t h 2-D C-D nozzles and 6 = 0 0 . R

83

Page 86: December 1983 Effect of Thrust Reverser Operation on the

P

C "P

BREV

0 0 0 0 9oo 0 130'

H

5 10 15 20

a, deg

(b) M = 0.90; NPR = 5.00.

Figure 3 4. - Conc lude d.

84

Page 87: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 3.50 0 5.00 A 6.50

-. 0015

- .0020

-. 0025

- .0030

I I I I I I I I

M = 0.60

-. 0015

- .0020

- .0025

-. 0030

C

-. 0010

-. 0015 I- ll 1 1 4 15

l I I I I I I 1 I

M = 1.20

-. 0020 -5 5 10 20

Figure 35.- Rudder power fo r con f igu ra t ion w i th nozzles , = Oo, and 6,, = Oo.

2-D C-D

Page 88: December 1983 Effect of Thrust Reverser Operation on the

NPR

1.00 3.50 6.50

-. 0015

-. 0020

-. 0025

- .0030

0015

-. 0020

C "6,

-. 0025

- .0030

0 0 A

-. 0010

-. 0015

-. 0020 -5 0 5 10

a, deg

n

15 20

Figure 36.- Rudder power f o r c o n f i g u r a t i o n w i t h 2 - ~ C-D nozzles, $ = 00, and 6,, = 900.

86

Page 89: December 1983 Effect of Thrust Reverser Operation on the

NPR

0 1.00 0 3.50 0 5.00 A 6.50

-. 0015

-. 0020

- .0025

-. 0030

I

-. 0015

- .0020

-. 0025

-. 0030

T I M = 0.90

C "%

1 0

I I l l I l l

/ I / I Ill 5 -.0020 I

-5 10 15 20

C-D F i g u r e 37. - Rudder power fo r c o n f i g u r a t i o n w i t h 2-D n o z z l e s , $ = Oo, a n d 6,,v = 130°.

87

Page 90: December 1983 Effect of Thrust Reverser Operation on the

g~~~

0 oo 0 90° 0 130°

-. 0015

- .0020

-. 0025

-_ 0010

-. 0015

C -. 0020

n%

-. 0025

- .0030

M - 0 I 1

1

-. 0010

-. 0015

-. 0020 -5 0 5 10 15

I

I L

20

Figure 38.- Effect of th rus t reversers on d i rec t iona l control of configuration with 2-D C-D nozzles, and p = 00.

88

Page 91: December 1983 Effect of Thrust Reverser Operation on the

- ~~

1. Report No. 2. Government AccAion

N T r 1 - 3 ; Recipient's Catalog No.

"~ . ..

NASA TP-2234 4. Title and Subtitle

- " ~ .~ .

5. Report Date EFFECT OF THRUST REVERSER OPERATION ON THE LATERAG DIRECTIONAL CHARACTERISTICS OF A THREE-SURFACE F- 15 MODEL AT TRANSONIC SPEEDS

~"

7. Author(s) ~~~ .

8. Performing Organization Report No.

E. Ann Bare and Odis C. Pendergraf t , Jr. L- 15648

9. Performing Organization Name and Address

NASA Langley Research Center Hampton, VA 23665

13. Type of Report and Period Covered ~ ~ ~. ..

" ~" I Technical Paper National Aeronautics and Space Administration Washington, DC 20546

14. Sponsoring Agency Code

I 15. Supplementary Notes

~ " . . . ___

~~ ~ ~~ ~ "" - _1

16. Abstract I An i n v e s t i g a t i o n was conducted in the Langley 16-Foot Transonic Tunnel t o determine t h e l a t e r a l - d i r e c t i o n a l a e r o d y n a m i c c h a r a c t e r i s t i c s o f a f u l l y metric 0.047-scale model o f t he F-15 three-sur face conf igura t ion (canards , wing, h o r i z o n t a l t a i l s ) w i t h twin two-dimensional ( 2 - D ) nozzles and twin axisymmetr ic nozzles instal led. The e f f e c t s of 2-D n o z z l e i n - f l i g h t t h r u s t r e v e r s i n g a n d r u d d e r d e f l e c t i o n were a l s o determined. Test d a t a were ob ta ined a t s t a t i c c o n d i t i o n s a n d a t Mach numbers from 0.60 t o 1.20 over an angle-of-attack range from - 2 O t o 15O. Reynolds number v a r i e d from 2.6 x lo6 t o 3.8 x 10 . Angle o f s i d e s l i p w a s se t a t approximately O o and -5O f o r a l l conf igura t ions and a t -IOo fo r s e l ec t ed conf igu ra t ions .

6

~- ~- - ." J 17. Key Words (Suggested by Authoris) ) 18. Distribution Statement

Two-dimensional nozzles T h r u s t r e v e r s e r s

Unclassif ied - Unlimited

Rudder e f f e c t i v e n e s s P ropu l s ion e f f ec t s

Subject Category 02 Twin v e r t i c a l ta i ls

Unclassif ied Unclassif ied 89 I A05 . . _j ~.

19. Security Classif. (of this report1 20. Security Classif. (of this page) 21. No. of Pages 22. Price ~ . ." - "- "

"- ~ ." ~~~ . . ." . . - " . - .

For sale by the National Technical Information Service, Springfield, Virglnla 22161 NASA-Langley, 1983

Page 92: December 1983 Effect of Thrust Reverser Operation on the

National Aeronautics and Space Administration

Washington, D.C. 20546 Official Business Penalty for Private Use, $300

THIRD-CLASS BULK RATE Postage and Fees Paid National Aeronautics and Space Administration NASA451

U S W L

I

j

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return