Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1...

Preview:

Citation preview

Arithmetic of k-regular partition

functions

David Penniston, UW Oshkosh

Arithmetic of k-regular partition functions – p. 1

A partition of n is a way of writing n as a sum ofpositive integers, where the ordering of the integers isirrelevant

Arithmetic of k-regular partition functions – p. 2

Partitions of 4

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 3

Partition function

p(n) := number of partitions of n

Arithmetic of k-regular partition functions – p. 4

Partition function

p(n) := number of partitions of n

p(4) = 5

Arithmetic of k-regular partition functions – p. 4

n p(n)

10 42

20 627

30 5604

40 37338

50 204226

Arithmetic of k-regular partition functions – p. 5

The arithmetic of p(n)

Arithmetic of k-regular partition functions – p. 6

The arithmetic of p(n)

p(0) p(1) p(2) p(3) p(4)

p(5) p(6) p(7) p(8) p(9)

p(10) p(11) p(12) p(13) p(14)

p(15) p(16) p(17) p(18) p(19)

p(20) p(21) p(22) p(23) p(24)

p(25) p(26) p(27) p(28) p(29)

p(30) p(31) p(32) p(33) p(34)

p(35) p(36) p(37) p(38) p(39)

p(40) p(41) p(42) p(43) p(44)

p(45) p(46) p(47) p(48) p(49)

Arithmetic of k-regular partition functions – p. 6

The arithmetic of p(n)

1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575

1958 2436 3010 3718 4565

5604 6842 8349 10143 12310

14883 17977 21637 26015 31185

37338 44583 53174 63261 75175

89134 105558 124754 147273 173525

Arithmetic of k-regular partition functions – p. 7

1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575

1958 2436 3010 3718 4565

5604 6842 8349 10143 12310

14883 17977 21637 26015 31185

37338 44583 53174 63261 75175

89134 105558 124754 147273 173525

Arithmetic of k-regular partition functions – p. 8

p(0) p(1) p(2) p(3) p(4)

p(5) p(6) p(7) p(8) p(9)

p(10) p(11) p(12) p(13) p(14)

p(15) p(16) p(17) p(18) p(19)

p(20) p(21) p(22) p(23) p(24)

p(25) p(26) p(27) p(28) p(29)

p(30) p(31) p(32) p(33) p(34)

p(35) p(36) p(37) p(38) p(39)

p(40) p(41) p(42) p(43) p(44)

p(45) p(46) p(47) p(48) p(49)

Arithmetic of k-regular partition functions – p. 9

1st Ramanujan congruence

For every n ≥ 0,

p(5n+ 4) is divisible by 5

Arithmetic of k-regular partition functions – p. 10

Ramanujan congruences

p(5n+ 4) is divisible by 5

p(7n+ 5) is divisible by 7

p(11n+ 6) is divisible by 11

Arithmetic of k-regular partition functions – p. 11

Other congruences?

Arithmetic of k-regular partition functions – p. 12

Other congruences?

(Atkin-O’Brien)

p(157525693n + 111247) is divisible by 13

Arithmetic of k-regular partition functions – p. 12

Other congruences?

(Atkin-O’Brien)

p(157525693n + 111247) is divisible by 13

(p(111247) is a number with well over 300 digits)

Arithmetic of k-regular partition functions – p. 12

(K. Ono)

For every prime m ≥ 5, there exist positive integers Aand B such that

p(An+ B) is divisible by m

Arithmetic of k-regular partition functions – p. 13

What about 2 and 3?

Arithmetic of k-regular partition functions – p. 14

Of the first 106 values of p(n),

Arithmetic of k-regular partition functions – p. 15

Of the first 106 values of p(n),

50.0446% are divisible by 2

Arithmetic of k-regular partition functions – p. 15

Of the first 106 values of p(n),

50.0446% are divisible by 2

33.3012% are divisible by 3

Arithmetic of k-regular partition functions – p. 15

A partition is called k-regular if none of its parts isdivisible by k

Arithmetic of k-regular partition functions – p. 16

A partition is called k-regular if none of its parts isdivisible by k

bk(n) := number of k-regular partitions of n

Arithmetic of k-regular partition functions – p. 16

p(4) = 5

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 17

b2(4) = 2

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 18

b3(4) = 4

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 19

b2(n)

1 1 1 2 2

3 4 5 6 8

10 12 15 18 22

27 32 38 46 54

64 76 89 104 122

142 165 192 222 256

296 340 390 448 512

585 668 760 864 982

1113 1260 1426 1610 1816

2048 2304 2590 2910 3264

Arithmetic of k-regular partition functions – p. 20

b2(n)

1 1 1 2 2

3 4 5 6 8

10 12 15 18 22

27 32 38 46 54

64 76 89 104 122

142 165 192 222 256

296 340 390 448 512

585 668 760 864 982

1113 1260 1426 1610 1816

2048 2304 2590 2910 3264

Arithmetic of k-regular partition functions – p. 21

n

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

35 36 37 38 39

40 41 42 43 44

45 46 47 48 49

Arithmetic of k-regular partition functions – p. 22

b2(n) is odd

⇐⇒

n ∈ {0, 1, 2, 5, 7, 12, 15, 22, 26, . . .}

Arithmetic of k-regular partition functions – p. 23

b2(n) is odd

⇐⇒

n ∈ {0} ∪ {1, 2} ∪ {5, 7} ∪ {12, 15} ∪ · · ·

Arithmetic of k-regular partition functions – p. 24

b2(n) is odd

⇐⇒

n ∈ {0} ∪ {1, 2} ∪ {5, 7} ∪ {12, 15} ∪ · · ·

⇐⇒

n =ℓ(3ℓ+ 1)

2(ℓ ∈ Z)

Arithmetic of k-regular partition functions – p. 24

b13(n)

1 1 2 3 5 7

11 15 22 30 42 56

77 100 134 174 228 292

378 479 612 770 972 1213

1519 1881 2334 2874 3540 4331

5302 6450 7848 9501 11496 13851

16680 20006 23980 28648 34193 40689

48378 57360 67948 80295 94788 111652

Arithmetic of k-regular partition functions – p. 25

b13(n) is odd

⇐⇒

n ∈ {0, 1, 3, 4, 5, 6, 7, 12, 19, 23, 24, 25, 29, . . .}

Arithmetic of k-regular partition functions – p. 26

b13(2n) is odd

⇐⇒

2n ∈ {0, 4, 6, 12, 24, 40, 60, 84, 112, . . .}

Arithmetic of k-regular partition functions – p. 27

b13(2n) is odd

⇐⇒

2n ∈ {0, 4, 12, 24, 40, 60, 84, 112, . . .}

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 28

b13(2n) is odd

⇐⇒

n/2 ∈ {0, 1, 3, 6, 10, 15, 21, 28, . . .}

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 29

b13(2n) is odd

⇐⇒

n/2 =ℓ(ℓ+ 1)

2(ℓ ∈ N)

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 30

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 31

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n− 6 ∈ {0, 52, 156, 312, 520, 780, . . .}

Arithmetic of k-regular partition functions – p. 32

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n−652 ∈ {0, 1, 3, 6, 10, 15, . . .}

Arithmetic of k-regular partition functions – p. 33

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n−652 = ℓ(ℓ+1)

2

Arithmetic of k-regular partition functions – p. 34

(Calkin, Drake, James, Law, Lee, P., Radder)

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or n = 13ℓ(ℓ+ 1) + 3 (ℓ ∈ N)

Arithmetic of k-regular partition functions – p. 35

b13(n)

1 1 2 3 5 7

11 15 22 30 42 56

77 100 134 174 228 292

378 479 612 770 972 1213

1519 1881 2334 2874 3540 4331

5302 6450 7848 9501 11496 13851

16680 20006 23980 28648 34193 40689

48378 57360 67948 80295 94788 111652

Arithmetic of k-regular partition functions – p. 36

b13(n) mod 3

1 1 2 0 2 1

2 0 1 0 0 2

2 1 2 0 0 1

0 2 0 2 0 1

1 0 0 0 0 2

1 0 0 0 0 0

0 2 1 1 2 0

0 0 1 0 0 1

Arithmetic of k-regular partition functions – p. 37

b13(n) mod 3

1 1 2 0 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 38

b13(3n + 1) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 39

b13(3n+ 1) (mod 3)

1, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, . . .

Arithmetic of k-regular partition functions – p. 40

b13(3n + 1) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 41

b13(9n + 4) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 42

b13(3n+ 1) (mod 3)

1, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, . . .

b13(9n+ 4) (mod 3)

2, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, . . .

Arithmetic of k-regular partition functions – p. 43

b13(9n+ 4) + b13(3n+ 1) ≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 44

b13(3n + 1) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 45

b13(9n + 7) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 46

b13(9n+ 4) + b13(3n+ 1) ≡ 0 (mod 3)

b13(9ℓ+ 7) ≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 47

(Calkin, Drake, James, Law, Lee, P., Radder)

For every 2 ≤ s ≤ 6,

b13

(

3sn+

(

5 · 3s−1 − 1

2

))

≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 48

(Webb)

For every s ≥ 2,

b13

(

3sn+

(

5 · 3s−1 − 1

2

))

≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 49

(Andrews, Hirschhorn, Sellers)

For every s ≥ 1,

b4

(

32sn+

(

19 · 32s−1 − 1

8

))

≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 50

(Furcy, P.)

For each k ∈ {7, 19, 25, 34, 37, 43, 49}, there exists an

analogous family of congruences for bk(n) modulo 3.

Arithmetic of k-regular partition functions – p. 51

(Furcy, P.)

For each k ∈ {7, 19, 25, 34, 37, 43, 49}, there exists an

analogous family of congruences for bk(n) modulo 3.

For example,

b25(32s+1n+ (2 · 32s − 1)) ≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 51

Recommended