37
1 Characterisation, Optimization and Tuning of Plasma Parameters in ICP discharge Vasile Vartolomei K. Matyash R. Schneider C. Wilke M. Hannemann R. Hippler H. Kersten A. Knuth Institute of Physics Felix Hausdorff Str. 6 D-17489 Greifswald Germany [email protected]

Characterisation, Optimization and Tuning of Plasma ...Vasile Vartolomei K. Matyash R. Schneider C. Wilke M. Hannemann R. Hippler H. Kersten A. Knuth Institute of Physics Felix Hausdorff

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Characterisation, Optimization and Tuning of Plasma

    Parameters in ICP discharge

    Vasile Vartolomei

    K. MatyashR. SchneiderC. Wilke

    M. HannemannR. Hippler H. KerstenA. Knuth

    Institute of PhysicsFelix Hausdorff Str. 6D-17489 [email protected]

  • 2

    OutlookOutlook

    Capacitive effect in ICP: how to reduce it?

    Interpretation of Ion Distribution Function

    Tuning-optimising the IDF

    Energy balance to substrate

    Conclusions

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 3

    MotivationMotivation

    What we want ...

    ne Te eVi n*EE

    DF

    Electron energy

    EEDF Species

    N.Braithwaite (DPG-Spring Meeting Aachen 2003)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 4

    MotivationMotivation

    What we have ...

    RF Power 2FlowPressureRF Power 1

    Timer

    O2 N2 CH4 CF4

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • Experimental deviceExperimental device

    Region I

    Region II

    Sputtered Target and gas inlet

    RFEA andLangmuir probe

    Grid(with/without)

    RFEA andLangmuir probe

    Region II

    Region I

    Sputter target

    Grid(without/with)

    Gas: Argon

    Power range: 100 - 600 W

    RF frequency: 13.56 MHz

    Magnetic field: 0 - 2.2 mT

    Pressure range: 6×10-4 – 1×10-2 mbar

    5

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 6

    Capacitive effect in ICPCapacitive effect in ICP

    Capacitive effects produces undesiredsputtering effects at the coil

    Reduce RF amplitude:Balance the coil and get a factor 2 reduction!

    G. K. Vinogradov, Transmission line balanced inductive plasma sources, Plasma Sources Sci. Technol. 9 (2000) 400-412

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 7

    Reduce capacitive effect: step down transformerReduce capacitive effect: step down transformer

    3 Capacitive effects produce undesiredsputtering effects at the coil

    Balanced coil

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 8

    Reduce RF amplitude: add magnetic fieldReduce RF amplitude: add magnetic field

    RF

    ampl

    itude

    at c

    oil e

    nds

    Normalised Magnetic Field

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 9

    B

    The ECWR effectThe ECWR effect

    Bz = B(t), By = B = constant

    B

    B(t)B

    λplasma=λvac/nR

    stationary wave

    H.Oechsner et al., Thin Solid Films 341 (1999), 101-104)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 10

    The ECWR effect: Plasma DensityThe ECWR effect: Plasma Density

    0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.80.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    0.6 x 10-3 mbar 2.0 x 10-3 mbar

    Magnetic Field [mT]

    Nor

    mal

    ised

    Pla

    sma

    Den

    sity

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 11

    Reduced capacitive effectReduced capacitive effect

    Magnetic Field [mT]

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    100 W 300 W 500 W

    RF

    bias

    (V)

    coil current (A)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 12

    Experimental measurement of IDFExperimental measurement of IDF

    Collector characteristic

    -50 0 50

    -0.6-0.4-0.20.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.0

    I c(a.

    u.)

    Uc(V)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 13

    Experimental measurement of IDFExperimental measurement of IDF

    Retarding Field Energy Analyser (RFEA)

    dIc/dUc α IDF

    A

    I

    -100 -75 -50 -25 0 25 500,00

    0,04

    0,08

    0,12

    0,16 Selector = - 75 V Selector = -100 V

    IDF

    [a.u

    .]

    Ion Energy [eV]-180 -150 -120 -90 -60 -30 0 30 60

    0,0

    0,3

    0,6

    0,9

    Selector = - 75 V Selector = - 100 V

    Col

    lect

    or C

    urre

    nt [1

    0-6 A

    ]

    Collector Voltage [V]

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 14

    Experimental measurement of IDFExperimental measurement of IDF

    IDF α dIc/dUc

    ∫+∞

    =0

    )( ndvvf

    dEEgdndvvf )()( ==

    ∫ ∫== dEvfMedvvvfeI

    ii )()(

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=⎟

    ⎠⎞

    ⎜⎝⎛−=

    c

    cii

    dUUdI

    eM

    dEEdI

    eMvf )()()( 2

    Where is the Plasma Potential ?Four points of view…

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70-0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    dIc/d

    Uc(

    a.u.

    )

    U c(V)

    A: Lipschultz, I. Hutchingson, B. LaBombard, A. Wan, Electrical probes in plasmas, J.Vac.Sci.Technol. A 4(3), p.1810-1816 (1986)

    B: S. G. Ingram, N. St. J. Braithwaite, Ion and electron energy analyser at a surface in an RF discharge,

    J.Phys.D.: Appl.Phys. 21, 1496-1503, (1988)

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 15

    IDF model 1 (point A)IDF model 1 (point A)

    a) in plasma

    b) at the pre-sheath entrance

    c) at the wall

    Ion Velocity Distribution Functionone-dimensional (gaussion)

    Allows to calculate ion temperature!

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 16

    IDF model 4: K.U. RiemannIDF model 4: K.U. Riemann

    c

    zxλ

    =e

    zi

    KTvmy

    2

    2

    =

    eKTeU

    −=ϕIon Temperature and Plasma potential information are lost

    ∫∞

    −+ =

    0

    2/1 ),( dyyxfyn

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 17

    PIC-MCC simulationPIC-MCC simulation

    0 10 20 30 40 50 60 70 80 90 100 110 120 1300

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    Vp(V)

    Z, λd0 10 20 30 40 50 60 70 80 90 100 110 120 130

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    electrons ions

    ne,ni 109 cm-3

    Z, λd

    Known input data: Plasma potential, Ion temperature and Electron temperature

    Run the code and see how they come to the wall

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 18

    PIC-MCC simulationPIC-MCC simulation

    IDF maxima is the plasma potentialsince we have 10% oscillations in Vp.

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.20.0

    0.2

    0.4

    0.6

    0.8

    1.0IED

    Ei,kin/eVp

    Zwall-cell Zwall-2xλDebye-cell Zwall-3xλDebye-cell Zwall-4xλDebye-cell

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 19

    Influence the transport between the two Regions: add a gridInfluence the transport between the two Regions: add a gridID

    F [a

    .u.]

    10 15 20 25 30 35 40 450

    50

    100

    150

    200

    250

    Ion Energy [eV]

    Region I

    Region II

    Grid

    Origin of double peak structure ?

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 20

    First Concept: Collisionless rf modulated sheathFirst Concept: Collisionless rf modulated sheath

    C. Charles at al, Physics of Plasmas 7 (12), 2000K.Köhler at al, J. Appl.Phys. 58 (9), 1985

    1

  • 21

    Experimental Contradiction of First ConceptExperimental Contradiction of First Concept

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70-0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    RFEA 0 degree to axis, d ist=49 m m RFEA 90 degree to axis, d ist=54 m m

    400W, 0.6×10-3 mbar

    IDF

    [a.u

    .]

    Ion Energy [eV]

    Region I

    Region II

    1.

    2.

    1.

    2.

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 22

    Second Concept: Space potential differenceSecond Concept: Space potential difference

    Axial dependence

    Ion

    Ene

    rgy

    (eV

    )

    Region I Region II

    Vplasma (V)

    Z (cm)10 15 20 25 30 35 40 45

    0

    50

    100

    150

    200

    250

    IDF

    [a.u

    .]

    Ion Energy [eV]

    Double peak structure in IDF Explains the contradiction

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 23

    Tuning the Ion Distribution FunctionTuning the Ion Distribution Function

    • Can one move the Low Energy Peak ?

    • Can one move the High Energy Peak ?

    • Can one move them independently ?

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 24

    Apply voltage on gridApply voltage on grid

    Build a variable gate

    Region II

    Sheath

    Grid wire

    electrons

    Region I

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 25

    Biased GridBiased Grid

    Grid bias [V]

    Influence on plasma potential in Region II

    -40 -30 -20 -10 0 10 20

    8101214161820222426283032343638 400W, resonance

    Pressure (10-3mbar): 0.6 2.0 6.0 10.0

    Plas

    ma

    Pote

    ntia

    l [V] × 10

    -3mbar

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 26

    Biased GridBiased Grid

    Influence on plasma density in Region II

    -40 -30 -20 -10 0 10 200,00E+000

    1,00E+009

    2,00E+009

    3,00E+009

    4,00E+009

    5,00E+009

    6,00E+009

    7,00E+009

    8,00E+009

    9,00E+009

    1,00E+010

    400W, resonancePressure (10-3mbar):

    0.6 2.0

    Grid bias [V]

    Elec

    tron

    Den

    sity

    [cm

    -3]

    × 10-3 mbar

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 27

    Biased GridBiased Grid

    0 5 10 15 20 25 30 35 40 45 50 550.00

    0.01

    0.02

    0.03

    0.04 Ugrid:

    0 V -20 V -100 V

    IDF

    [a.u

    .]

    Ion Energy [eV]

    HEP

    LEP Bias Grid:

    Influence on Low Energy Peak (LEP) in Region II

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 28

    Apply DC Bias on Inductive CoilApply DC Bias on Inductive Coil

    -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65

    0,00

    0,02

    0,04

    0,06

    Ugrid=0V, Grounded coil ! Ugrid=0V, Floating coil Ugrid=-100V, Floating coilID

    F [a

    .u.]

    Grid bias [V]Shift and form change of IDF in Region II

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 29

    Three peak structure?Three peak structure?

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 30

    Energy Flux to SubstrateEnergy Flux to Substrate

    shield

    copperplate

    (substrate)

    thermalcouple

    substratebiasing

    andsaturation

    current

    insulation(marcor)

    rod(movable)

    ⋅ += outSin QHQPlasma ON (heating)

    outS QH +=•

    0Plasma OFF (cooling)

    dtdTmcH SS =

    Tcool

    S

    heat

    SSSin dt

    dTdt

    dTmccoolHheatHQ⎩⎨⎧

    ⎭⎬⎫

    ⎟⎠⎞

    ⎜⎝⎛−⎟

    ⎠⎞

    ⎜⎝⎛=−=

    ••

    )()(

    ( )dAJJJJJJdAJQSuSu A

    photoncondneurecieA

    inin .∫∫ +++++==

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 31

    Energy Flux to SubstrateEnergy Flux to Substrate

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    100 W

    200 W

    300 W

    400 W

    500 W

    600 W

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]

    Higher energy contribution at low pressure

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 32

    Energy Flux to SubstrateEnergy Flux to Substrate

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.10

    0.11

    0.12

    100 W

    200 W

    300 W

    400 W

    500 W

    600 W

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]

    Higher energy contribution at low pressure

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 33

    Energy Flux to Substrate: ModellingEnergy Flux to Substrate: Modelling

    400 W

    0 1 2 3 4 5 6 7 8 9 10 110.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08 Measurement Ji+Je+Jrec (model) Ion energy flux Ji Electron energy flux Je Recombination energy Jrec

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]

    Missing contributions

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 34

    Energy Flux to Substrate: Bias influence on thermal probeEnergy Flux to Substrate: Bias influence on thermal probe

    -80 -70 -60 -50 -40 -30 -20 -10 0 10 200.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    0.050

    0.055

    0.060

    0.065

    measurement modelling

    300 W, 4×10-3 mbar

    Voltage on Thermal probe [V]

    Ener

    gy F

    lux

    [Js-

    1 cm

    -2]

    Possible reasons:

    - Plasma Radiation

    - Excited atoms

    - Fast neutrals

    important heating chanell

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 35

    Fast neutralsFast neutrals

    Generation of fast neutrals by one ion by several charge-exchange collisions:

    cascade

    Substrate

    n

    2

    1

    z

    Z = 0

    E

    1Z

    2Z

    nZ

    trajectories: ion - continuous linefast neutrals - interrupted lines

    Large difference between cross sections of collision processes:

    - ion-neutral collision (CX)

    - fast neutral – neutral elastic collision

    Many fast neutrals for one ion !

    Including this effect gives good results

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 36

    Energy Flux to Substrate: ModellingEnergy Flux to Substrate: Modelling

    0 1 2 3 4 5 6 7 8 9 10 110.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08 Measurement Ji+Je+Jrec (model) Ion energy flux Ji Neutral energy flux Jn

    400 W

    Mea

    sure

    d En

    ergy

    Flu

    x [J

    s-1 c

    m-2

    ]

    pressure [×10-3mbar ]Better agreement

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)

  • 37

    ConclusionsConclusions

    Capacitive effects in ICP

    How to understand the IDF…

    Tuning-optimising the IDF:

    Grid effect and how to move LEP and HEP

    Energy balance to substrate: fast neutrals

    © V. Vartolomei: Graduate Summer Institute ‘‘Complex Plasmas‘‘ August 5. 2008 Hoboken, NJ (USA)