Coupling metamaterials and plasmons with quantum states of ... · « Holy Grail » of quantum...

Preview:

Citation preview

6/12/2016 1

Coupling metamaterials and plasmons with quantum states of light

Christophe Couteau Laboratory for Nanotechnologies, Instrumentation and Optics (LNIO) French Technological University of Troyes (UTT)

Location : city of Troyes

Region name : « Champagne » Timbered houses

History…

Birth place of the Templar’s

order

Whereabouts

« Holy Grail » of quantum technologies

Towards the ultimate light-matter interaction

Quantum technologies: -quantum sensors

-quantum communications

-quantum simulation

-quantum computer

-quantum algorithm

Optics/photonics: One photon – One emitter

‘phi-pho’: 1 photon in – 1 photon out

Strong light-matter interaction

Matching ‘impedance’ between photons and quantum systems

Rough orders of magnitude:

S

λ

Incoming light beam

Quantum emitter

Probability of absorption/’coincidence’

SS

abs

2

Strong focusing Increase N

g

Γ

κ

Increase events

Strong light-matter interaction

Another solution given by surface plasmon polaritons

1S

abs

Strongly decrease S to nm scale!

S

Strong light-matter interaction

Another solution given by plasmonics

1S

abs

Strongly decrease S

S

Holy Grail Lycurgus cup

Quantum plasmonics

A. V. Akimov et al., Nature 450, 402 (2007)

Strong light-matter interaction

J. S. Fakonas et al., Nature Phot. 8, 317 (2014)

Two plasmons interferences

D. E. Chang et al., Nature Phys. 3, 807 (2007) T. Ramos et al., Nature Phys. 113, 237303 (2014)

Photons

Chiral photonics

Single photon transistor

Plasmonics and metamaterials

Tool #1: coherent perfection absorption

Tool #2: Spontaneous parametric down-conversion

Single photon absorption with metamaterials

Entangled photons for remote absorption

Future works

Contents

Principles of surface plasmons polaritons

ε1

ε2

Maxwell equ. for plane waves + boundary conditions:

02

2

1

1

zz kk

21

p

spSurface Plasmon frequency:

Dispersion relation

No coupling to light line!

Plasmonics

Dielectric/metal interface/geometry

Drude model with losses for the metal: 1)(

1

2

2

i

p

Engineering coupling with geometry Coupling at the intersection

(if η~0)

ω

kz Surface wave / evanescent field

Plasmonics

Metamaterials!

Tool #1: Metamaterials for coherent control absorption of light

Nanoscale absorber

Coherent perfect

absorption (CPA)

W. Wan et al.,

Science 331, 889 (2011).

Metamaterials for coherent control of light

Stationary wave with a

Mach-Zehnder interferometer

Gain of the use

of a metamaterial

J. Zhang et al., Light: Sci. & Appl. 1, e18 (2012).

Coupling to quantum states of light?

rki

ispIeaaaH

.ˆˆˆ.ˆ

Phase-matching conditions:

isp

sipokkkk

SPDC Hamiltonian

Tool #2: Spontaneous parametric down-conversion

Energy conservation

Momentum conservation

Experimental set-up

T. Roger et al., Nature Comm. 6, 7031 (2015).

Signal

Idler

Experimental results

Split ring

structure

T. Roger et al., Nature Comm. 6, 7031 (2015).

Experimental results

Coherent perfect

Absorption

Perfect photon to

Plasmon conversion

T. Roger et al., Nature Comm. 6, 7031 (2015).

Arm γ

Arm δ

Both Arms

Graphene layers

Photon antibunching

R=50%

T=50%

n(t+)≈I(t+) n(t) ≈I(t)

Start

Stop

g(2) (0) ~ 0,2 < 0,5

Heralded single photons

Correlation function

measurements

T. Roger et al., Nature Comm. 6, 7031 (2015).

Photon entanglement

spontaneous parametric down-conversion

H VA A V HB B

A

B

extraordinary(vertical)

ordinary(horizontal)

BBO-crystal

UV-pump

BABA HVVH

2

1

BAP

BAp

EEE

kkk

Tool #2: Spontaneous parametric down-conversion

G. Weihs (U. Innsbruck)

Entangled photons interacting with metamaterials

Remote control of absorption

C. Altuzarra et al., to be submitted (2016).

Remote control of absorption

Entangled photons interacting with metamaterials

C. Altuzarra et al., to be submitted (2016).

Towards photon-plasmon entanglement or photon-emitter via plasmons

Future works

Single

Photon

Source

Waveguide Nanowire

V

Photocurrent

Single Photon

2 μm

Au/Ti contacts

ZnO NW

www.quantumnanodevices.com (qnD)

Quantum optical circuitry

Collaborators

* CDPT, NTU:

Charles Altuzarra, Stefano Vezzoli, Cesare Soci, Weibo Gao &

Nikolay Zheludev (U. Southampton)

* Edinburgh University:

Thomas Roger, Eliot Bolduc, Julius Heitz, Jonathan Leach & Daniele Faccio

* University of Southampton:

Joao Valente

* University of Strathclyde:

John Jeffers

Questions?

Are we in Crete or what?

Coherent control absorption

Coherent perfect

absorption (CPA)

W. Wan et al., Science 331, 889 (2011).

Quantum eraser principle

M. Scully et al.,

Super-oscillations with metamaterials

Super-oscillations at the single photon level (submitted to Nat. Comm.)

Reference

Workshop LNIO 13/15 30th June 2015

Optical gates & super oscillations

Super-oscillations

at the single

photon level

(Light: Sci & Appl.)

Ultimate light-matter interaction

Single

Photon

Source

Waveguide Nanowire

V

Photocurrent

Single Photon

Engineer a nanoscale platform for quantum devices

Nano-interconnect

Cambridge University 6/25 27th November 2014

Principle of photoconduction

Notion of photoconductive gain: Transit time over decay time d

trG

G as high as 1015 !!

C. Soci et al., NanoLett. 7, 1003 (2007)

- Potential single photon detector -Nanoscale precision - Potential easy integration - Wavelength selective

FtnetJPC ).(.)(

C. Soci et al., J. Nanosci Nanotechnol. 10, 1430 (2010)

Nanowire-based photodetector

Cambridge University 18/25 27th November 2014

I-V characteristics

Collaboration LRN, Uni. Reims, O. Simonetti and L. Giraudet

I-V curve linear for ohmic contact over 3 orders of magnitude

ZnO nanowire

Ti/Au pads

Resistivities between 0.23 and 2.4 Ω.cm

Electrical

characterisations

Cambridge University 19/25 27th November 2014

Kelvin Probe Force Microscope potential measurements on a contacted ZnO nanowire with linear contact

1.0

µm1µm

Plot line (forward)

1.0

µm1µm

Plot line (reverse)

1.00

0.00

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1I (µ

A)

U (V)Voltage (V)

Cu

rre

nt

(µA

)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1I (µ

A)

U (V)Voltage (V)

Cu

rre

nt

(µA

)

Submitted to Nanotechnology (2013)

Metallic electrodes

ZnO NW

Electrical

characterisations

Cambridge University 20/25 27th November 2014

Kelvin Probe Force Microscope potential measurements on a contacted ZnO nanowire with schottky contact

1.0

µm

1.0µm

1µm

Plot line (forward)

1.0

µm

1.0µm

1µm

Plot line (reverse)

1.00

0.00

Slow varying potentialSharp drop

0.0

0.1

0.2

0.3

0.4

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

I (µ

A)

U (V)Voltage (V)

Cu

rre

nt

(µA

)

0.0

0.1

0.2

0.3

0.4

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

I (µ

A)

U (V)Voltage (V)

Cu

rre

nt

(µA

)

Submitted to Nanotechnology (2013)

Electrical

characterisations

Cambridge University 21/25 27th November 2014

Depletion region at the contact

Ohmic contact Schottky contact

Electrical

characterisations

Cambridge University 22/25 27th November 2014

First influence of incident light

4-points measurements as well

What’s next?

Cambridge University 23/25 27th November 2014

Single photon excitation

Antibunching experiment: correlation function

Photon compting

regime

Reflected and transmitted but reflected OR transmitted

Γ=1/T1

T1 T1

Construction of a temporal histogram function of τ

R=50%

T=50%

n(t+)≈I(t+)

n(t) ≈I(t)

Start

Stop

g(2)() = <I(t+)I(t)>

<I(t)>2 g(2)(0)=0

META 14 12/16 23rd May 2014

Photonics group at the LNIO:

French CNRS research unit

Associated laboratory with CEA

Member “French Laboratory for Excellence” (Labex) ‘ACTION’

CNRS ‘Associated International Laboratory’ with Taiwan

5 faculty members, 2 engineers, 3 post-docs, 10 PhD students…

- Instrumentation: scanning near field optics, photoluminescence…

- Simulation: FDTD, FEM, RCWA…

- Devices: Integrated spectrometer, large scale AFM, photonic crystals…

- New photonic materials: Porous silicon, polymers, ZnO…

-Fabrication and structuration: e-beam lithography, plasma etching, CBD… (nano’mat platform)

Physics Department, Oxford 3/36 11th of June 2012

Whatabouts…

Work functions

CINTRA, NTU ICMAT 2013

Electrical characterisations

Principle: AFM scan with voltage applied at tip-sample

CINTRA, NTU ICMAT 2013

Kelvin force microscopy

Electrostatic force sample-tip:

with

W. Melitz et al., Surface Science Reports 66, 1 (2011).

Recommended