Computer Data Acquisition and Signal Conversion Chuck Kammin ABE 425 March 27, 2006

Preview:

Citation preview

  • Slide 1
  • Computer Data Acquisition and Signal Conversion Chuck Kammin ABE 425 March 27, 2006
  • Slide 2
  • Overview High Level DAQ System Description Quick Review of Digital Fundamentals Digital to Analog Conversion Analog to Digital Conversion
  • Slide 3
  • High Level System Description A data acquisition (DAQ) system is a collection of add- on hardware and software components that allow your computer to receive real- world information from sensors. It consists of Sensors I/O terminal panel(s) DAQ board(s) Software
  • Slide 4
  • Digital Fundamentals Binary Number System Bits and Bytes Binary / Decimal Conversion 2s compliment Logic Gates NOT, AND, NAND. Digital Devices Decoder, Encoder
  • Slide 5
  • Bits and Bytes 8 Bits = 1 Byte For n bits, highest decimal number = 2 n - 1
  • Slide 6
  • Decimal to Binary Conversion Whole Numbers: Repeated Division by 2 Convert 12 10 to binary: 12/2 = 6 R0 LSB = 0 6/2 = 3R0 = 0 3/2 = 1 R1 = 1 1/2 = 0 R1 MSB = 1 12 10 = 1100 2
  • Slide 7
  • Decimal to Binary Conversion Fractions: Repeated Multiplication by 2 Convert 0.3125 10 to binary: 0.3125 X 2 = 0.625 MSB = 0 0.625 X 2 = 1.25 =1 0.25 X 2 = 0.5 = 0 0.5 X 2= 1.0 LSB = 1 0.3125 10 = 0.0101 2
  • Slide 8
  • Binary to Decimal Conversion Sum of Weights Binary: 2 n 2 n -1 . 2 2 2 1 2 0. 2 -1 2 -2 .. Convert 1100.0101 2 to Decimal: (1 X 2 3) + (1 X 2 2 ) + (0 X 2 1 ) + (0 X 2 0 ) + (0 X 2 -1 ) + (1 X 2 -2 ) + (0 X 2 -3 ) + (1 X 2 -4 ) = 1100.0101 2 = 12.3125 10
  • Slide 9
  • 2s Compliment Flip 0s to 1 and 1s to 0 and add 1. Example: 2s compliment of 00001001 is 11110110 + 1 = 11110111 Binary subtraction can be performed via addition using the 2s compliment. Example: 8 3 = 8 + (-3) = 5 00001000 + 11111101 (2s compliment of -3) 1 00000101 carry over eliminated
  • Slide 10
  • NOT Gate (Inverter) Truth Table Input AOutput Q 01 10 AQ
  • Slide 11
  • AND Gate Truth Table Input AInput BOutput Q 000 010 100 111 A B Q
  • Slide 12
  • NAND Gate Truth Table Input AInput BOutput Q 001 011 101 110 A B Q
  • Slide 13
  • OR Gate Truth Table Input AInput BOutput Q 000 011 101 111 A B Q
  • Slide 14
  • NOR Gate Truth Table Input AInput BOutput Q 001 010 100 110 A B Q
  • Slide 15
  • EX-OR Gate Truth Table Input AInput BOutput Q 000 011 101 110 A B Q
  • Slide 16
  • EX-NOR Gate Truth Table A B Q Input AInput BOutput Q 001 010 100 111
  • Slide 17
  • Decoder 3-to-8 Line Decoder y 0 = abc y 1 = abc y 2 = abc y 3 = abc y 4 = abc y 5 = abc y 6 = abc y 7 = abc a b c Truth Table
  • Slide 18
  • Encoder y0y0 y1y1 y2y2 y3y3 y4y4 y5y5 y6y6 y7y7 8 to 3 Encoder a b c Truth Table
  • Slide 19
  • Multiplexer 4-to-1 MUX I0I0 I1I1 I2I2 I3I3 AB Z ABI3ABI3 A B I 2 A B I 1 A B I 0 Z
  • Slide 20
  • Digital to Analog Conversion Converter Types Binary Weighted Input R/2R Ladder Performance Characteristics Resolution Accuracy Linearity Monotonicity Settling Time
  • Slide 21
  • D/A Binary Weighted Input
  • Slide 22
  • D/A R/2R Ladder Converter
  • Slide 23
  • D/A Performance Characteristics Resolution - reciprocal to number of discrete steps in D/A output. For n bit output, resolution = 1 / (2 n - 1). Accuracy - comparison of actual output with expected output expressed as a percentage of full scale. Ideal accuracy is at most 0.5 of LSB. For 8 bit converter LSB = 1/2 8 = 1/256 = 0.0039. Accuracy 0.2%
  • Slide 24
  • D/A Performance Characteristics Linearity - deviation from ideal straight-line output of D/A converter. Special case is offset error which is D/A converter output when input is all zeros. Monotonicity - D/A converter is monotonic if it does not take any reverse steps when it is sequenced over entire range of input bits.
  • Slide 25
  • D/A Performance Characteristics Settling Time - the time it takes D/A converter to settle within 1/2 LSB of its final value when a change occurs in the input value.
  • Slide 26
  • Analog to Digital Conversion Converter Types Flash Stair Step Ramp Tracking Single and Dual Slope Successive Approximation
  • Slide 27
  • A/D Flash Short Conversion Time N-bit output requires 2 N -1 comparators
  • Slide 28
  • A/D Flash
  • Slide 29
  • A/D Stair Step Ramp Slower than Flash A/D Converter Worst case counter must sequence through max number of states before conversion made. Conversion time dependant on analog voltage.
  • Slide 30
  • A/D Stair Step Ramp
  • Slide 31
  • A/D Tracking Counter tracks analog input voltage. Disadvantage - counter oscillates between up and down state if input voltage constant.
  • Slide 32
  • A/D Tracking
  • Slide 33
  • A/D Single Slope
  • Slide 34
  • Slide 35
  • A/D Dual Slope Counter Latches Analog Input Ramp generator Comparator Clock Control Logic Binary Output Switch -V ref A1 A2
  • Slide 36
  • A/D Successive Approximation Most widely used A/D converter Faster than other methods except for flash method Fixed conversion time
  • Slide 37
  • A/D Successive Approximations
  • Slide 38
  • PBL 1 Digital to Analog Conversion Determine the resolution expressed as a percentage, for each of the following D/A converters: a) 3-bit b) 10-bit c) 18-bit
  • Slide 39
  • PBL 1 Answer a) 3-bit converter, 1/(2 3 -1) X 100 = 14.3% b) 10-bit converter, 1/(2 10 -1) X 100 = 0.098% c) 18-bit converter, 1/(2 18 -1) X 100 = 3.8E-4%
  • Slide 40
  • PBL 2 How many comparators are required for a 4-bit output flash A/D converter?
  • Slide 41
  • PBL 2 Answer 2 4 -1 = 15 comparators required

Recommended