60
Arithmetic of k -regular partition functions David Penniston, UW Oshkosh Arithmetic of k-regular partition functions – p. 1

Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Arithmetic of k-regular partition

functions

David Penniston, UW Oshkosh

Arithmetic of k-regular partition functions – p. 1

Page 2: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

A partition of n is a way of writing n as a sum ofpositive integers, where the ordering of the integers isirrelevant

Arithmetic of k-regular partition functions – p. 2

Page 3: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Partitions of 4

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 3

Page 4: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Partition function

p(n) := number of partitions of n

Arithmetic of k-regular partition functions – p. 4

Page 5: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Partition function

p(n) := number of partitions of n

p(4) = 5

Arithmetic of k-regular partition functions – p. 4

Page 6: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

n p(n)

10 42

20 627

30 5604

40 37338

50 204226

Arithmetic of k-regular partition functions – p. 5

Page 7: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

The arithmetic of p(n)

Arithmetic of k-regular partition functions – p. 6

Page 8: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

The arithmetic of p(n)

p(0) p(1) p(2) p(3) p(4)

p(5) p(6) p(7) p(8) p(9)

p(10) p(11) p(12) p(13) p(14)

p(15) p(16) p(17) p(18) p(19)

p(20) p(21) p(22) p(23) p(24)

p(25) p(26) p(27) p(28) p(29)

p(30) p(31) p(32) p(33) p(34)

p(35) p(36) p(37) p(38) p(39)

p(40) p(41) p(42) p(43) p(44)

p(45) p(46) p(47) p(48) p(49)

Arithmetic of k-regular partition functions – p. 6

Page 9: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

The arithmetic of p(n)

1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575

1958 2436 3010 3718 4565

5604 6842 8349 10143 12310

14883 17977 21637 26015 31185

37338 44583 53174 63261 75175

89134 105558 124754 147273 173525

Arithmetic of k-regular partition functions – p. 7

Page 10: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575

1958 2436 3010 3718 4565

5604 6842 8349 10143 12310

14883 17977 21637 26015 31185

37338 44583 53174 63261 75175

89134 105558 124754 147273 173525

Arithmetic of k-regular partition functions – p. 8

Page 11: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

p(0) p(1) p(2) p(3) p(4)

p(5) p(6) p(7) p(8) p(9)

p(10) p(11) p(12) p(13) p(14)

p(15) p(16) p(17) p(18) p(19)

p(20) p(21) p(22) p(23) p(24)

p(25) p(26) p(27) p(28) p(29)

p(30) p(31) p(32) p(33) p(34)

p(35) p(36) p(37) p(38) p(39)

p(40) p(41) p(42) p(43) p(44)

p(45) p(46) p(47) p(48) p(49)

Arithmetic of k-regular partition functions – p. 9

Page 12: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

1st Ramanujan congruence

For every n ≥ 0,

p(5n+ 4) is divisible by 5

Arithmetic of k-regular partition functions – p. 10

Page 13: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Ramanujan congruences

p(5n+ 4) is divisible by 5

p(7n+ 5) is divisible by 7

p(11n+ 6) is divisible by 11

Arithmetic of k-regular partition functions – p. 11

Page 14: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Other congruences?

Arithmetic of k-regular partition functions – p. 12

Page 15: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Other congruences?

(Atkin-O’Brien)

p(157525693n + 111247) is divisible by 13

Arithmetic of k-regular partition functions – p. 12

Page 16: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Other congruences?

(Atkin-O’Brien)

p(157525693n + 111247) is divisible by 13

(p(111247) is a number with well over 300 digits)

Arithmetic of k-regular partition functions – p. 12

Page 17: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

(K. Ono)

For every prime m ≥ 5, there exist positive integers Aand B such that

p(An+ B) is divisible by m

Arithmetic of k-regular partition functions – p. 13

Page 18: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

What about 2 and 3?

Arithmetic of k-regular partition functions – p. 14

Page 19: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Of the first 106 values of p(n),

Arithmetic of k-regular partition functions – p. 15

Page 20: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Of the first 106 values of p(n),

50.0446% are divisible by 2

Arithmetic of k-regular partition functions – p. 15

Page 21: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

Of the first 106 values of p(n),

50.0446% are divisible by 2

33.3012% are divisible by 3

Arithmetic of k-regular partition functions – p. 15

Page 22: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

A partition is called k-regular if none of its parts isdivisible by k

Arithmetic of k-regular partition functions – p. 16

Page 23: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

A partition is called k-regular if none of its parts isdivisible by k

bk(n) := number of k-regular partitions of n

Arithmetic of k-regular partition functions – p. 16

Page 24: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

p(4) = 5

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 17

Page 25: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b2(4) = 2

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 18

Page 26: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b3(4) = 4

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1

Arithmetic of k-regular partition functions – p. 19

Page 27: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b2(n)

1 1 1 2 2

3 4 5 6 8

10 12 15 18 22

27 32 38 46 54

64 76 89 104 122

142 165 192 222 256

296 340 390 448 512

585 668 760 864 982

1113 1260 1426 1610 1816

2048 2304 2590 2910 3264

Arithmetic of k-regular partition functions – p. 20

Page 28: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b2(n)

1 1 1 2 2

3 4 5 6 8

10 12 15 18 22

27 32 38 46 54

64 76 89 104 122

142 165 192 222 256

296 340 390 448 512

585 668 760 864 982

1113 1260 1426 1610 1816

2048 2304 2590 2910 3264

Arithmetic of k-regular partition functions – p. 21

Page 29: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

n

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

35 36 37 38 39

40 41 42 43 44

45 46 47 48 49

Arithmetic of k-regular partition functions – p. 22

Page 30: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b2(n) is odd

⇐⇒

n ∈ {0, 1, 2, 5, 7, 12, 15, 22, 26, . . .}

Arithmetic of k-regular partition functions – p. 23

Page 31: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b2(n) is odd

⇐⇒

n ∈ {0} ∪ {1, 2} ∪ {5, 7} ∪ {12, 15} ∪ · · ·

Arithmetic of k-regular partition functions – p. 24

Page 32: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b2(n) is odd

⇐⇒

n ∈ {0} ∪ {1, 2} ∪ {5, 7} ∪ {12, 15} ∪ · · ·

⇐⇒

n =ℓ(3ℓ+ 1)

2(ℓ ∈ Z)

Arithmetic of k-regular partition functions – p. 24

Page 33: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(n)

1 1 2 3 5 7

11 15 22 30 42 56

77 100 134 174 228 292

378 479 612 770 972 1213

1519 1881 2334 2874 3540 4331

5302 6450 7848 9501 11496 13851

16680 20006 23980 28648 34193 40689

48378 57360 67948 80295 94788 111652

Arithmetic of k-regular partition functions – p. 25

Page 34: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(n) is odd

⇐⇒

n ∈ {0, 1, 3, 4, 5, 6, 7, 12, 19, 23, 24, 25, 29, . . .}

Arithmetic of k-regular partition functions – p. 26

Page 35: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

2n ∈ {0, 4, 6, 12, 24, 40, 60, 84, 112, . . .}

Arithmetic of k-regular partition functions – p. 27

Page 36: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

2n ∈ {0, 4, 12, 24, 40, 60, 84, 112, . . .}

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 28

Page 37: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

n/2 ∈ {0, 1, 3, 6, 10, 15, 21, 28, . . .}

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 29

Page 38: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

n/2 =ℓ(ℓ+ 1)

2(ℓ ∈ N)

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 30

Page 39: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n ∈ {6, 58, 162, 318, 526, 786, . . .}

Arithmetic of k-regular partition functions – p. 31

Page 40: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n− 6 ∈ {0, 52, 156, 312, 520, 780, . . .}

Arithmetic of k-regular partition functions – p. 32

Page 41: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n−652 ∈ {0, 1, 3, 6, 10, 15, . . .}

Arithmetic of k-regular partition functions – p. 33

Page 42: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or 2n−652 = ℓ(ℓ+1)

2

Arithmetic of k-regular partition functions – p. 34

Page 43: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

(Calkin, Drake, James, Law, Lee, P., Radder)

b13(2n) is odd

⇐⇒

n = ℓ(ℓ+ 1) (ℓ ∈ N)

or n = 13ℓ(ℓ+ 1) + 3 (ℓ ∈ N)

Arithmetic of k-regular partition functions – p. 35

Page 44: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(n)

1 1 2 3 5 7

11 15 22 30 42 56

77 100 134 174 228 292

378 479 612 770 972 1213

1519 1881 2334 2874 3540 4331

5302 6450 7848 9501 11496 13851

16680 20006 23980 28648 34193 40689

48378 57360 67948 80295 94788 111652

Arithmetic of k-regular partition functions – p. 36

Page 45: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(n) mod 3

1 1 2 0 2 1

2 0 1 0 0 2

2 1 2 0 0 1

0 2 0 2 0 1

1 0 0 0 0 2

1 0 0 0 0 0

0 2 1 1 2 0

0 0 1 0 0 1

Arithmetic of k-regular partition functions – p. 37

Page 46: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(n) mod 3

1 1 2 0 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 38

Page 47: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(3n + 1) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 39

Page 48: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(3n+ 1) (mod 3)

1, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, . . .

Arithmetic of k-regular partition functions – p. 40

Page 49: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(3n + 1) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 41

Page 50: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(9n + 4) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 42

Page 51: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(3n+ 1) (mod 3)

1, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, . . .

b13(9n+ 4) (mod 3)

2, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, . . .

Arithmetic of k-regular partition functions – p. 43

Page 52: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(9n+ 4) + b13(3n+ 1) ≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 44

Page 53: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(3n + 1) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 45

Page 54: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(9n + 7) mod 3

1 1 2 3 2 1 2 0 1

0 0 2 2 1 2 0 0 1

0 2 0 2 0 1 1 0 0

0 0 2 1 0 0 0 0 0

0 2 1 1 2 0 0 0 1

0 0 1 0 0 0 2 0 2

0 0 2 0 1 1 2 0 1

1 2 0 0 0 0 2 0 2

0 1 2 0 0 2 2 0 2

0 0 0 1 0 1 0 0 2

2 1 0 0 0 0 0 0 1

Arithmetic of k-regular partition functions – p. 46

Page 55: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

b13(9n+ 4) + b13(3n+ 1) ≡ 0 (mod 3)

b13(9ℓ+ 7) ≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 47

Page 56: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

(Calkin, Drake, James, Law, Lee, P., Radder)

For every 2 ≤ s ≤ 6,

b13

(

3sn+

(

5 · 3s−1 − 1

2

))

≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 48

Page 57: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

(Webb)

For every s ≥ 2,

b13

(

3sn+

(

5 · 3s−1 − 1

2

))

≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 49

Page 58: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

(Andrews, Hirschhorn, Sellers)

For every s ≥ 1,

b4

(

32sn+

(

19 · 32s−1 − 1

8

))

≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 50

Page 59: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

(Furcy, P.)

For each k ∈ {7, 19, 25, 34, 37, 43, 49}, there exists an

analogous family of congruences for bk(n) modulo 3.

Arithmetic of k-regular partition functions – p. 51

Page 60: Arithmetic of k-regular partition functionsArithmetic of k-regular partition functions – p. 7 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575

(Furcy, P.)

For each k ∈ {7, 19, 25, 34, 37, 43, 49}, there exists an

analogous family of congruences for bk(n) modulo 3.

For example,

b25(32s+1n+ (2 · 32s − 1)) ≡ 0 (mod 3)

Arithmetic of k-regular partition functions – p. 51