City 4 D heat supply and storage options - Deutsche Messe...

Preview:

Citation preview

City 4 D heat supply and storage

options

Ernst HuengesBerlin 22.5.2015

• Introduction

• Underground heat source

• District heating

• Geothermal Cooling

• Storage of heat and chill

• Conclusions

*4 D: assessment of the underground potential and its utilisation

City 4 D* heat supply and storage

optionsOutline:

Introduction

Status and Potential• Energy mix today (2012): ~ 49 % heat, ~ 23 % electricity, ~ 28 % mobility

from renewables:

• ~ 11 % heat

• ~ 25 % electricity

VDE 2012

Heat:Renewable Energy part

of primary energy (2011):in Germany 10,8 %

in Berlin 3,3 % heat provision from fossils in

Berlin ~ 99%(i.e. ~ 37 TWh/year)

2020 winter summer

Status and Potential• Energy mix today: ~ 50 % heat, ~ 25 % electricity, ~ 25 % mobility

from renewables:

• ~ 11 % heat

• ~ 25 % electricity

• Future energy requirements:

• renewable heat, & dispatchable and decentral base load

Status and Potential• Energy mix today: ~ 50 % heat, ~ 25 % electricity, ~ 25 % mobility

from renewables:

• ~ 11 % heat

• ~ 25 % electricity

• Future energy requirements:

• renewable heat, & dispatchable and decentral base load

• Contribution of geothermal energy

• domestic resource (up to 5 % of electricityand 10 % of heat demand in Germany)

• potentially fulltime available

• advanced technology

stabilisation of the market for electricity and heat

shallow geothermal

undergroundthermal storage

hydrothermal petrothermal

Geothermal Energy Systems

Underground heat source

Underground heat source

What do we know about the underground of Berlin?

3D structural model Brandenburg (Noack et al.)

deep drill holes: Berlin 01, 02, 04, 08, Wartenberg 2/86, Gross Ziethen 1/73

seismic exploration

A113

A115

A111

A100

Wartenberg 2/86

Groß Ziethen 1/73

Berlin 01Berlin 02

Berlin 04 Berlin 08

Target field

Rotliegend

Zechstein

Buntsandstein

Muschelkalk

Keuper

Jura

Reflexionsseismik Tempelhofer Feld, GASAG, Reprozessing GFZCRS Stapelung + Kirchhoff-IES-Tiefenmigration

Südliche Bahn, tags Mittlere Bahn, tags und nachts Nördliche Bahn, tags und nachtsS

tiller

et

al.

0

1

2

3

4

km

0

1

2

3

4

km

0

1

2

3

4

km

0

1

2

3

4

km

Sippel et al. 2012

Kastner et al. ongoing

Climate-KIC : Energy atlas (underground inventar of city model (Kolbe TU))

Temperatures „Heat in Place“

target Tempelhof

in TWh

remarks

Jura -25 °C ~40 Aquifer

Keuper ~30 °C ~160 Aquifer

Muschelkalk ~ 40 °C ~160 Aquifer

Buntsandstein ~ 60 °C ~400 Aquifer

Zechstein ~ 100 °C >1000 only

conductive!

Rotliegend SS ~ 130 °C ~ 80 Aquifer

http://energyatlas.energie.tu-berlin.de/energy-atlas/

District heating

Svendsen S., Li H.; DTU Denmark; 4th working phase meeting DHC Annex TS1; KTH Stockholm (Sweden); September 2014

Development of District Heating Systems

Role and Characterics of District Heating Contribution to heat supply in Germany (12 %) compared to ~ 50 % in Denmark !

Part of renewable energy (6 % in D) Fachforum: Fernwärme mit erneuerbaren Energien 2012

Advantages

integration of larger (more effective usable) heat sources

integration of large storage systems possible

existing district heating system usable for renewable sources. However, lowertemperatures require reorganisation of the heat transfer stations

Potential energy carrier

hydrocarbons, gas and oil CO2-foodprint and limited resources

biogas limited resources

wood (pellets) transport in cities!

solarthermal low temperature, limited area

geothermal low temperature

waste heat

Heat supply change: require focus on district heating, system integration, & secured operation divers options, e.g. demonstration of solutions for city quarters

Geothermal Cooling

Geothermal (or Solar) Cooling

„Chill“

Ambiance/ heatsink

Ambiance/heat sink

„Heat“

Absorption-RefrigeratorWp

Storage of heat and chill

Storage of heat and chill

Storage of heat and chill

Aquifer Thermal Energy Storage ATESBerliner Reichstag

• Scientific and operational monitoring of the ATES system of the Berliner Reichstag

• Storage of hot water:- 285 to 315 m depth- aquifer temperature: ~ 20°C- temperature storage fluid: ~ 70°C- storage capacity: ~ 2650 MWh- heat recovery: 70%

• Storage of cold water:- 30 to 60 m depth- aquifer temperature: ~ 12°C- temperature storage fluid: ~ 5°C- storage capacity: ~ 6000 MWh

• Successful operation since 2000

R&D Project University Campus Berlin

• Exploration well in 2015 (app. 600m)

• first suitable aquifer expected at approx. 220m depth

• Considering energy conversion technology, ATES and thermal building behaviour

• Design methods for future energy supply systems for urban districts

R&D project: energy supply systems with seasonal energy storage in aquifers for urban districts

Conclusions

• Underground heat source: huge unconsidered innercity potential for renewable heat

- auxillary energy drecreasing with depth

(shallow: ~4-5 kWhheat from 1 kWhelectricity, deep ~10-100 kWhheat from 1 kWhelectricity)

• District Heating System:

lower temperature (required) new design of heat transfer stations

• Geothermal Cooling: heat chill << heat power chill (7 times more efficient)

energy

• Hybrid Cooling: Geothermal & Solar Sources all day & all seasons supply

• Storage of heat and chill: 70 – 90 % recovery of energy

Recommended