Chem 253B Crystal Structure Chem 253C Electronic...

Preview:

Citation preview

1

Chem 253, UC, Berkeley

Chem 253B

Crystal Structure

Chem 253C

Electronic Structure

Chem 253, UC, Berkeley

2

Chem 253, UC, Berkeley

Electronic Structures of Solid

References

Ashcroft/Mermin: Chapter 1-3, 8-10Kittel: chapter 6-9

Gersten: Chapter 7, 11

Burdett: chapter 1-3Hoffman: p1-20

Chem 253, UC, Berkeley

3

Chem 253, UC, Berkeley

Si NW

Chem 253, UC, Berkeley

4

Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

Carrier Mobility

Momentum gained during the mean free flight Momentum lost in a collision

*

*

m

eEv

vmeE

d

d

Drift velocity

Mobility: the ratio of the drift velocity over the applied electric field

*m

e

E

vd

cm 2 V -1 s -1

5

Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

Independent Electrons

Free Electron Approximation

6

Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

L

nk

222

)(2 L

n

mEn

7

Chem 253, UC, Berkeley

22

)(2 L

n

mEn

From 1D to 3D:

z

z

y

y

x

x

L

zn

L

yn

L

xnAr

sinsinsin)(

])()()[(2

)( 2222

z

z

y

y

x

x

L

n

L

n

L

n

mkE

Chem 253, UC, Berkeley

Periodic Boundary Condition

)()( Lxx

EF

KF

K

)()(2

22

rrm

Solution: traveling plane wave

)exp( xikAn Where: nLk 2

m

kkE x

2)(

22

L: periodicity, lattice constant

8

Chem 253, UC, Berkeley

3D Periodic Boundary Condition

)exp( rkiAn Normalization:

VAdrrkirkiAdrnn22* )exp()exp(1

V: unit cell volume

)exp(2/1 rkiVn

2

k

de Broglie wavelength

Chem 253, UC, Berkeley

)(22

)( 222222

zyx kkkmm

kkE

Energy Eigenvalue:

EF

KF

K

Moment Operator:ri

p

ˆ

)()()(ˆ rkrri

rp

Momentum Eigenvalue:

kp

)exp( rkiAn

9

Chem 253, UC, Berkeley With periodic boundary conditions:

1 zzyyxx LikLikLik eee

z

zz

y

yy

x

xx

L

nk

L

nk

L

nk

2

2

2

2D k space:Area per k point:

yx LL

22

3D k space:Area per k point: VLLL zyx

38222

A region of k space of volume will contain: allowedk values.

33 8

)8

(V

V

Chem 253, UC, Berkeley

Reciprocal Lattice

)(2

cba

cba

)(2

cba

acb

)(2

cba

bac

Reciprocal lattice is always one of 14 Bravais Lattice.

10

Chem 253, UC, Berkeley

k space density of level: 38

V

Non-interacting electrons: Pauli exclusion principle

Each wave vector k two electronic level (spin up/down)

Fermi wave vector:

Volume enclosed by the Fermi surface:

Fk

3

3

4Fk

Chem 253, UC, Berkeley

# of allowed states within:

# of electrons N:

Electronic density:

VkV

k FF 2

3

3

3

683

4

Vk

N F2

3

3

2

3

3Fk

V

Nn

3/12 )3( nkF

11

Chem 253, UC, Berkeley

Free & independent electron ground state:

Fermi wave vector

Enclosed Fermi sphere

Fermi Surface

Fermi Momentum

Fermi energy

Fermi velocity

3/12 )3( nkF

FF kp

m

kE F

F 2

22

*/ mpv FF

Chem 253, UC, Berkeley

Estimation based on conduction electron density:

3

23 3

3

41

F

sk

rnN

V

Radius of sphere where volumeequals to the volume perconduction electron

ssF rr

k92.1)4/9( 3/1

20 )/(

1.50

ar

eVE

sF

2-3, for many metal

Fermi energy for metallic elements: 1.5 –15 eVFermi temperature:

Kark

ET

sB

FF

42

0

10)/(

2.58

m

kE F

F 2

22

12

Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

Density of StatesThe number of orbitals/states per unit energy range

dE

dNED )(

3/22222

)3

(22 V

N

mm

kE

2/322

)2

(3

EVN

2/12/322

)2

(2

)( EmV

dE

dNED

13

Chem 253, UC, Berkeley

Quantum Confinement and Dimensionality

Chem 253, UC, Berkeley

Fermi-Dirac distribution:

1]/)exp[(

1)(

TkEEEf

BF

14

Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

15

Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

16

Chem 253, UC, Berkeley

Nearly Free Electron Model

Adding small perturbation by the periodic potential of the ionic cores

EF

KF

K

m

kkE x

2)(

22

Chem 253, UC, Berkeley

Periodic Boundary Condition

)()( Lxx

EF

KF

K

)()(2

22

rrm

Solution: traveling plane wave

)exp( xikAn Where: nLk 2

m

kkE x

2)(

22

Dispersion Curve

17

Chem 253, UC, Berkeley

3D Periodic Boundary Condition

)exp( rkiAn Normalization:

VAdrrkirkiAdrnn22* )exp()exp(1

V: unit cell volume

)exp(2/1 rkiVn

2

k

de Broglie wavelength

Chem 253, UC, Berkeley

18

Chem 253, UC, Berkeley

Periodic Potentials and Bloch's Theorem

Bloch Wavefunction:

R

RrVrVL )()(

Lattice vector

)()( ruV

er

rik

)()( Rruru periodic part of Bloch function

Bloch’s theorem: the eigenstates of the Hamiltonian above can be chosen to have the form of a plane wave times a function with the periodicity of the Bravais Lattice.

Chem 253, UC, BerkeleyBragg reflection of electron waves in crystal is the cause of the energy gap.

First Bragg reflection:

Other gap:

a

a

n

19

Chem 253, UC, Berkeley

Chem 253, UC, Berkeley

Reciprocal Lattice

n

'nd

R

cnbnanR 321

1)( '

kkRieLaue Condition

Reciprocal lattice vector

For all R in the Bravais Lattice

'k

k

kkK'

1 RiKe

20

Chem 253, UC, Berkeley

For 1D Lattice:Reciprocal lattice vector: n

aK

2

'k

k

Diffraction Condition: na

Kk

2

1

Can be extended to 3D

kkK'

Chem 253, UC, Berkeley

Bragg reflection of electron waves in crystal is the cause of the energy gap.

First Bragg reflection:

Other gap:

a

a

n

First Brillouin Zone

21

Chem 253, UC, Berkeley

1st Brillouin Zone

Chem 253, UC, Berkeley

Wigner-Seitz cell

22

Chem 253, UC, Berkeley

The wavefunction at are not traveling wave of free electrons:

Instead: equal parts of the waves traveling to the left and right

A wave travels neither to the left nor to the right is a standing wave.

a

)exp()exp( xa

iikx

Chem 253, UC, Berkeley

Two different standing waves:

xa

xa

ixa

i

xa

xa

ixa

i

sin2)exp()exp()(

cos2)exp()exp()(

Probability density: 2

23

Chem 253, UC, Berkeley

Pile electron on the core ionslower energy

Pile electron between the core ionshigher energy

Chem 253, UC, Berkeley

Extended zone scheme reduced zone scheme

Recommended