Chapter 3 Inductance and Capacitanceengineering.snu.ac.kr/lecture_pdf/EE/Chapter03_SNU.pdf ·...

Preview:

Citation preview

Chapter 3Inductance and Capacitance

Goal1. Current (voltage) for a Capacitance or Inductance

given the voltage (current) as a function of time.

2. Capacitance of a Parallel-plate Capacitor.

3. Stored Energy in a Capacitance or Inductance.Passive Elements : Resistor, Capacitor, Inductor

Not Generate Energy, But Store Energy

4. Typical Physical Construction of Capacitors and Inductors

5. Voltages across mutually coupled inductances in terms of the currents.

CAPACITANCE

Positive Charge is Balanced by Negative Charge of Equal Amount

Water Pressure : PotentialWater Amount : Charge

dtdvCi =

)(Cvdtd

dtdqi ==

Cvq =q : stored charge

C : capacitance

Stored Charge

at fixed Voltage

Unit : Farad = Coulombs / Volt

∫ +=t

ttvdtti

Ctv

0

)()(1)( 0

Ctqtv )()( 0

0 =∫ +=t

t Ctqdtti

Ctv

0

)()(1)( 0

∫ +=t

ttqdttitq

0

)()()( 0

Voltage in Terms of Current

Cvq =

Initial voltage

Example of Current in terms of Voltage

)(10)( 6 tvCvtq −==

dttdv

dttdvCti )(10)()( 6−== sV

dttdv /105)( 6×=

AdttdvCti 5)()( ==

sVdttdv /10)( 7−=

AdttdvCti 10)()( −=

Example of Voltage in terms of Current

)10sin(5.0)( 4 tti =

∫ +=t

ttqdttitq

0

)()()( 0

∫ −×==t

ttdtttq

0

))10cos(1(105.0)10sin(5.0)( 444

))10cos(1(500)()( 4 tCtqtv −×==

Ctq

2)(2

=

)()(21 tqtv=

)(21 2 tCv=

∫=)(

0

tvCvdv∫=

t

tdt

dtdvCv

0∫=t

tdttptw

0

)()(

dtdvCvtp =)()()()( titvtp =

Stored Energy

powerdtdvCi =

energy

dtdvCi 11 =

CAPACITANCES IN SERIES AND PARALLEL

dtdvCi 22 = dt

dvCi 33 =

321 iiii ++=

dtdvC

dtdvC

dtdvC 321 ++=

dtdvCCC )( 321 ++=

321 CCCCeq ++=dtdvCeq=

Capacitances in Parallel

321 1111

CCCCeq ++

=

Capacitances in Series

∫=t

tdtti

Ctv

0

)(1)(

KCL

KVL 321 vvvv ++=

∫++=t

tdtti

CCC 0

)(]111[321

∫=t

teq

dttiC 0

)(1

PHYSICAL CHARACTERISTICS OF CAPACITORS

0εεε r=

dAC ε

=

rε0ε = 8.85 ⅹ 10-12 F/m

: relative dielectric constant 78.54.33.47.05.51.0

WaterQuartzPolysterMicaDiamondAir

Materials rε

Real Capacitor

Parasitic Element Rs, Ls, Rp

INDUCTANCE

dtdiLtv =)( dttv

Ldi )(1=

∫∫ =t

t

ti

tidttv

Ldi

00

)(1)(

)(

)()(1)( 00

tidttvL

tit

t+= ∫

L : Inductance Unit : HH : Volt sec/Ampere

)(21)( 2 tLitw =∫=

)(

0

tiLidi∫=

t

tdt

dtdiLi

0∫=t

tdttptw

0

)()(

dtditLitp )()( =)()()( tvtitp =

Stored Energy

dtdiLtv =)(power

energy

Inductor Current with Constant Voltage

t=0 : i=0 because Open Switch

)()(1)( 00

tidttvL

tit

t+= ∫

i(to)=0

051021)(

0

>== ∫ tAdttit

t

dtdiLtv =)(

If Open Switch at t=1s, di/dt=-Infinite Infinite Voltage : Impulse Occur (Surge)

INDUCTANCES IN SERIES AND PARALLEL

Practical Inductor

Examples of Series & Parallel

Practical Application : Electronic Flash

Power Transfer From Battery to Flash is not Possible1) Battery Voltage : a few ten volts2) Maximum Power Transfer : 1W

Electronic Switch : 10,000 times / sec ON/OFFduring ON : Battery cause to Build up Current in Inductorduring OFF : Inductor force Currents to flow through diode to Charge Capacitor

Diode Prevent Charge from CapacitorMultiple On/OFF Build-up several Hundred Voltage at CapacitorFlash Switch On Flash Discharge

Electronic Switch

Diode

Capacitor

Flash Tube

Battery

Voltage : Water PressureCurrent : Water Amount

MUTUAL INDUCTANCE

LVDT (Linear Variable Differential Transformer)

)cos()( tKxtvo ω=

Recommended