AY250: Neutrino Transients Wherein “The Most Tiny Quantities of Reality Ever Imagined by a Human...

Preview:

Citation preview

AY250: Neutrino Transients

Wherein

“The Most Tiny Quantities of Reality Ever Imagined by a Human Being”--

Fred Raines Meet “The Most Powerful Explosions in the Universe (Since the Big Bang)”

Neutrino

Disclaimer !

• I am not a weak physicist; I am a weak astrophysicist; sort of. I don’t study neutrinos.

• I am a OoM theorist (cover your wallet).• I am discussing a field with 19 particles detected.• Stop me to ask questions. I probably stopped you.

!

Discussion Overview• Neutrino Physics Review (Astrophysics Perspective)

– Why Neutrinos as Probes of the Universe?– Gamma-Ray/Cosmic-Ray/Neutrino Connection

• Transient Neutrino Sources– Stellar Core-Collapse (Neutron Star Formation)*– Gamma-Ray Bursts*, Giant Magnetar Flares*– Neutron Star X-Ray Binaries– Blazars*, Microquasars, Supernova Remnants

• Neutrino Observatories– Past: Kamiokande I/II*, IMB*, AMANDA*, SNO, LVD– Present: IceCube*, KamLAND, Baikal(NT-200), Super-K– Future: SNO+, ANTARES, NEMO, NESTOR, UNO?

Low or “Nuclear” or “Human Accelerator” Energies High or “Nature Accelerator” Energies

Neutrino Review for Astrophysicists

• Postulated by Pauli (1930), “Popularized” by Fermi (1933), Experimentally Confirmed by Cowan/Reines (1950s)– “ghost” particle invented to carry away energy in decay

• Only Confirmed Solely Weakly Interacting Particles– “Fundamental” Leptons (spin 1/2)

• Fermi-Dirac Statistics with ~ 0 mass threshold

– 3 Flavors (Electron, Muon, Tau)

• e, , (and corresponding antineutrinos)

• Flavor Oscillations (Vacuum or Matter)– Observed ≠ Source-Produced Flavor – Mostly Ignored in Astrophysics

• Probably Smoothes to 1:1:1 Ratio

n ⇒ p + e− + ν e

Why Neutrinos? Physics & Astrophysics!

Physics-Solar Model (Nuclear Physics/Convection/B Fields, ENUC ~ 1-10 MeV)

-Beyond Standard Model (e.g., Neutrino Oscillations, Sterile Neutrinos)

-Dark Matter (Primordial WIMP Annihilation, EWIMP ~ 10 GeV-10 TeV)

-Tests of Special/General Relativity (e.g., weak equivalence principle)

Both Low and High Neutrino Energies Interesting!

Why Neutrinos? Physics & Astrophysics!

Physics-Solar Model (Nuclear Physics/Convection/B Fields, ENUC ~ 1-10 MeV)

-Beyond Standard Model (e.g., Neutrino Oscillations, Sterile Neutrinos)

-Dark Matter (Primordial WIMP Annihilation, EWIMP ~ 10 GeV-10 TeV)

-Tests of Special/General Relativity (e.g., weak equivalence principle)

Astrophysics-Probe Photo-Inaccessible Environments (e.g., Core-Collapse SNe) -

*Complementary to Gravitational Wave Detectors

-In Principle Observable STRAIGHT to the End of the Universe *Cosmology/AGN/GRB *Gamma Rays Absorbed, Cosmic Rays Deflected and Absorbed

-Tracks Particle Acceleration (Cosmic Ray Connection, ECR > GeV)

*Where do the ultra-high energy cosmic rays come from?

Both Low and High Neutrino Energies Interesting!

Relevant Neutrino-Matter Interactions: In Earth Detectors, Core Collapse Supernovae &

Astrophysical Particle Accelerators • Electron Scattering

•Directional Information

(e,μ ,τ ) + e− →ν (e,μ ,τ ) + e−

ν (μ ,τ ) + e− → (μ,τ ) + ν e

σe /σ T ~ 10−20 Eν

mec2

⎝ ⎜

⎠ ⎟

Relevant Neutrino-Matter Interactions: In Earth Detectors, Core Collapse Supernovae &

Astrophysical Particle Accelerators

σn /σ T ~ 10−20 Eν

mec2

⎝ ⎜

⎠ ⎟2

, MeV < Eν < GeV

• Electron Scattering•Directional Information

• Nucleon Absorption (Core Collapse)

(e,μ ,τ ) + e− →ν (e,μ ,τ ) + e−

ν (μ ,τ ) + e− → (μ,τ ) + ν e

e + n → p + e−

ν e + p → n + e+€

σe /σ T ~ 10−20 Eν

mec2

⎝ ⎜

⎠ ⎟

Relevant Neutrino-Matter Interactions: In Earth Detectors, Core Collapse Supernovae &

Astrophysical Particle Accelerators

σn /σ T ~ 10−20 Eν

mec2

⎝ ⎜

⎠ ⎟2

, MeV < Eν < GeV

• Electron Scattering•Directional Information

• Nucleon Absorption (Core Collapse)

• Photohadronic Pion Cascade (Shocks)

•Threshold Energy: e.g.

(e,μ ,τ ) + e− →ν (e,μ ,τ ) + e−

ν (μ ,τ ) + e− → (μ,τ ) + ν e

e + n → p + e−

ν e + p → n + e+

E p Eγ ' > 12 mΔ

2 − mp2

( ) ~ (500 MeV)2

σe /σ T ~ 10−20 Eν

mec2

⎝ ⎜

⎠ ⎟

Cosmic Ray Acceleration => Neutrino Flux

The Neutrino Sky

Taken from Smoot Online

• Thermal BB Relic Neutrinos (E ~10-4 eV) – Hopelessly Undetectable (Z-Bursts?)

• SN Core Collapse Relic Neutrinos (E ~1 MeV)

– Bound Supernova / Star Formation Rate– Constrain Cosmology?

– Still ~ 1 OoM Below Detection Ability

The Neutrino Sky

Taken from Smoot Online

• Thermal BB Relic Neutrinos (E ~10-4 eV) – Hopelessly Undetectable (Z-Bursts?)

• SN Core Collapse Relic Neutrinos (E ~1 MeV)

– Bound Supernova / Star Formation Rate– Constrain Cosmology?

– Still ~ 1 OoM Below Detection Ability • Atmospheric Neutrinos • “Diffuse” CR Interaction Emission

– Cosmogenic Emission– Gas (Galactic, Star-Forming Galaxies)

• Big Bang Relics– Primordial Black Holes, Topological Defects– WIMP Annihilation

The Neutrino Sky

Taken from Smoot Online

• Thermal BB Relic Neutrinos (E ~10-4 eV) – Hopelessly Undetectable (Z-Bursts?)

• SN Core Collapse Relic Neutrinos (E ~1 MeV)

– Bound Supernova / Star Formation Rate– Constrain Cosmology?

– Still ~ 1 OoM Below Detection Ability • Atmospheric Neutrinos • “Diffuse” CR Interaction Emission

– Cosmogenic Emission– Gas (Galactic, Star-Forming Galaxies)

• Big Bang Relics– Primordial Black Holes, Topological Defects– WIMP Annihilation

• SN Core Collapse Point Sources (E ~ 10 MeV)

– Limited to Local Universe

• Potential Cosmic Ray Acceleration Sites• What We Haven’t Thought Of

Part I: Low Energy Core Collapse Neutrinos

Core-Collapse Supernovae Theory: A Brief Pre-History (Before Neutrinos, <1960)

• Neutron Stars Might Exist! - Landau, 1932, 1937: NS Core Powers the Sun?

- Gulag-Saving Measure?

- Got Oppenheimer et al. Interested

Cas A (Chandra)

Core-Collapse Supernovae Theory: A Brief Pre-History (Before Neutrinos, <1960)

• Neutron Stars Might Exist! - Landau, 1932, 1937: NS Core Powers the Sun?

- Gulag-Saving Measure?

- Got Oppenheimer et al. Interested

• SNe Beget Neutron Stars? - Baade & Zwicky, 1934: ESN ~ GMCH

2/RN ??

- All SN Types Clumped

- No Neutrino Connection

Cas A (Chandra)

Core-Collapse Supernovae Theory: A Brief Pre-History (Before Neutrinos, <1960)

• Neutron Stars Might Exist! - Landau, 1932, 1937: NS Core Powers the Sun?

- Gulag-Saving Measure?

- Got Oppenheimer et al. Interested

• SNe Beget Neutron Stars? - Baade & Zwicky, 1934: ESN ~ GMCH

2/RN ??

- All SN Types Clumped

- No Neutrino Connection

• B2FH Onion Skin Model- Widely Popularized Non Big-Bang Nucleosynthesis

- No Iron Core Emphasis, Connection to MCH

- 254Cf Powers Light?

Cas A (Chandra)

Core-Collapse Supernova Neutrinos: Modeling & The Standard Model (>1960)

• Chiu (1961): Neutrinos Control Collapse Dynamics– Weak Interaction Controls MacroDynamics!

• Colgate & White (1961): First Numerical Simulations - Neutrino Transport Ad Hoc (1053 erg SNe!)- >100 MeV Neutrinos (~Gravitational Binding Energy), ~10 ms Infall Timescale

PNS

Core-Collapse Supernova Neutrinos: Modeling & The Standard Model (>1960)

• Chiu (1961): Neutrinos Control Collapse Dynamics– Weak Interaction Controls MacroDynamics!

• Colgate & White (1961): First Numerical Simulations - Neutrino Transport Ad Hoc (1053 erg SNe!)- >100 MeV Neutrinos (~Gravitational Binding Energy), ~10 ms Infall Timescale

• Improved Physics! Glashow,Salam,& Weinberg (1968): Neutral Current Weak Interactions

• Neutrinos are Trapped! (1970s) - Optically Thick ProtoNeutron Star Forms- ~10 MeV, ~1-100 s Diffusion Timescale- Dynamics Independent of Supernova Mechanism

PNS

Neutrinos are Trapped in HERE!

Core-Collapse Supernova Neutrinos: Modeling & The Standard Model (>1960)

• Chiu (1961): Neutrinos Control Collapse Dynamics– Weak Interaction Controls MacroDynamics!

• Colgate & White (1961): First Numerical Simulations - Neutrino Transport Ad Hoc (1053 erg SNe!)- >100 MeV Neutrinos (~Gravitational Binding Energy), ~10 ms Infall Timescale

• Improved Physics! Glashow,Salam,& Weinberg (1968): Neutral Current Weak Interactions

• Neutrinos are Trapped! (1970s) - Optically Thick ProtoNeutron Star Forms- ~10 MeV, ~1-100 s Diffusion Timescale- Dynamics Independent of Supernova Mechanism

• SNe Don’t Explode! (1980s-NOW) - ProtoNeutron Star Neutrinos May Re-Energize Supernova Shock (Bethe & Wilson 1985)???

PNS

Neutrinos are Trapped in HERE!

The Theoretical Argument for ~10 seconds of Detectable ~10 MeV Neutrinos

Kelvin - Helmholtz ProtoNeutron Star Cooling

Egrav ~ GM 2 /R, tdiffuse ~ (R /c)τ nν

Lν ~ Egrav / tdiffuse ~ 4πR2σTS4

Radiative Transfer ⇒ Ts4τ ν ~ TC

4

TC ~ 60M1.4 M sun

1/ 2R30km−1 MeV

σ nν ~ 10−44 (Eν ,C /mec2)2cm2, Eν ,C ~ 3kT, M ~ (4π /3)R3ρ

τ ν ~ ρ /mn( )σ nν R ~ 104 −105 M1.4 M sun

2R30km−4

Eν ,S ~ 3kTS ~ 3kTC /τ ν1/ 4 ~ 15 MeV

Lν ~ 3×1052 R30km2 erg/s

tdiffuse ~ (R /c)τ ν ~ 10R30kms

F⊕ ~ Lν /4πD2, Ne,H20 ~ (Vρ H 20 /mp )

N⊕ ~ tdiffuse (F⊕ / Eν )σ νnNe,H20 /6 ~

~ Ebind /6(σ νn / Eν )Ne,H20 ~ 20(V /kton)M1.4 M sun

2R30km−1 D50kpc

−2

“The Supernova is only a sideshow to the main event: Neutron Star Birth” - A. Burrows

The Theoretical Argument for ~10 seconds of Detectable ~10 MeV Neutrinos

Kelvin - Helmholtz ProtoNeutron Star Cooling

Egrav ~ GM 2 /R, tdiffuse ~ (R /c)τ nν

Lν ~ Egrav / tdiffuse ~ 4πR2σTS4

Radiative Transfer ⇒ Ts4τ ν ~ TC

4

TC ~ 60M1.4 M sun

1/ 2R30km−1 MeV

σ nν ~ 10−44 (Eν ,C /mec2)2cm2, Eν ,C ~ 3kT, M ~ (4π /3)R3ρ

τ ν ~ ρ /mn( )σ nν R ~ 104 −105 M1.4 M sun

2R30km−4

Eν ,S ~ 3kTS ~ 3kTC /τ ν1/ 4 ~ 15 MeV

Lν ~ 3×1052 R30km2 erg/s

tdiffuse ~ (R /c)τ ν ~ 10R30kms

F⊕ ~ Lν /4πD2, Ne,H20 ~ (Vρ H 20 /mp )

N⊕ ~ tdiffuse (F⊕ / Eν )σ νnNe,H20 /6 ~

~ Ebind /6(σ νn / Eν )Ne,H20 ~ 20(V /kton)M1.4 M sun

2R30km−1 D50kpc

−2

“The Supernova is only a sideshow to the main event: Neutron Star Birth” - A. Burrows

Detectable with 1000 tons of water!

1980s Water Cerenkov “Proton Decay Experiments”

• Japanese Zinc Mine (Shielding from Cosmic Ray Muons)

• Volume: ~2 ktons• 1000 PMTs• Detector Efficiency:

– ~66% at 10 MeV, ~90% at 15 MeV

• Salt Mine in Ohio• Volume: ~6 ktons• 2048 PMTs• Detector Efficiency:

– ~10% at 20 MeV, ~60% at 40 MeV

Kamiokande (I & II)

Irvine. Michigan. Brookhaven (IMB)

Core Collapse Neutrino Predictions on Feb 22., 1987

•Stage 1: Prompt Deneutronization (~30 ms, ~1051 ergs of e’s)

•Stage 2: Shock Breakout (~10 ms, ~1051 ergs of e’s)

•Stage 3: Accretion Luminosity (<1 s, Depends on SN Mechanism)

•Stage 4: ProtoNeutron Star Cooling (~10 s, ~1053 ergs; all flavors) Log t (ms)

“On Detecting Stellar Collapse with

Neutrinos” (A. Burrows 1984)

Core Collapse Neutrino Predictions on Feb 22., 1987

•Stage 1: Prompt Deneutronization (~30 ms, ~1051 ergs of e’s)

•Stage 2: Shock Breakout (~10 ms, ~1051 ergs of e’s)

•Stage 3: Accretion Luminosity (<1 s, Depends on SN Mechanism)

•Stage 4: ProtoNeutron Star Cooling (~10 s, ~1053 ergs; all flavors) Log t (ms)

IMB Upgrades PMTs Late 1986

"The chances of a neutrino actually hitting something as it travels through all this howling emptiness are roughly comparable to that of

dropping a ball bearing at random from a cruising 747 and hitting, say, an egg

sandwich.” --Douglas Adams

SN1987A in LMC!

SN1987A in LMC!

~3 Hours Before Robert McNaught’s LMC Plates (20 Hours Before Ian Shelton’s Discovery)

Neutrinos from SN1987A•19 Neutrinos Total

•11 Kamiokande, 8 IMB, (5 Mt. Blanc?)

•Probably All Electron Antineutrinos

•No Directional Information

•One Scattering Event?

•Fermi-Dirac Black Body T~3-5 MeV

•Diffusion Process Confirmed (R~20 km)

•Definite Proof of Neutron Star Birth

•No Black Hole Signature (No Pulsar to Date Though!)

•Insufficient to Extract SN Mechanism

•Constraints on Electron Neutrino Mass (<14 eV, 95%)

•No KII/IMB Synchronization!!!, Still Limited by Intrinsic Emission Time

e + p → n + e+

The Future of Core Collapse Neutrino Detection• Present/Future Detectors

LARGER CERENKOV VOLUME = BETTER STATISTICS– Super-K (32 kton volume)

• ~4,000 Neutrinos for Galactic SN at 10 kpc

– Amanda (Only Because Short Timescale)• ~20,000 Neutrinos for Galactic SN at 10 kpc• Galactic SN Rate Upper Limit ~4/year

– Enough Scattering Events for Direction?MULTI-FLAVOR– e.g., KamLand (~70 NC Reactions), OMNIS?

The Future of Core Collapse Neutrino Detection• Present/Future Detectors

LARGER CERENKOV VOLUME = BETTER STATISTICS– Super-K (32 kton volume)

• ~4,000 Neutrinos for Galactic SN at 10 kpc

– Amanda (Only Because Short Timescale)• ~20,000 Neutrinos for Galactic SN at 10 kpc• Galactic SN Rate Upper Limit ~4/year

– Enough Scattering Events for Direction?MULTI-FLAVOR– e.g., KamLand (~70 NC Reactions), OMNIS?

• New Tools– SUNG (Supernova Neutrino Generation Tool) – SNEWS (Lets Get Organized)

• Things to Learn– SN Explosion Mechanism (Accretion Shock Luminosity) – Breakout Signature? Currently Unlikely– With Next SN Will We Learn More About SNe or Neutrino Physics?

SNEWS: Supernova Neutrino Early Warning System

International Collaboration of SN Neutrino-Sensitive InstrumentsSuper-K, LVD, SNO(+), AMANDA(IceCube)

GOALS: (1) Act as a Prompt Alert (and Localization) for Galactic SNe (2) Improve Sensitivity Through Multiple Telescopes

- Improve Small-Number Statistics- Eliminate Costly False Warnings

MEANS: (1) Computer Correlates “Warnings” from SNEWs Members

- “Warning” Designation on Group-to-Group Basis, > 1 False Warning/Week ==> Elimination from SNEWs

(2) Emails Astronomical Community (Sign Up Online!)- Optical/X-ray/Radio Pointings Hours Earlier than any SN to Date- < 1 False Warning / Century

Part II: High Energy, “Nature Accelerator” Neutrinos

Antartic Muon And Neutrino Detector Array• 677 PMTs in Cylinder (D = 200m)

1500 - 1900 m Depth Under Ice• Primarily Looks “Down” For Muons

Created by Muon Neutrinos (~20 Reconstruction)– Huge “Down-Going” CR Muons

Background– Electrons, Taus Produce Cascades– Water Vs. Ice:

Scattering/Absorption Length

• Energy Threshold ~50 GeV– But ~1 MeV For Huge Brief Flux (SNe)– Calibrated To Atmospheric Neutrinos– Low Background at E > TeV

• No Astrophysical Detections (Diffuse or Point Source)– Mostly Atmospheric Neutrinos Observed– BATSE GRB Coincidence Search -

None Observed/None Expected

• Integrated to IceCube in 2005

L. Kopke

AMANDA RESULTS

Hardtke et al.

Cosmic Beam Dumps & the Gamma-Ray/Cosmic-Ray Connection

,Neutron Stars, and any Shocks

CR + -Ray ==> Neutrino

-Ray ==> CR Acceleration

Neutrino ==> CR Acceleration!

, baryons

Halzen & Hooper

4:3, E=4E

Cosmic Beam Dumps & the Gamma-Ray/Cosmic-Ray Connection

,Neutron Stars, and any Shocks,

CR + -Ray ==> Neutrino

-Ray ==> CR Acceleration

Neutrino ==> CR Acceleration!

, baryons

Halzen & Hooper

TWO APPROACHES TO FINDING SOURCES OF HIGH ENERGY NEUTRINOS:

(1) Follow the Gamma-Ray Photons

(2) Look Where YOU THINK Particle Acceleration is Happening In the Universe and Test Your Hypothesis

Chuck Dermer’s “Best-Bet Astrophysical Neutrino Sources”

• Solar Flares

• Blazars: PKS 0208-512, PKS 0528+134, NRAO 530, 3C279, PKS

1622-297

• Pulsars/PWNe: 1706-44, Crab, Vela, Geminga • SN Remnants: W44, IC 443, Gamma Cygni

• Microquasars: LS 5039, LSI +61 303

• GRBs (Successful and “Failed”)

• Giant Magnetar Flares• Unidentified EGRET Sources (In and Out of Galactic Plane)

The Universe is NOT Transparent to > TeV Energies, So Extrapolate Known SEDs (Compton GRO-TeV)

Gamma-Ray Fluences > 10-4 ergs cm-2

Chuck Dermer’s “Best-Bet Astrophysical Neutrino Sources”

• Solar Flares

• Blazars: PKS 0208-512, PKS 0528+134, NRAO 530, 3C279, PKS

1622-297

• Pulsars/PWNe: 1706-44, Crab, Vela, Geminga • SN Remnants: W44, IC 443, Gamma Cygni

• Microquasars: LS 5039, LSI +61 303

• GRBs (Successful and “Failed”)

• Giant Magnetar Flares• Unidentified EGRET Sources (In and Out of Galactic Plane)

The Universe is NOT Transparent to > TeV Energies, So Extrapolate Known SEDs (Compton GRO-TeV)

Gamma-Ray Fluences > 10-4 ergs cm-2

NO; Spectrum Too Soft

Chuck Dermer’s “Best-Bet Astrophysical Neutrino Sources”

• Solar Flares

• Blazars: PKS 0208-512, PKS 0528+134, NRAO 530, 3C279, PKS

1622-297

• Pulsars/PWNe: 1706-44, Crab, Vela, Geminga • SN Remnants: W44, IC 443, Gamma Cygni

• Microquasars: LS 5039, LSI +61 303

• GRBs (Successful and “Failed”)

• Giant Magnetar Flares• Unidentified EGRET Sources (In and Out of Galactic Plane)

The Universe is NOT Transparent to > TeV Energies, So Extrapolate Known SEDs (Compton GRO-TeV)

Gamma-Ray Fluences > 10-4 ergs cm-2

NO; Spectrum Too Soft

Good Bet; Bright TeV Sources. Bet on Radio Quasars

Chuck Dermer’s “Best-Bet Astrophysical Neutrino Sources”

• Solar Flares

• Blazars: PKS 0208-512, PKS 0528+134, NRAO 530, 3C279, PKS

1622-297

• Pulsars/PWNe: 1706-44, Crab, Vela, Geminga • SN Remnants: W44, IC 443, Gamma Cygni

• Microquasars: LS 5039, LSI +61 303

• GRBs (Successful and “Failed”)

• Giant Magnetar Flares• Unidentified EGRET Sources (In and Out of Galactic Plane)

The Universe is NOT Transparent to > TeV Energies, So Extrapolate Known SEDs (Compton GRO-TeV)

Gamma-Ray Fluences > 10-4 ergs cm-2

NO; Spectrum Too Soft

Good Bet; Bright TeV Sources. Bet on Radio Quasars

Maybe; Only PWNe (TeV Sources) If Ion Component

Chuck Dermer’s “Best-Bet Astrophysical Neutrino Sources”

• Solar Flares

• Blazars: PKS 0208-512, PKS 0528+134, NRAO 530, 3C279, PKS

1622-297

• Pulsars/PWNe: 1706-44, Crab, Vela, Geminga • SN Remnants: W44, IC 443, Gamma Cygni

• Microquasars: LS 5039, LSI +61 303

• GRBs (Successful and “Failed”)

• Giant Magnetar Flares• Unidentified EGRET Sources (In and Out of Galactic Plane)

The Universe is NOT Transparent to > TeV Energies, So Extrapolate Known SEDs (Compton GRO-TeV)

Gamma-Ray Fluences > 10-4 ergs cm-2

NO; Spectrum Too Soft

Good Bet; Bright TeV Sources. Bet on Radio Quasars

Maybe; Only PWNe (TeV Sources) If Ion Component

Probably; If CRs Really Accelerated as Advertised

Chuck Dermer’s “Best-Bet Astrophysical Neutrino Sources”

• Solar Flares

• Blazars: PKS 0208-512, PKS 0528+134, NRAO 530, 3C279, PKS

1622-297

• Pulsars/PWNe: 1706-44, Crab, Vela, Geminga • SN Remnants: W44, IC 443, Gamma Cygni

• Microquasars: LS 5039, LSI +61 303

• GRBs (Successful and “Failed”)

• Giant Magnetar Flares• Unidentified EGRET Sources (In and Out of Galactic Plane)

The Universe is NOT Transparent to > TeV Energies, So Extrapolate Known SEDs (Compton GRO-TeV)

Gamma-Ray Fluences > 10-4 ergs cm-2

NO; Spectrum Too Soft

Good Bet; Bright TeV Sources. Bet on Radio Quasars

Maybe; Only PWNe (TeV Sources) If Ion Component

Probably; If CRs Really Accelerated as Advertised

Good Bet; TeV Flux Plausibly Hadronic

Chuck Dermer’s “Best-Bet Astrophysical Neutrino Sources”

• Solar Flares

• Blazars: PKS 0208-512, PKS 0528+134, NRAO 530, 3C279, PKS

1622-297

• Pulsars/PWNe: 1706-44, Crab, Vela, Geminga • SN Remnants: W44, IC 443, Gamma Cygni

• Microquasars: LS 5039, LSI +61 303

• GRBs (Successful and “Failed”)

• Giant Magnetar Flares• Unidentified EGRET Sources (In and Out of Galactic Plane)

The Universe is NOT Transparent to > TeV Energies, So Extrapolate Known SEDs (Compton GRO-TeV)

Gamma-Ray Fluences > 10-4 ergs cm-2

NO; Spectrum Too Soft

Good Bet; Bright TeV Sources. Bet on Radio Quasars

Maybe; Only PWNe (TeV Sources) If Ion Component

Probably; If CRs Really Accelerated as Advertised

Good Bet; TeV Flux Plausibly Hadronic

Good Bet; Depends Sensitively on Baryon Fraction/Lorentz Factor

Whipple Detection of Blazar TeV Photon Bursts

Kerrick et al. 1995

But Are These The Result of 0 Decay?

The Cosmic Ray Spectrum

UHECRs Only Directional for 1019 eV < E < EGZK, D < 100 Mpc

OMG Particles!

Are AGN the Source of UHECRs?

SMBH Jets ==> E > EGZK Cosmic Rays ==> AGN Source!€

EMAX ~ eΓGMBH

κ es

~ 1021 Γ

10

⎝ ⎜

⎠ ⎟

L

LED

⎝ ⎜

⎠ ⎟

1/ 2MBH

109 Msun

⎝ ⎜

⎠ ⎟

1/ 2

eV

•Nature’s Particle Accelerators Must Be Able To Confine Particles Inside Larmor Radius

GRBs or “Failed GRBs” Also Can Produce UHECRs

Neutrino-Cooled Accretion

Narayan & Quataert

•Black Hole Mass ~109 Smaller

• Mass/Energy Accretion Rate ~1010-15 Larger

•Lorentz Factor ~10 Larger

•EMAX ~102-5 Larger

GRBs’ More Powerful Explosions Make Up For Smaller Size

Neutrinos (or Lack Thereof) Would Tell Us About “Fireball” Content of GRBs or AGN Jets

The Case for Kilometer-Scale Neutrino Observatories• At km3 ~100 TeV Atmospheric Neutrinos Don’t Limit Detection• Threshold For Detecting Neutrino Sources with Luminosities ~ Largest in

Universe (AGN / GRBs)• Detectable Fluences Match High Energy Gamma-Ray ~10-100 Point Sources• Sensitive to Waxman-Bahcall “Diffuse” Limit in ~1 Year

IceCube

• AMANDA’s BIG BROTHER: 1 km3 of Ice • 4800 PMTs on 80 Strings• ~10 Angular Resolution to Muon Neutrinos • IceTop Air Shower Array to

Veto Downgoing Muons• Digitized/Time-Stamped at

Each PMT • Easily Reach Waxman/Bahcall

Diffuse Bounds & Begin to

Probe Point Sources• ~10 GRB Neutrinos Predicted

(Borderline!)

• Started Deploying 2005;• Construction Finished ~2011

L. Kopke

TeV-PeV Neutrinos from Giant Magnetar Flares?

-Ray Energetic Burst (~1044-1047 ergs)

• Durations: ~0.1-1 s (Longer Soft Tail)

• Rate: ~1/Decade • A Young Galactic

Magnetar’s Crustal Failure?

• “mini-GRB”

Courtesy K. Hurley/ S. Boggs (RHESSI)

SGR 1806-20 December 27,2004 Flare: “Brightest Cosmic Transient Ever”

(Ioka et al. 2005)

But how much like a GRB? - Bulk Acceleration and Shocks???

SGR Giant Flares

TeV-PeV Neutrinos from Giant Magnetar Flares? Critical Question: Baryon-Loaded or Not?

• Adiabatic Expansion, Acceleration, Non-Thermal Shocks

• Radio Emission Calorimetry ==> Baryons in Outflow

• Some Previous Flares May Be Nonthermal

• Short GRBs are Non-Thermal - Some may be SGRs

• MAYBE DETECTABLE

• Prompt Emission Just a Thermal Photospheric Breakout

• Also Consistent with Radio Calorimetry?

• Hurley et al. Claim Thermal Emission

• NOT DETECTABLE

If < 30, AMANDA saw 1 neutrino; IceCube should see 1 from even weak SGR Giant Flare => Test Baryon-Loaded Hypothesis!

Baryon Rich Baryon Poor

Optical Follow-Up of Neutrino Transients• Some Astrophysical Neutrino Sources May Be Burst-Like

– Long-Duration GRBs and “Failed GRB” SNe (dt ~ 1-100 s)– Probable Electromagnetic Counterparts

• IceCube & other km3 arrays => Marginal Detections Expected– Need to Extract Signal from Atmospheric Neutrino Background

(~100 day-1 total, but only 1000(10) year-1 above 10(100) TeV)

Kowalski & Mohr (2007)

Optical Follow-Up of Neutrino Transients• Some Astrophysical Neutrino Sources May Be Burst-Like

– Long-Duration GRBs and “Failed GRB” SNe (dt ~ 1-100 s)– Probable Electromagnetic Counterparts

• IceCube & other km3 arrays => Marginal Detections Expected– Need to Extract Signal from Atmospheric Neutrino Background

(~100 day-1 total, but only 1000(10) year-1 above 10(100) TeV)

• Look for Temporal (~100s), Angular Coincidences (~20)– 3 Neutrino Coincidence Rate: ~10-4 year-1(Own-Merit Detection- Identify Source)– 2 Neutrino Coincidence Rate: ~2 year-1 (Many False Positives)$$$

– 1 Neutrino: Only Meaningful If Identified with SNe < 20 Mpc

• Single High Energy GRB Neutrinos Rare***

Kowalski & Mohr (2007)

Optical Follow-Up of Neutrino Transients• Some Astrophysical Neutrino Sources May Be Burst-Like

– Long-Duration GRBs and “Failed GRB” SNe (dt ~ 1-100 s)– Probable Electromagnetic Counterparts

• IceCube & other km3 arrays => Marginal Detections Expected– Need to Extract Signal from Atmospheric Neutrino Background

(~100 day-1 total, but only 1000(10) year-1 above 10(100) TeV)

• Look for Temporal (~100s), Angular Coincidences (~20)– 3 Neutrino Coincidence Rate: ~10-4 year-1(Own-Merit Detection- Identify Source)– 2 Neutrino Coincidence Rate: ~2 year-1 (Many False Positives)$$$

– 1 Neutrino: Only Meaningful If Identified with SNe < 20 Mpc

• Single High Energy GRB Neutrinos Rare***• PROBLEM: Neutrino Detector Monitors ~ Full Hemisphere ---

Electromagnetic Telescopes Have Limited FOV– Few Expected Detectable Sources - Can’t be Picky!

Kowalski & Mohr (2007)

Optical Follow-Up of Neutrino Transients• Some Astrophysical Neutrino Sources May Be Burst-Like

– Long-Duration GRBs and “Failed GRB” SNe (dt ~ 1-100 s)– Probable Electromagnetic Counterparts

• IceCube & other km3 arrays => Marginal Detections Expected– Need to Extract Signal from Atmospheric Neutrino Background

(~100 day-1 total, but only 1000(10) year-1 above 10(100) TeV)

• Look for Temporal (~100s), Angular Coincidences (~20)– 3 Neutrino Coincidence Rate: ~10-4 year-1(Own-Merit Detection- Identify Source)– 2 Neutrino Coincidence Rate: ~2 year-1 (Many False Positives)$$$

– 1 Neutrino: Only Meaningful If Identified with SNe < 20 Mpc

• Single High Energy GRB Neutrinos Rare***• PROBLEM: Neutrino Detector Monitors ~ Full Hemisphere ---

Electromagnetic Telescopes Have Limited FOV– Few Expected Detectable Sources - Can’t be Picky!

• SOLUTION: ToO Optical Follow-Up to Neutrino Trigger– 2 m Class Telescope, 10 FOV, – SNe$$$ (~2-3 Times Sensitivity - Might Make a Big Difference)– GRBs*** (Even Bigger Payoff, Meaningful Provided You Look >100 TeV)

Kowalski & Mohr (2007)

Neutrinos, they are very small.

They have no charge and have no (sic) mass

And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,

Like dustmaids down a drafty hall

Or photons through a sheet of glass.

They snub the most exquisite gas,

Ignore the most substantial wall, . . .

—From John Updike’s “Cosmic Gall”