Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo...

Preview:

Citation preview

Gonzalo J. Olmo

Correcciones cuánticas de agujeros negrosy

cosmología

(or Quantum correlations, black holes and cosmology)

Gonzalo J. Olmo Alba

Thesis advisor: José Navarro Salas

Universidad de Valencia

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 2/26

Outline

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 2/26

Outline

Part I:Quantum correlations and black holes Subject: New approach for radiation problems in curved space. Structure:

Black hole evaporation following the standard formalism. Difficult application of the standard approach when

backreaction effects are considered. New approach to solve the problems: correlation functions.

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 2/26

Outline

Part I:Quantum correlations and black holes Subject: New approach for radiation problems in curved space. Structure:

Black hole evaporation following the standard formalism. Difficult application of the standard approach when

backreaction effects are considered. New approach to solve the problems: correlation functions.

Part II:Cosmology Subject: Cosmic speed-up due to new gravitational dynamics? Structure:

Observational evidence for the cosmic accelerated expansion. Possible explanations: dark energy, modified dynamics, . . . Modified dynamics:f (R) gravities. Analyze the solar system constraints on these theories.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 3/26

Part I:Quantum correlations

andblack holes

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

φ(x) = ∑[aiui(x)+a†i u∗i (x)]

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

“IN” expansion:

φ(x) = ∑i[aini uin

i (x)+aini

†uini∗(x)]

Vacuum state:aini |0〉in = 0

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

“IN” expansion:

φ(x) = ∑i[aini uin

i (x)+aini

†uini∗(x)]

Vacuum state:aini |0〉in = 0

“OUT” expansion:

φ(x) = φH +φI+

φH = ∑ j [aHj uH

j (x)+aHj

†uH

j∗(x)]

φI+ = ∑ j [aoutj uout

j (x)+aoutj

†uoutj∗(x)]

Vacuum state:aouti |0〉out = 0

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

“IN” expansion:

φ(x) = ∑i[aini uin

i (x)+aini

†uini∗(x)]

Vacuum state:aini |0〉in = 0

“OUT” expansion:

φ(x) = φH +φI+

φH = ∑ j [aHj uH

j (x)+aHj

†uH

j∗(x)]

φI+ = ∑ j [aoutj uout

j (x)+aoutj

†uoutj∗(x)]

Vacuum state:aouti |0〉out = 0

In general|0〉in 6= |0〉out

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficientsFUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

At the horizon:

uHj = ∑i [γ ji uin

i +η ji uin∗i ]

aHi = ∑ j [γ∗i j ain

j −η∗i j ainj

†]

γ ji = (uHj ,uin

i ) , η ji =−(uHj ,uin∗

i )

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Vacuum state:|0〉in = S|0〉out

S= S(α,β,γ,η)

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

At the horizon:

uHj = ∑i [γ ji uin

i +η ji uin∗i ]

aHi = ∑ j [γ∗i j ain

j −η∗i j ainj

†]

γ ji = (uHj ,uin

i ) , η ji =−(uHj ,uin∗

i )

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Vacuum state:|0〉in = S|0〉out

S= S(α,β,γ,η)

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

At the horizon:

uHj = ∑i [γ ji uin

i +η ji uin∗i ]

aHi = ∑ j [γ∗i j ain

j −η∗i j ainj

†]

γ ji = (uHj ,uin

i ) , η ji =−(uHj ,uin∗

i )

Number of particles:

in〈0|Nouti |0〉in = ∑k |βik|2

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 6/26

Black Holes evaporate

Number of particles detected atI+ (Hawking 1974):

in〈0|Nouti |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 6/26

Black Holes evaporate

Number of particles detected atI+ (Hawking 1974):

in〈0|Nouti |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM

Uncorrelated outgoing radiation→ THERMAL state

(Parker 1975),(Wald 1975)

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 6/26

Black Holes evaporate

Number of particles detected atI+ (Hawking 1974):

in〈0|Nouti |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM

Uncorrelated outgoing radiation→ THERMAL state

(Parker 1975),(Wald 1975)

BIG PROBLEM : quantum information not radiated (Hawking 1976)

Apparent conflict betweenQM andGR:

Non-unitary evolution of quantum states

(Information Loss Problem)

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Charged black holes represent good toy models.A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =Cwbr(x1,x2)Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Charged black holes represent good toy models.A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =Cwbr(x1,x2)Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in

Involved computation ofα andβ:

Unknownin〈0|Nouti |0〉in = ?

Unknown density matrix,|0〉in→ ?

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Charged black holes represent good toy models.A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =Cwbr(x1,x2)Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in

Involved computation ofα andβ:

Unknownin〈0|Nouti |0〉in = ?

Unknown density matrix,|0〉in→ ?

Moving-mirror model physically equivalent but . . . Unclear computation ofα andβ. Unclear relation between particles and energy fluxes.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

The two-point correlator allows to "see" thecorrelations among the outgoing particles.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

The two-point correlator allows to "see" thecorrelations among the outgoing particles.

Can we determinein〈0|Nouti |0〉in directly from

in〈0|φ(x1)φ(x2)|0〉in ?

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

The two-point correlator allows to "see" thecorrelations among the outgoing particles.

Can we determinein〈0|Nouti |0〉in directly from

in〈0|φ(x1)φ(x2)|0〉in ?

YES!

⇒We can bypass the computation ofα andβ !!!

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Using the scalar product( f1| f2) =−i dΣµ f1←→∂ µ f ∗2

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Using the scalar product( f1| f2) =−i dΣµ f1←→∂ µ f ∗2

Product of operators:

aout†i aout

j = (uouti (x1)|(uout∗

j (x2)|: φ(x1)φ(x2) :))

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Using the scalar product( f1| f2) =−i dΣµ f1←→∂ µ f ∗2

Product of operators:

aout†i aout

j = (uouti (x1)|(uout∗

j (x2)|: φ(x1)φ(x2) :))

Number of particles:

in〈0|Nouti |0〉in = 1

~dΣµ

1dΣν2[u

outi (x1)

←→∂ µ][uout∗

i (x2)←→∂ ν] in〈0|: φ(x1)φ(x2) :|0〉in

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 10/26

Example: Conformal Invariance

In d-dimensional Minkowski space, a conformallyinvariant field theory satisfies:

in〈0|φ(y1)φ(y2)|0〉in =C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∂x∂y

∆/d

x1

∂x∂y

∆/d

x2

in〈0|φ(x1)φ(x2)|0〉in

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 10/26

Example: Conformal Invariance

In d-dimensional Minkowski space, a conformallyinvariant field theory satisfies:

in〈0|φ(y1)φ(y2)|0〉in =C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∂x∂y

∆/d

x1

∂x∂y

∆/d

x2

in〈0|φ(x1)φ(x2)|0〉in

Normal-ordered two-point function: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

in〈0|: φ(x1)φ(x2) :|0〉in ≡∣

∂y∂x

∆/d

x1

∂y∂x

∆/d

2

C|y(x1)−y(x2)|2∆ − C

|x1−x2|2∆

It vanishes for Conformal Transf.⇒ in〈0|Nouti |0〉in = 0.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 10/26

Example: Conformal Invariance

In d-dimensional Minkowski space, a conformallyinvariant field theory satisfies:

in〈0|φ(y1)φ(y2)|0〉in =C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∂x∂y

∆/d

x1

∂x∂y

∆/d

x2

in〈0|φ(x1)φ(x2)|0〉in

Normal-ordered two-point function: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

in〈0|: φ(x1)φ(x2) :|0〉in ≡∣

∂y∂x

∆/d

x1

∂y∂x

∆/d

2

C|y(x1)−y(x2)|2∆ − C

|x1−x2|2∆

It vanishes for Conformal Transf.⇒ in〈0|Nouti |0〉in = 0.

βi j should vanish for all Conformal Transf.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

No particles forx1×x2 > 0

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

No particles forx1×x2 > 0

Particles localized aboutx≈ 0

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

No particles forx1×x2 > 0

Particles localized aboutx≈ 0

Thunderbolt localized aty = y0

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

In expectation values only the "OUT" indices arefree. The "IN" indices are always summed over.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

In expectation values only the "OUT" indices arefree. The "IN" indices are always summed over.

Instead ofαik,β jk we can use

Ci j = ~−1

in〈0|aouti aout

j |0〉in = (β∗α†)i j

Ni j = ~−1

in〈0|aouti

†aoutj |0〉in = (ββ†)i j

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

In expectation values only the "OUT" indices arefree. The "IN" indices are always summed over.

Instead ofαik,β jk we can use

Ci j = ~−1

in〈0|aouti aout

j |0〉in = (β∗α†)i j

Ni j = ~−1

in〈0|aouti

†aoutj |0〉in = (ββ†)i j

We are free to choose between two representations:α,β N,C

"IN" and "OUT" indices "OUT" indices

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value. Technically more accessible and intuitive.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value. Technically more accessible and intuitive.

Clarifies an apparent tension between particlecreation and energy fluxes in curved space.

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value. Technically more accessible and intuitive.

Clarifies an apparent tension between particlecreation and energy fluxes in curved space.

Allows to detect localized thunderbolts.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 14/26

Part II:Cosmology

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Second assumption⇒ dynamics ofa(t) .

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Second assumption⇒ dynamics ofa(t) .

Observations tell us about the geometry of theuniverse:k≈ 0, a(t0) > 0.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Second assumption⇒ dynamics ofa(t) .

Observations tell us about the geometry of theuniverse:k≈ 0, a(t0) > 0.

a(t0) > 0 was unexpected only 10 years ago.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 16/26

Accelerating Universe

Empty ModelFlat Dark Energy ModelClosed Dark Energy ModelDecelerating ModelDusty Decelerating Model

Binned Data

Closed Matter Only Modelde Sitter ModelEvolving Supernovae

0.0 0.5 1.0 1.5 2.0-1

0

1

Redshift

∆DM

fain

tbr

ight

Ned Wright - 8 Jul 2003

Big dots represent type-Ia supernovae.

The expansion began to accelerate some 5000 million years ago.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 17/26

Mechanism for the acceleration

Dark energy: some stuff with negative pressure.

In GR⇒ aa =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 17/26

Mechanism for the acceleration

Dark energy: some stuff with negative pressure.

In GR⇒ aa =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ

Modified dynamics:aa =??

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 17/26

Mechanism for the acceleration

Dark energy: some stuff with negative pressure.

In GR⇒ aa =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ

Modified dynamics:aa =??

Others

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Starobinsky model(1980): f (R) = R+ R2

M⇒ Leads to early-time inflation

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Starobinsky model(1980): f (R) = R+ R2

M⇒ Leads to early-time inflation

Carroll et al. model(2004): f (R) = R− µ4

R⇒ Leads to late-time acceleration

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Starobinsky model(1980): f (R) = R+ R2

M⇒ Leads to early-time inflation

Carroll et al. model(2004): f (R) = R− µ4

R⇒ Leads to late-time acceleration

GR could just be a good approximation atintermediate curvatures.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

In Palatiniformalism:Γαβγ is independent ofgµν.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

In Palatiniformalism:Γαβγ is independent ofgµν.

Only for f (R) = a+bR the two formalism lead tothe same equations of motion.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

In Palatiniformalism:Γαβγ is independent ofgµν.

Only for f (R) = a+bR the two formalism lead tothe same equations of motion.

Observations should help to determine bothf (R)and the right formalism.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 20/26

Search for a suitable f (R)

By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6asinhR

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 20/26

Search for a suitable f (R)

By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6asinhR

As part of effective actions:(more involved method)

From quantum effects in curved space From low-energy limits of string/M theory

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 20/26

Search for a suitable f (R)

By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6asinhR

As part of effective actions:(more involved method)

From quantum effects in curved space From low-energy limits of string/M theory

Ask Nature about the admissiblef (R) functions.(Method of this Thesis)

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Compute the predictions of the theory in thatregime: post-Newtonian limit .

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Compute the predictions of the theory in thatregime: post-Newtonian limit .

Confront predictions with experimental data.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Compute the predictions of the theory in thatregime: post-Newtonian limit .

Confront predictions with experimental data.

Determine the observational constraints onf (R).

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 22/26

PN limit I: Scalar-Tensor representation

The original actionS= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 12κ2 d4x

√−g[

φR(g)− ωφ (∂µφ∂µφ)−V(φ)

]

+Sm

where φ≡ d fdR and V(φ) = R f′(R)− f (R)

E.O.M. (3+2ω)φ+2V−φ dVdφ = k2T

Metric ⇒ ω = 0 ⇒ dynamical. Palatini⇒ ω =−3/2 ⇒ non-dynamical.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 22/26

PN limit I: Scalar-Tensor representation

The original actionS= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 12κ2 d4x

√−g[

φR(g)− ωφ (∂µφ∂µφ)−V(φ)

]

+Sm

where φ≡ d fdR and V(φ) = R f′(R)− f (R)

E.O.M. (3+2ω)φ+2V−φ dVdφ = k2T

Metric ⇒ ω = 0 ⇒ dynamical. Palatini⇒ ω =−3/2 ⇒ non-dynamical.

This is more than aBrans-Dicketheory. In B-D V(φ) = 0 (or near an extremum) and

ω is determined by observations(ωobs> 40.000).

Now ω is fixed andV(φ) is to be determined.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 22/26

PN limit I: Scalar-Tensor representation

The original actionS= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 12κ2 d4x

√−g[

φR(g)− ωφ (∂µφ∂µφ)−V(φ)

]

+Sm

where φ≡ d fdR and V(φ) = R f′(R)− f (R)

E.O.M. (3+2ω)φ+2V−φ dVdφ = k2T

Metric ⇒ ω = 0 ⇒ dynamical. Palatini⇒ ω =−3/2 ⇒ non-dynamical.

This is more than aBrans-Dicketheory. In B-D V(φ) = 0 (or near an extremum) and

ω is determined by observations(ωobs> 40.000).

Now ω is fixed andV(φ) is to be determined. We want to constraint the form ofV(φ)⇔ f (R).

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 23/26

PN limit II: Metric formalism or ω = 0

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)R0 f ′′(R0) −1

]

.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 23/26

PN limit II: Metric formalism or ω = 0

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)R0 f ′′(R0) −1

]

.

Fundamental constraint:R0

[

f ′(R0)R0 f ′′(R0)

−1]

L2S≫ 1

LS is a relatively short lengthscale.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 23/26

PN limit II: Metric formalism or ω = 0

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)R0 f ′′(R0) −1

]

.

Fundamental constraint:R0

[

f ′(R0)R0 f ′′(R0)

−1]

L2S≫ 1

LS is a relatively short lengthscale.

Conclusion:

−2Λ≤ f (R)≤ R−2Λ+ l2R2

2

l2≪ L2S is a bound to the current range of the scalar interaction

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 24/26

PN limit III: Palatini formalism or ω =−3/2

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 + log(

φ(ρ)φ0

)

G = κ2

8πφ0

(

1+ MVM⊙

)

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2− log(

φ(ρ)φ0

)]

δi j γ = M⊙−MVM⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ , MV ≡ k−2 d3x′[V0−V(φ)/φ].

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 24/26

PN limit III: Palatini formalism or ω =−3/2

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 + log(

φ(ρ)φ0

)

G = κ2

8πφ0

(

1+ MVM⊙

)

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2− log(

φ(ρ)φ0

)]

δi j γ = M⊙−MVM⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ , MV ≡ k−2 d3x′[V0−V(φ)/φ].

Fundamental constraint:R f′(R)∣

f ′(R)R f′′(R) −1

∣L2(ρ)≫ 1

whereL2(ρ)≡ (k2ρc/φ0)−1

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 24/26

PN limit III: Palatini formalism or ω =−3/2

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 + log(

φ(ρ)φ0

)

G = κ2

8πφ0

(

1+ MVM⊙

)

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2− log(

φ(ρ)φ0

)]

δi j γ = M⊙−MVM⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ , MV ≡ k−2 d3x′[V0−V(φ)/φ].

Fundamental constraint:R f′(R)∣

f ′(R)R f′′(R) −1

∣L2(ρ)≫ 1

whereL2(ρ)≡ (k2ρc/φ0)−1

Conclusion:

f (R)≤ α+ l2R2

2 + R2

1+(l2R)2 + 12l2

log[l2R+√

1+(l2R)2]

f (R)≥ α− l2R2

2 + R2

1+(l2R)2 + 12l2

log[l2R+√

1+(l2R)2]

Expanding inl2Rwe get:

α+R− l2R2

2 ≤ f (R)≤ α+R+ l2R2

2

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Solar system experiments impose severeconstraints on the lagrangianf (R).

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Solar system experiments impose severeconstraints on the lagrangianf (R).

Non-linear contributions dominant at lowcurvatures(1/R, logR, . . . ) are ruled out byobservations.

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Solar system experiments impose severeconstraints on the lagrangianf (R).

Non-linear contributions dominant at lowcurvatures(1/R, logR, . . . ) are ruled out byobservations.

Viable models are almost equivalent toR−2Λ intheir late-time cosmological predictions.

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 26/26

Thanks!¡Gracias!

Recommended