Characterisation, Optimization and Tuning of Plasma ...Vasile Vartolomei K. Matyash R. Schneider C....

Preview:

Citation preview

  • 1

    Characterisation, Optimization and Tuning of Plasma

    Parameters in ICP discharge

    Vasile Vartolomei

    K. MatyashR. SchneiderC. Wilke

    M. HannemannR. Hippler H. KerstenA. Knuth

    Institute of PhysicsFelix Hausdorff Str. 6D-17489 GreifswaldGermanyvartolomei@physik.uni-greifswald.de

  • 2

    OutlookOutlook

    Capacitive effect in ICP: how to reduce it?

    Interpretation of Ion Distribution Function

    Tuning-optimising the IDF

    Energy balance to substrate

    Conclusions

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 3

    MotivationMotivation

    What we want ...

    ne Te eVi n*EE

    DF

    Electron energy

    EEDF Species

    N.Braithwaite (DPG-Spring Meeting Aachen 2003)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 4

    MotivationMotivation

    What we have ...

    RF Power 2FlowPressureRF Power 1

    Timer

    O2 N2 CH4 CF4

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • Experimental deviceExperimental device

    Region I

    Region II

    Sputtered Target and gas inlet

    RFEA andLangmuir probe

    Grid(with/without)

    RFEA andLangmuir probe

    Region II

    Region I

    Sputter target

    Grid(without/with)

    Gas: Argon

    Power range: 100 - 600 W

    RF frequency: 13.56 MHz

    Magnetic field: 0 - 2.2 mT

    Pressure range: 6×10-4 – 1×10-2 mbar

    5

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 6

    Capacitive effect in ICPCapacitive effect in ICP

    Capacitive effects produces undesiredsputtering effects at the coil

    Reduce RF amplitude:Balance the coil and get a factor 2 reduction!

    G. K. Vinogradov, Transmission line balanced inductive plasma sources, Plasma Sources Sci. Technol. 9 (2000) 400-412

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 7

    Reduce capacitive effect: step down transformerReduce capacitive effect: step down transformer

    3 Capacitive effects produce undesiredsputtering effects at the coil

    Balanced coil

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 8

    Reduce RF amplitude: add magnetic fieldReduce RF amplitude: add magnetic field

    RF

    ampl

    itude

    at c

    oil e

    nds

    Normalised Magnetic Field

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 9

    B

    The ECWR effectThe ECWR effect

    Bz = B(t), By = B = constant

    B

    B(t)B

    λplasma=λvac/nR

    stationary wave

    H.Oechsner et al., Thin Solid Films 341 (1999), 101-104)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 10

    The ECWR effect: Plasma DensityThe ECWR effect: Plasma Density

    0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.80.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    0.6 x 10-3 mbar 2.0 x 10-3 mbar

    Magnetic Field [mT]

    Nor

    mal

    ised

    Pla

    sma

    Den

    sity

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 11

    Reduced capacitive effectReduced capacitive effect

    Magnetic Field [mT]

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    100 W 300 W 500 W

    RF

    bias

    (V)

    coil current (A)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 12

    Experimental measurement of IDFExperimental measurement of IDF

    Collector characteristic

    -50 0 50

    -0.6-0.4-0.20.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

    I c(a.

    u.)

    Uc(V)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 13

    Experimental measurement of IDFExperimental measurement of IDF

    Retarding Field Energy Analyser (RFEA)

    dIc/dUc α IDF

    A

    I

    -100 -75 -50 -25 0 25 500,00

    0,04

    0,08

    0,12

    0,16 Selector = - 75 V Selector = -100 V

    IDF

    [a.u

    .]

    Ion Energy [eV]-180 -150 -120 -90 -60 -30 0 30 60

    0,0

    0,3

    0,6

    0,9

    Selector = - 75 V Selector = - 100 V

    Col

    lect

    or C

    urre

    nt [1

    0-6 A

    ]

    Collector Voltage [V]

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 14

    Experimental measurement of IDFExperimental measurement of IDF

    IDF α dIc/dUc

    ∫+∞

    =0

    )( ndvvf

    dEEgdndvvf )()( ==

    ∫ ∫== dEvfMedvvvfeI

    ii )()(

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=⎟

    ⎠⎞

    ⎜⎝⎛−=

    c

    cii

    dUUdI

    eM

    dEEdI

    eMvf )()()( 2

    Where is the Plasma Potential ?Four points of view…

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70-0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    dIc/d

    Uc(

    a.u.

    )

    U c(V)

    A: Lipschultz, I. Hutchingson, B. LaBombard, A. Wan, Electrical probes in plasmas, J.Vac.Sci.Technol. A 4(3), p.1810-1816 (1986)

    B: S. G. Ingram, N. St. J. Braithwaite, Ion and electron energy analyser at a surface in an RF discharge,

    J.Phys.D.: Appl.Phys. 21, 1496-1503, (1988)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 15

    IDF model 1 (point A)IDF model 1 (point A)

    a) in plasma

    b) at the pre-sheath entrance

    c) at the wall

    Ion Velocity Distribution Functionone-dimensional (gaussion)

    Allows to calculate ion temperature!

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 16

    IDF model 4: K.U. RiemannIDF model 4: K.U. Riemann

    c

    zxλ

    =e

    zi

    KTvmy

    2

    2

    =

    eKTeU

    −=ϕIon Temperature and Plasma potential information are lost

    ∫∞

    −+ =

    0

    2/1 ),( dyyxfyn

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 17

    PIC-MCC simulationPIC-MCC simulation

    0 10 20 30 40 50 60 70 80 90 100 110 120 1300

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    Vp(V)

    Z, λd0 10 20 30 40 50 60 70 80 90 100 110 120 130

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    electrons ions

    ne,ni 109 cm-3

    Z, λd

    Known input data: Plasma potential, Ion temperature and Electron temperature

    Run the code and see how they come to the wall

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 18

    PIC-MCC simulationPIC-MCC simulation

    IDF maxima is the plasma potentialsince we have 10% oscillations in Vp.

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.20.0

    0.2

    0.4

    0.6

    0.8

    1.0IED

    Ei,kin/eVp

    Zwall-cell Zwall-2xλDebye-cell Zwall-3xλDebye-cell Zwall-4xλDebye-cell

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 19

    Influence the transport between the two Regions: add a gridInfluence the transport between the two Regions: add a gridID

    F [a

    .u.]

    10 15 20 25 30 35 40 450

    50

    100

    150

    200

    250

    Ion Energy [eV]

    Region I

    Region II

    Grid

    Origin of double peak structure ?

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 20

    First Concept: Collisionless rf modulated sheathFirst Concept: Collisionless rf modulated sheath

    C. Charles at al, Physics of Plasmas 7 (12), 2000K.Köhler at al, J. Appl.Phys. 58 (9), 1985

    1

  • 21

    Experimental Contradiction of First ConceptExperimental Contradiction of First Concept

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70-0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    RFEA 0 degree to axis, d ist=49 m m RFEA 90 degree to axis, d ist=54 m m

    400W, 0.6×10-3 mbar

    IDF

    [a.u

    .]

    Ion Energy [eV]

    Region I

    Region II

    1.

    2.

    1.

    2.

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 22

    Second Concept: Space potential differenceSecond Concept: Space potential difference

    Axial dependence

    Ion

    Ene

    rgy

    (eV

    )

    Region I Region II

    Vplasma (V)

    Z (cm)10 15 20 25 30 35 40 45

    0

    50

    100

    150

    200

    250

    IDF

    [a.u

    .]

    Ion Energy [eV]

    Double peak structure in IDF Explains the contradiction

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 23

    Tuning the Ion Distribution FunctionTuning the Ion Distribution Function

    • Can one move the Low Energy Peak ?

    • Can one move the High Energy Peak ?

    • Can one move them independently ?

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 24

    Apply voltage on gridApply voltage on grid

    Build a variable gate

    Region II

    Sheath

    Grid wire

    electrons

    Region I

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 25

    Biased GridBiased Grid

    Grid bias [V]

    Influence on plasma potential in Region II

    -40 -30 -20 -10 0 10 20

    8101214161820222426283032343638 400W, resonance

    Pressure (10-3mbar): 0.6 2.0 6.0 10.0

    Plas

    ma

    Pote

    ntia

    l [V] × 10

    -3mbar

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 26

    Biased GridBiased Grid

    Influence on plasma density in Region II

    -40 -30 -20 -10 0 10 200,00E+000

    1,00E+009

    2,00E+009

    3,00E+009

    4,00E+009

    5,00E+009

    6,00E+009

    7,00E+009

    8,00E+009

    9,00E+009

    1,00E+010

    400W, resonancePressure (10-3mbar):

    0.6 2.0

    Grid bias [V]

    Elec

    tron

    Den

    sity

    [cm

    -3]

    × 10-3 mbar

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 27

    Biased GridBiased Grid

    0 5 10 15 20 25 30 35 40 45 50 550.00

    0.01

    0.02

    0.03

    0.04 Ugrid:

    0 V -20 V -100 V

    IDF

    [a.u

    .]

    Ion Energy [eV]

    HEP

    LEP Bias Grid:

    Influence on Low Energy Peak (LEP) in Region II

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 28

    Apply DC Bias on Inductive CoilApply DC Bias on Inductive Coil

    -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65

    0,00

    0,02

    0,04

    0,06

    Ugrid=0V, Grounded coil ! Ugrid=0V, Floating coil Ugrid=-100V, Floating coilID

    F [a

    .u.]

    Grid bias [V]Shift and form change of IDF in Region II

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 29

    Three peak structure?Three peak structure?

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 30

    Energy Flux to SubstrateEnergy Flux to Substrate

    shield

    copperplate

    (substrate)

    thermalcouple

    substratebiasing

    andsaturation

    current

    insulation(marcor)

    rod(movable)

    ⋅ += outSin QHQPlasma ON (heating)

    outS QH +=•

    0Plasma OFF (cooling)

    dtdTmcH SS =

    Tcool

    S

    heat

    SSSin dt

    dTdt

    dTmccoolHheatHQ⎩⎨⎧

    ⎭⎬⎫

    ⎟⎠⎞

    ⎜⎝⎛−⎟

    ⎠⎞

    ⎜⎝⎛=−=

    ••

    )()(

    ( )dAJJJJJJdAJQSuSu A

    photoncondneurecieA

    inin .∫∫ +++++==

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 31

    Energy Flux to SubstrateEnergy Flux to Substrate

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    100 W

    200 W

    300 W

    400 W

    500 W

    600 W

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]

    Higher energy contribution at low pressure

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 32

    Energy Flux to SubstrateEnergy Flux to Substrate

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    100 W

    200 W

    300 W

    400 W

    500 W

    600 W

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]

    Higher energy contribution at low pressure

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 33

    Energy Flux to Substrate: ModellingEnergy Flux to Substrate: Modelling

    400 W

    0 1 2 3 4 5 6 7 8 9 10 110.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08 Measurement Ji+Je+Jrec (model) Ion energy flux Ji Electron energy flux Je Recombination energy Jrec

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]

    Missing contributions

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 34

    Energy Flux to Substrate: Bias influence on thermal probeEnergy Flux to Substrate: Bias influence on thermal probe

    -80 -70 -60 -50 -40 -30 -20 -10 0 10 200.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    0.050

    0.055

    0.060

    0.065

    measurement modelling

    300 W, 4×10-3 mbar

    Voltage on Thermal probe [V]

    Ener

    gy F

    lux

    [Js-

    1 cm

    -2]

    Possible reasons:

    - Plasma Radiation

    - Excited atoms

    - Fast neutrals

    important heating chanell

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 35

    Fast neutralsFast neutrals

    Generation of fast neutrals by one ion by several charge-exchange collisions:

    cascade

    Substrate

    n

    2

    1

    z

    Z = 0

    E

    1Z

    2Z

    nZ

    trajectories: ion - continuous linefast neutrals - interrupted lines

    Large difference between cross sections of collision processes:

    - ion-neutral collision (CX)

    - fast neutral – neutral elastic collision

    Many fast neutrals for one ion !

    Including this effect gives good results

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 36

    Energy Flux to Substrate: ModellingEnergy Flux to Substrate: Modelling

    0 1 2 3 4 5 6 7 8 9 10 110.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08 Measurement Ji+Je+Jrec (model) Ion energy flux Ji Neutral energy flux Jn

    400 W

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]Better agreement

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 37

    ConclusionsConclusions

    Capacitive effects in ICP

    How to understand the IDF…

    Tuning-optimising the IDF:

    Grid effect and how to move LEP and HEP

    Energy balance to substrate: fast neutrals

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

Recommended