Algebra Math Notes Abstract Algebra

Preview:

Citation preview

Algebra Math Notes โ€ข Study Guide

Abstract Algebra

Table of Contents Rings ................................................................................................................................................... 3

Rings ............................................................................................................................................... 3

Subrings and Ideals ......................................................................................................................... 4

Homomorphisms .............................................................................................................................. 4

Fraction Fields ................................................................................................................................. 5

Integers ............................................................................................................................................ 5

Factoring ............................................................................................................................................. 7

Factoring .......................................................................................................................................... 7

UFDs, PIDs, and Euclidean Domains .............................................................................................. 7

Algebraic Integers ............................................................................................................................ 8

Quadratic Rings ............................................................................................................................... 8

Gaussian Integers ............................................................................................................................ 9

Factoring Ideals ............................................................................................................................... 9

Ideal Classes ................................................................................................................................. 10

Real Quadratic Rings ..................................................................................................................... 11

Polynomials ....................................................................................................................................... 12

Polynomials ................................................................................................................................... 12

โ„ž[๐‘‹] ............................................................................................................................................... 12

Irreducible Polynomials .................................................................................................................. 13

Cyclotomic Polynomials ................................................................................................................. 14

Varieties ......................................................................................................................................... 14

Nullstellensatz ................................................................................................................................ 15

Fields................................................................................................................................................. 17

Fundamental Theorem of Algebra .................................................................................................. 17

Algebraic Elements ........................................................................................................................ 17

Degree of a Field Extension ........................................................................................................... 17

Finite Fields ................................................................................................................................... 19

Modules ............................................................................................................................................. 21

Modules ......................................................................................................................................... 21

Structure Theorem ......................................................................................................................... 22

Noetherian and Artinian Rings ....................................................................................................... 23

Application 1: Abelian Groups ........................................................................................................ 23

Application 2: Linear Operators ...................................................................................................... 24

Polynomial Rings in Several Variables ........................................................................................... 25

Tensor Products ............................................................................................................................ 25

Galois Theory .................................................................................................................................... 27

Symmetric Polynomials .................................................................................................................. 27

Discriminant ................................................................................................................................... 27

Galois Group .................................................................................................................................. 27

Fixed Fields ................................................................................................................................... 28

Galois Extensions and Splitting Fields ........................................................................................... 28

Fundamental Theorem ................................................................................................................... 29

Roots of Unity ................................................................................................................................ 29

Cubic Equations ............................................................................................................................. 30

Quartic Equations .......................................................................................................................... 30

Quintic Equations and the Impossibility Theorem ........................................................................... 31

Transcendence Theory .................................................................................................................. 32

Algebras ............................................................................................................................................ 33

Division Algebras ........................................................................................................................... 33

References ........................................................................................................................................ 34

1 Rings 1-1 Rings

A ring ๐‘… is a set with the operations of addition (+) and multiplication (ร—) satisfying:

1. R is an abelian group ๐‘…+ under addition. 2. Multiplication is associative. In a commutative ring, multiplication is commutative. A

ring with identity has a multiplicative identity 1. 3. Distributive law:

๐‘Ž ๐‘ + ๐‘ = ๐‘Ž๐‘ + ๐‘Ž๐‘, ๐‘Ž + ๐‘ ๐‘ = ๐‘Ž๐‘ + ๐‘๐‘ A left/ right zero divisor is an element ๐‘Ž โˆˆ ๐‘… so that there exists ๐‘ โ‰  0 with ๐‘Ž๐‘ = 0, ๐‘๐‘Ž = 0, respectively. A commutative ring without zero divisors is an integral domain. A ring is a

division ring if ๐‘… โˆ’ {0} is a multiplicative group under multiplication (inverses exist). A division ring is a field if the multiplicative group is abelian.

Ex. of Rings: โ„ž, ๐‘…[๐‘ฅ] (the ring of polynomials in x, where R is a ring), ๐‘…[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ]

Note: A field is a UFD, though not a very interesting one. Basic properties:

1. ๐‘Ž0 = 0๐‘Ž = 0 2. ๐‘Ž โˆ’๐‘ = โˆ’๐‘Ž ๐‘ = โˆ’(๐‘Ž๐‘) 3. The multiplicative identity 1 is unique (if it exists). 4. A multiplicative inverse is unique if it exists.

5. If R is not the zero ring {0}, then 1 โ‰  0.

Group G

Abelian group

Ring R

Commutative ring

Ring with identity

Integral domain Division ring

Field F

Principal ideal domain (PID)

Euclidean domain

Unique factorization domain (UFD)

6. If R is an integral domain, the cancellation law holds. Conversely, if the left (right) cancellation law holds, then R has no left (right) zero divisors.

7. A field is a division ring, and any finite integral domain is a field. From here on rings are assumed to be commutative with identity unless otherwise specified. A unit is an element with a multiplicative inverse.

The characteristic of a ring is the smallest ๐‘› > 0 so that 1 + โ‹ฏ + 1 ๐‘›

= 0. If this is never true,

the characteristic is 0.

1-2 Subrings and Ideals A subring is a subset of a ring that is closed under addition and multiplication. An ideal I is a subset of a ring satisfying:

1. I is a subgroup of ๐‘…+. 2. If ๐‘  โˆˆ ๐ผ, ๐‘Ÿ โˆˆ ๐‘… then ๐‘Ÿ๐‘  โˆˆ ๐ผ.

Every linear combination of elements ๐‘ ๐‘– โˆˆ ๐ผ with coefficients ๐‘Ÿ๐‘– โˆˆ ๐‘… is in I. The principal ideal ๐‘Ž = ๐‘Ž๐‘… generated by ๐‘Ž is the ideal of multiples of ๐‘Ž.

The smallest ideal generated by ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› is ๐‘Ž1, ๐‘Ž2 , โ€ฆ , ๐‘Ž๐‘› = ๐‘Ÿ1๐‘Ž1 + โ‹ฏ + ๐‘Ÿ๐‘›๐‘Ž๐‘› ๐‘Ÿ๐‘– โˆˆ ๐‘…

Ideals and fields:

1. The only ideals of a field are the zero ideal and the unit ideal. 2. A ring with exactly two ideals is a field. 3. Every homomorphism from a field to a nonzero ring is injective.

A principal ideal domain (PID) is an integral domain where every ideal is principal.

Ex. โ„ž is a PID. If F is a field, ๐น[๐‘ฅ] (polynomials in x with coefficients in F) is a PID: all polynomials in the ideal are a multiple of the unique monic polynomial of lowest degree in the ideal. A maximal ideal of R is an ideal strictly contained in R that is not contained in any other ideal.

1-3 Homomorphisms A ring homomorphism ๐œ‘: ๐‘… โ†’ ๐‘…โ€ฒ is compatible with addition and multiplication:

1. ๐œ‘ ๐‘Ž + ๐‘ = ๐œ‘ ๐‘Ž + ๐œ‘(๐‘) 2. ๐œ‘ ๐‘Ž๐‘ = ๐œ‘ ๐‘Ž ๐œ‘(๐‘)

3. ๐œ‘ 1 = 1 An isomorphism is a bijective homomorphism and an automorphism is an isomorphism

from R to itself. The kernel is {๐‘  โˆˆ ๐‘…|๐œ‘ ๐‘  = 0}, and it is an ideal.

1-4 Quotient and Product Rings (11.4,6) If I is an ideal ๐‘…/๐ผ is the quotient ring. The canonical map ๐œ‹: ๐‘… โ†’ ๐‘…/๐ผ sending ๐‘Ž โ†’ ๐‘Ž + ๐ผ is

a ring homomorphism that sends each element to its residue. If ๐ผ = (๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› ), the quotient

ring is obtained by โ€œkillingโ€ the ๐‘Ž๐‘– , i.e. imposing the relations ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› = 0.

Mapping Property: Let ๐‘“: ๐‘… โ†’ ๐‘…โ€ฒ be a ring homomorphism with kernel K and let ๐ผ โŠ† ๐พ be an

ideal. Let ๐œ‹: ๐‘… โ†’ ๐‘…/๐ผ = ๐‘… be the canonical map. There is a unique homomorphism ๐‘“ : ๐‘… โ†’ ๐‘…โ€ฒ so that ๐‘“ ๐œ‹ = ๐‘“.

First Isomorphism Theorem: If f is surjective and ๐ผ = ๐พ then ๐‘“ is an automorphism. Correspondence Theorem: If f is surjective with kernel K,

There is a bijective correspondence between ideals of ๐‘… and ideals of ๐‘…โ€ฒ that contain

๐พ. A subgroup of G containing K is associated with its image.

If ๐ผ corresponds to ๐ผโ€ฒ, ๐‘…/๐ผ โ‰… ๐‘…โ€ฒ/๐ผโ€ฒ. Corollary: Introducing relations one at a time (killing ๐‘Ž, then ๐‘ ) or together (killing ๐‘Ž, ๐‘)

gives the same ring. Useful in polynomial rings.

The product ring ๐‘… ร— ๐‘…โ€ฒ is the product set with componentwise addition and multiplication. 1. The additive identity is (0,0) and the multiplicative identity is (1,1).

2. The projections ๐œ‹ ๐‘ฅ, ๐‘ฅโ€ฒ = ๐‘ฅ, ๐œ‹ โ€ฒ ๐‘ฅ, ๐‘ฅโ€ฒ = ๐‘ฅโ€ฒ are ring homomorphisms to ๐‘…, ๐‘…โ€ฒ. 3. 1,0 , (0,1) are idempotent elements- elements such that ๐‘’2 = 1.

Let e be an idempotent element of a ring S.

1. ๐‘’โ€ฒ = 1 โˆ’ ๐‘’ is idempotent, and ๐‘’๐‘’โ€ฒ = 0. 2. ๐‘’๐‘† is a ring (but not a subring of S unless e=1) with identity e, and multiplication by e

is a ring homomorphism ๐‘† โ†’ ๐‘’๐‘†. 3. ๐‘† โ‰… ๐‘’๐‘† ร— ๐‘’โ€ฒ๐‘†.

1-5 Fraction Fields Every integral domain can be embedded as a subring of its fraction field F. Its elements

are ๐‘Ž

๐‘ ๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘ โ‰  0 , where

๐‘Ž1

๐‘1=

๐‘Ž2

๐‘2โ‡” ๐‘Ž1๐‘2 = ๐‘Ž2๐‘1. Addition and multiplication are defined

as in arithmetic: ๐‘Ž

๐‘+

๐‘

๐‘‘=

๐‘Ž๐‘‘ +๐‘๐‘

๐‘๐‘‘,๐‘Ž

๐‘

๐‘

๐‘‘=

๐‘Ž๐‘

๐‘๐‘‘, and

๐‘Ž

1= ๐‘Ž. The field of fractions of the polynomial

ring ๐พ[๐‘ฅ], K a field, is the field of rational functions ๐พ(๐‘ฅ). Mapping Property:

Let R be an integral domain with field of fractions F, and let ๐œ‘: ๐‘… โ†’ ๐นโ€ฒ be an injective homomorphism from ๐‘… to a field ๐นโ€™. ๐œ‘ can be extended uniquely to an injective

homomorphism ฮฆ: ๐น โ†’ ๐นโ€ฒ by letting ฮฆ ๐‘Ž

๐‘ = ๐œ‘ ๐‘Ž ๐œ‘ ๐‘ โˆ’1.

1-6 Integers

Peanoโ€™s Axioms for โ„•: 1. 1 โˆˆ โ„• 2. Successor function: The map ๐œŽ: โ„• โ†’ โ„• sends an integer to the next integer ๐‘ฅโ€ฒ =

๐œŽ(๐‘ฅ); ๐œŽ 1 = 2, ๐œŽ 2 = 3 โ€ฆ ๐œŽ is injective, and ๐œŽ ๐‘› โ‰  1 for any ๐‘› (i.e. 1 is the first element).

3. Induction axiom: Let S be a subset of โ„• having the following properties: a. 1 โˆˆ ๐‘†

b. If ๐‘› โˆˆ ๐‘† then ๐‘›โ€ฒ โˆˆ ๐‘†. Then ๐‘† = โ„•. (Counting runs through all the natural numbers.)

๐‘… ๐‘…โ€ฒ

๐‘… = ๐‘…/๐ผ

๐‘“

๐œ‹ ๐‘“

Inductive/ Recursive Definition: By induction, if an object ๐ถ1 is defined, and a rule for determining ๐ถ๐‘› โ€ฒ = ๐ถ๐‘›+1 from ๐ถ๐‘› is given, then the sequence ๐ถ๐‘˜ is determined uniquely.

Recursive definition ofโ€ฆ

1. Addition: ๐‘š + 1 = ๐‘šโ€ฒ, ๐‘š + ๐‘›โ€ฒ = (๐‘š + ๐‘›)โ€ฒ (i.e. ๐‘š + ๐‘› + 1 = ๐‘š + ๐‘› + 1)

2. Multiplication: ๐‘š ร— 1 = ๐‘š, ๐‘š ร— ๐‘›โ€ฒ = ๐‘š ร— ๐‘› + ๐‘š (i.e. ๐‘š ร— ๐‘› + 1 = ๐‘š ร— ๐‘› + ๐‘š) From these, the associative, distributive, and distributive laws can be verified. (โ€œPeano

playingโ€) The integers can be developed from โ„• by introducing an additive inverse for every element.

2 Factoring 2-1 Factoring

Vocabulary

u is a unit if ๐‘ข has a multiplicative inverse in R

๐‘ข = (1)

a divides b if ๐‘ = ๐‘Ž๐‘ž for some ๐‘ž โˆˆ ๐‘… ๐‘ โŠ† (๐‘Ž)

a properly divides b if ๐‘ = ๐‘Ž๐‘ž for some ๐‘ž โˆˆ ๐‘… and neither ๐‘Ž nor ๐‘ž are units

๐‘ โŠ‚ ๐‘Ž โŠ‚ 1

a and b are relatively prime

๐‘Ž and ๐‘ have no common divisor except units.

๐‘Ž โˆฉ ๐‘ = 1

a and b are associates if each divides the other, or if

๐‘ = ๐‘ข๐‘Ž, u a unit

๐‘Ž = ๐‘

a is irreducible if a is not a unit and has no proper divisor (its only divisors are units and associates)

๐‘Ž โŠ‚ 1 , and there is no principal ideal (๐‘) such that ๐‘Ž โŠ‚ ๐‘ โŠ‚ (1).

p is a prime element if ๐‘ is not a unit, and whenever ๐‘ divides ๐‘Ž๐‘, ๐‘ divides ๐‘Ž or ๐‘

divides ๐‘.

๐‘Ž๐‘ โˆˆ ๐‘ โ‡’ ๐‘Ž โˆˆ ๐‘ or ๐‘ โˆˆ (๐‘)

Ex. Nonunique factorization: 2 โ‹… 3 = 6 = 1 + โˆ’5 1 โˆ’ โˆ’5 in โ„ž โˆ’5 .

2-2 UFDs, PIDs, and Euclidean Domains A size function is a function ๐œŽ: ๐‘… โ†’ โ„•. An integral domain is an Euclidean domain if there is a norm ๐œŽ such that division with remainder is possible:

For any ๐‘Ž, ๐‘ โˆˆ ๐‘…, ๐‘Ž โ‰  0, there exist ๐‘ž, ๐‘Ÿ โˆˆ ๐‘… so that ๐‘ = ๐‘Ž๐‘ž + ๐‘Ÿ, and ๐‘Ÿ = 0 (in which case ๐‘Ž divides ๐‘) or ๐œŽ ๐‘Ÿ < ๐œŽ(๐‘Ž).

Examples:

1. For โ„ž, ๐œŽ ๐‘Ž = ๐‘Ž . 2. For ๐น[๐‘ฅ], ๐œŽ ๐‘“ = deg ๐‘“.

3. For โ„ž[๐‘–], ๐œŽ ๐‘Ž = ๐‘Ž 2. A characterization of the GCD: Let R be a UFD. A greatest common divisor ๐‘‘ of ๐‘Ž, ๐‘ โˆˆ ๐‘…

is ๐‘‘ such that If ๐‘’|๐‘Ž, ๐‘ then ๐‘’|๐‘‘. If R is a PID, this is equivalent to ๐‘…๐‘‘ = ๐‘…๐‘Ž + ๐‘…๐‘, and there exist ๐‘, ๐‘ž โˆˆ ๐‘… so ๐‘‘ = ๐‘๐‘Ž + ๐‘ž๐‘ (Bezout). ๐‘Ž, ๐‘ are relatively prime iff ๐‘‘ is a unit. An integral domain is a unique factorization domain (UFD) if factoring terminates (stopping when all elements are irreducible), and the factorization is unique up to order and multiplication by units. The following are equivalent:

1. Factoring terminates. 2. R is Noetherian: it does not contain an infinite strictly increasing chain of principal

ideals ๐‘Ž1 โŠ‚ ๐‘Ž2 โŠ‚ โ‹ฏ.

Class (Each includes the next)

Definition Reasons Properties

Ring

Integral domain

Ring with no zero divisors

Prime element irreducible

Unique factorization domain (UFD)

Integral domain where

Factoring terminates

Factorization unique or equivalently, every irreducible element is prime.

For equivalence: If every irreducible element prime, and there are two factorizations, an element on the left divides an element on the right; they are associates and can be canceled.

Irreducible element prime GCD exists (factor and look at common prime divisors)

Principal Ideal Domain (PID)

All ideals generated by one element

A PID is a UFD: 1- Irreducible element prime:

๐‘…๐‘‘ = ๐‘…๐‘Ž + ๐‘…๐‘ โ‡’ Bezoutโ€™s identity. Irreducible element

prime since ๐‘ ๐‘Ž๐‘, ๐‘ โˆค ๐‘Ž โ‡’ 1 =๐‘ ๐‘ + ๐‘ก๐‘Ž โ‡’ ๐‘ ๐‘ = ๐‘ ๐‘๐‘ + ๐‘ก๐‘Ž๐‘ 2- Factoring terminates: If ๐‘Ž1 โŠ† ๐‘Ž2 โŠ† โ‹ฏ then โ‹ƒ ๐‘Ž๐‘– = (๐‘) is a principal

ideal; ๐‘ โˆˆ (๐‘Ž๐‘— ) for some j.

Maximal ideals generated by irreducible elements

Euclidean domain

Integral domain with norm compatible with division with remainder

A Euclidean Domain is a UFD: The element of smallest size in an ideal generates it.

Euclidean algorithm works. (Given a, b,

write ๐‘Ž = ๐‘ž๐‘ + ๐‘Ÿ, replace ๐‘Ž with ๐‘, ๐‘ with ๐‘Ÿ.)

Ex. โ„ž, โ„ž ๐‘– , ๐น[๐‘ฅ] are UFDs.

2-3 Algebraic Integers An algebraic number is the root of an integer polynomial equation. It is an algebraic integer if it is the root of a monic integer polynomial equation. Equivalently, its irreducible

polynomial over โ„ž is monic. A rational number is an algebraic integer iff it is an integer.

2-4 Quadratic Rings

โ„š ๐‘‘ is a quadratic number field when ๐‘‘ โˆˆ โ„ž is not a square.

The algebraic integers in โ„š ๐›ฟ , ๐›ฟ = ๐‘‘, d squarefree, have the form ๐›ผ = ๐‘Ž + ๐‘๐›ฟ, where

If ๐‘‘ โ‰ก 2,3(mod 4) then a and b are integers.

If ๐‘‘ โ‰ก 1(mod 4) then ๐‘Ž and b are both integers or half-integers (๐‘› +1

2). In other words,

they have the form ๐‘Ž + ๐‘๐œ‚, ๐œ‚ =1

2 1 + ๐‘‘ ; ๐‘Ž, ๐‘ โˆˆ โ„ž.

The algebraic integers in โ„š ๐‘‘ form the ring of integers R in the field, โ„ž[๐›ฟ] or โ„ž[๐œ‚]. Complex quadratic rings can be represented by a lattice in the complex plane.

The norm is defined by ๐‘ ๐‘ง = ๐‘ง ๐‘ง.

The norm is a multiplicative function, and ๐‘ ๐‘ง = ๐‘(๐‘ง ).

Hence ๐‘ฅ ๐‘ฆ โ‡’ ๐‘ ๐‘ฅ ๐‘ ๐‘ฆ , ๐‘ฅ|๐‘ฆ โ‡” ๐‘ ๐‘ฅ |๐‘ฆ๐‘ฅ . An element is an unit iff its norm is 1.

If ๐‘‘ = โˆ’3, โˆ’2, โˆ’1,2,3,5 then R is an Euclidean domain, and hence a UFD. The only other values of d where R is a complex UFD are -7, -11, -19, -43, -67, and -163.

d Units Is 2 prime?

-3 ยฑ1, ยฑ

1

2ยฑ

3

2

Yes

-2 1, โˆ’1 No

-1 ยฑ1, ยฑ๐‘– No

2 Infinitely many No

3 Infinitely many No

5 Infinitely many Yes

All primes in R have norm p or ๐‘2. If the integer prime ๐‘ is odd andโ€ฆ

๐‘‘ is a perfect square modulo p, then p is the product of 2 conjugate primes of norm p.

๐‘‘ is not a perfect square modulo p, then p is prime in R. Some Theorems

1. Chinese Remainder: Given pairwise coprime ๐‘๐‘– and any ๐‘Ž๐‘– , there exists a unique number ๐‘ฅ โˆˆ ๐‘… modulo โˆ๐‘๐‘– such that ๐‘ฅ๐‘– โ‰ก ๐‘Ž๐‘–(mod ๐‘๐‘–).

2. ๐‘…/๐œ‹๐‘… has ๐‘(๐œ‹) elements. It is a field iff ฯ€ is prime. (Pf. If N(ฯ€)=p then 1,โ€ฆp are the

distinct residues. If ๐‘(๐œ‹) = ๐‘2 then ๐œ‹ = ๐‘; take ๐‘Ž + ๐‘๐‘–, 1 โ‰ค ๐‘Ž, ๐‘ โ‰ค ๐‘. Use induction on

the number of prime factors of ฯ€.) 3. Fermatโ€™s Little Theorem: ๐‘Ž๐‘ ๐œ‹ โ‰ก ๐‘Ž(mod ๐œ‹).

4. Eulerโ€™s Theorem: ๐‘Ž๐œ‘ ๐œ‹ โ‰ก 1(mod ๐œ‹).

5. Totient: ๐œ‘ โˆ ๐œ‹๐‘–๐‘Ž๐‘– ๐‘š

๐‘–=1 = ๐‘ ๐œ‹ โˆ๐‘ ๐œ‹๐‘– โˆ’1

๐‘ ๐œ‹๐‘– ๐‘š๐‘–=1 .

6. Wilsonโ€™s Theorem: If ฯ€ is prime, the product of all nonzero residues modulo ฯ€ is

congruent to -1 modulo ฯ€. 7. There are finitely many pairwise non-associated numbers with given norm.

2-5 Gaussian Integers โ„ž[๐‘–] is the ring of Gaussian integers.

1. If ๐œ‹ is a Gauss prime, then ๐œ‹๐œ‹ is an integer prime or the square of an integer prime.

2. Each integer prime ๐‘ is a Gauss prime or the product ๐œ‹๐œ‹ where ๐œ‹ is a Gauss prime. 3. Primes congruent to 3 modulo 4 are Gauss primes. (They are not the sum of two

squares.) 4. Primes congruent to 1 modulo 4, and 2, are the product of complex conjugate Gauss

primes. Pf. (3-4)

p is a Gauss prime iff (๐‘) is a maximal ideal in โ„ž[๐‘–], iff ๐‘… = โ„ž ๐‘– (๐‘) = ๐”ฝ๐‘ ๐‘ฅ (๐‘ฅ2 + 1) is a

field, iff ๐‘ฅ2 + 1 is irreducible (doesnโ€™t have a zero) in ๐”ฝ๐‘[๐‘ฅ]. -1 is a square modulo ๐‘ iff ๐‘ = 2

or ๐‘ โ‰ก 1 (mod 4).

2-6 Factoring Ideals

If A and B are ideals, then ๐ด๐ต = ๐‘Ž๐‘–๐‘๐‘–๐‘– ๐‘Ž๐‘– โˆˆ ๐ด, ๐‘๐‘– โˆˆ ๐ต . ๐‘… is the unit ideal since ๐ด๐‘… = ๐ด for any R.

Let R be a complex quadratic ring. Then ๐ด๐ด = ๐‘› = ๐‘›๐‘… for some n; i.e. the product

is a principal ideal. (Pf. Let ๐‘Ž, ๐‘ , (๐‘Ž , ๐‘ ) be lattice bases for A, B. Let

๐‘› = gcd(๐‘Ž ๐‘Ž, ๐‘ ๐‘, ๐‘ ๐‘Ž + ๐‘Ž ๐‘); then (๐‘›) โŠ† ๐ด ๐ด. Show n divides the four generators

๐‘Ž ๐‘Ž, ๐‘ ๐‘, ๐‘ ๐‘Ž, ๐‘Ž ๐‘, by showing ๐‘ ๐‘Ž

๐‘›,๐‘Ž ๐‘

๐‘› are algebraic integers, so ๐ด ๐ด โŠ† ๐‘› .)

Cancellation Law: Let A, B, C be nonzero ideals. ๐ด๐ต = ๐ด๐ถ iff ๐ต = ๐ถ. ๐ด๐ต โŠ‚ ๐ด๐ถ โ‡” ๐ต โŠ‚๐ถ.

๐ด|๐ต โ‡” ๐ด โŠƒ ๐ต. Note that if A divides B, then A is โ€œlargerโ€ than B- it contains more elements; upon multiplication, many of the elements disappear.

A prime ideal P satisfies any of the following equivalent conditions:

1. ๐‘…/๐‘ƒ is an integral domain. 2. ๐‘ƒ โ‰  ๐‘…, and ๐‘Ž๐‘ โˆˆ ๐‘ƒ โ‡’ ๐‘Ž โˆˆ ๐‘ƒ or ๐‘ โˆˆ ๐‘ƒ. 3. ๐‘ƒ โ‰  ๐‘…, and if A, B are ideals of R, ๐ด๐ต โŠ† ๐‘ƒ โ‡’ ๐ด โŠ† ๐‘ƒ or ๐ต โŠ† ๐‘ƒ.

Any maximal ideal is prime. If P is prime and not zero, and ๐‘ƒ|๐ด๐ต, then ๐‘ƒ|๐ด or ๐‘ƒ|๐ต. Letting R be a complex quadratic ring, and B be a nonzero ideal,

1. B has finite index in R. 2. Finitely many ideals in R contain B. (Pf. Look at lattice) 3. B is in a maximal ideal.

4. B is prime iff it is maximal. (Pf. ๐‘…/๐‘ƒ is a field.) Every proper ideal of a complex quadratic ring R factors uniquely into a product of prime ideals (up to ordering).1 (Pf. Use 2 and cancellation law.)

Warning: Most rings do not have unique ideal factorization since ๐‘ƒ โŠ‡ ๐ต โ‡ ๐‘ƒ|๐ต. The complex quadratic ring R is a UFD iff it is a PID. (Pf. If P is prime, P contains a prime divisor ฯ€ of some element in P. Then ๐‘ƒ = (๐œ‹).) Below, P is nonzero and prime, p is an integer prime, and ฯ€ is a Gauss prime.

1. If ๐‘ƒ ๐‘ƒ = (๐‘›) then ๐‘› = ๐‘ or ๐‘2 for some p.

2. (๐‘) is a prime ideal (p โ€œremains primeโ€), or ๐‘ = ๐‘ƒ ๐‘ƒ (p splits; if ๐‘ƒ = ๐‘ƒ then p ramifies).

3. If ๐‘‘ โ‰ก 2,3(mod 4), then p generates a prime ideal iff d is not a square modulo p, iff ๐‘ฅ2 โˆ’ ๐‘‘ is irreducible in ๐”ฝ๐‘[๐‘ฅ]. [Pf. by diagram]

4. If ๐‘‘ โ‰ก 1 mod 4 , then p generates a prime ideal iff ๐‘ฅ2 โˆ’ ๐‘ฅ +1โˆ’๐‘‘

4 is irreducible in ๐”ฝ๐‘[๐‘ฅ].

Random: For nonzero ideals A, B, C, ๐ต โŠƒ ๐ถ โ‡’ ๐ต: ๐ถ = ๐ด๐ต: ๐ด๐ถ . (Show for prime ideal A, split into 2 cases based on (2).)

2-7 Ideal Classes Ideals A and B are similar if ๐ต = ๐œ†๐ด for some ๐œ† โˆˆ โ„‚. (The lattices are similar and oriented the same.) Similarity classes of ideals are ideal classes; the ideal class of A is denoted by

โŒŒ๐ดโŒ. The class of the unit ideal โŒŒ๐‘…โŒ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with โŒŒ๐ดโŒโŒŒ๐ตโŒ = โŒŒ๐ด๐ตโŒ. (Note โŒŒ๐ดโŒโˆ’1 =โŒŒ๐ด โŒ.) The class number |๐ถ| tells how โ€œbadlyโ€ unique factorization of elements fails. Measuring the size of an ideal:

Norm: ๐‘ ๐ด = ๐‘›, where (๐‘›) = ๐ด ๐ด. Multiplicative function.

Index [๐‘…: ๐ด] of A in R.

ฮ”(๐ด), the area of the parallelogram spanned by a lattice basis.

Minimal norm of nonzero elements of A. Relationships:

๐‘ ๐ด = ๐‘…: ๐ด =ฮ” ๐ด

ฮ” ๐‘…

If ๐‘Ž โˆˆ ๐ด has minimal nonzero norm, ๐‘ ๐‘Ž โ‰ค ๐‘ ๐ด ๐œ‡, ๐œ‡ =

2 ๐‘‘

3, if ๐‘‘ โ‰ก 2,3 (mod 4)

๐‘‘

3, if ๐‘‘ โ‰ก 1 (mod 4)

. (Pf.

๐‘ ๐‘Ž โ‰ค2

3ฮ”(๐ด))

1. Every ideal class contains an ideal A with norm ๐‘ ๐ด โ‰ค ๐œ‡. (Pf. Choose nonzero

1 A Dedekind domain is a Noetherian, integrally closed integral domain with every nonzero prime ideal maximal (such as

the complex quadratic rings). โ€œIntegrally closedโ€ means that the ring contains all algebraic integers that are in its ring of fractions. Prime factorization of ideals holds in any Dedekind domain. See Algebraic Number Theory.

element with minimal norm, ๐‘Ž = ๐ด๐ถ for some C, ๐‘ ๐ถ โ‰ค ๐œ‡, โŒŒ๐ถโŒ = โŒŒ๐ด โŒ,โŒŒ๐ดโŒ = โŒŒ๐ถ โŒ.) 2. The class group C is generated by โŒŒ๐‘ƒโŒ, for prime ideals P with prime norm ๐‘ โ‰ค ๐œ‡. (Pf.

Factor. Either ๐‘(๐‘ƒ) = ๐‘ or ๐‘ƒ = (๐‘).) 3. The class group is finite. (Pf. There are at most 2 prime ideals with norms a given

integer since ๐ด๐ด = (๐‘) has unique factorization; use multiplicativity of norm.)

Computing the Class Group of ๐‘… = โ„ž[ ๐‘‘] . 1. List the primes ๐‘ โ‰ค โŒŠ๐œ‡โŒ‹. 2. For each p, determine whether p splits in R by checking whether ๐‘ฅ2 โˆ’ ๐‘‘ ๐‘‘ โ‰ก

2,3mod4, ๐‘ฅ2โˆ’๐‘ฅ+1โˆ’๐‘‘4 ๐‘‘โ‰ก1mod4 are reducible.

3. If ๐‘ = ๐ด ๐ด splits in R, include โŒŒ๐ดโŒ in the list of generators. 4. Compute the norm of some small elements (with prime divisors in the list found

above), like ๐‘˜ + ๐›ฟ. ๐‘˜ โˆˆ โ„ž. Factor ๐‘(๐‘Ž) to factor ๐‘Ž ๐‘Ž = ๐‘ ๐‘Ž ; match factors using

unique factorization. Note โŒŒ ๐‘Ž โŒ = โŒŒ ๐‘Ž โŒ = โŒŒ๐‘…โŒ = 1. As long as ๐‘Ž is not divisible by one of the prime factors of ๐‘(๐‘Ž), this amounts to replacing each prime in the factorization

of ๐‘ ๐‘Ž by one of its corresponding ideals in (3) and setting equal to 1. Repeat until

there are enough relations to determine the group. [This works since if โˆ โŒŒ๐‘ƒ๐‘–โŒ๐‘Ž๐‘–

๐‘– =1, ๐‘ ๐‘ƒ๐‘– = ๐‘๐‘– then there is an element ๐‘Ž, ๐‘ ๐‘Ž = โˆ ๐‘๐‘–

๐‘Ž๐‘–๐‘– .]

5. For the prime 2,

a. If ๐‘‘ โ‰ก 2,3(mod 4), 2 ramifies: 2 = ๐‘ƒ๐‘ƒ . ๐‘ƒ has order 2 for ๐‘‘ โ‰  โˆ’1, โˆ’2.

b. If ๐‘‘ โ‰ก 2(mod 4), ๐‘ƒ = 2, ๐›ฟ . c. If ๐‘‘ โ‰ก 3 mod 4 , ๐‘ƒ = 2,1 + ๐›ฟ .

2-8 Real Quadratic Rings

Represent โ„ž[ ๐‘‘] as a lattice in the plane by associating ๐›ผ = ๐‘Ž + ๐‘ ๐‘‘ with

๐‘ข, ๐‘ฃ = (๐‘Ž + ๐‘ ๐‘‘, ๐‘Ž โˆ’ ๐‘ ๐‘‘). (The coordinates represent the two ways that ๐น[๐›ฟ] can be

embedded in the real numbers, where ฮด is the abstract square root of d: ๐›ฟ2 = ๐‘‘.)

The norm is ๐‘ ๐‘Ž = ๐‘Ž2 โˆ’ ๐‘2๐‘‘ (sometimes the absolute value is used).

The units satisfy ๐‘ ๐‘Ž = 1; they lie on the hyperbola ๐‘ข๐‘ฃ = ยฑ1. The units form an infinite group in R. 2 proofs: 1. The Pellโ€™s equation has infinitely many solutions.

2. Let ฮ” be the determinant for the lattice of โ„ž[ ๐‘‘] and ๐ท๐‘  = {(๐‘ข, ๐‘ฃ)|๐‘ข2

๐‘ 2 + ๐‘ 2๐‘ฃ2 โ‰ค2

3ฮ”}. For

any lattice with determinant ฮ”, ๐ท1 contains a nonzero lattice point (take the point nearest

the origin and use geometry). ๐œ‘ ๐‘ฅ, ๐‘ฆ = (๐‘ ๐‘ฅ,๐‘ฆ

๐‘ ) is an area-preserving map; by applying ๐œ‘

to the lattice, we get that every ๐ท๐‘  has a nonzero lattice point. These points have bounded norm; one norm is hit an infinite number of times. The ratios of these quadratic integers are units.

3 Polynomials 3-1 Polynomials

A polynomial with coefficients in R is a finite combination of nonnegative powers of the variable x. The polynomial ring over R is

๐‘… ๐‘‹ = ๐‘Ž๐‘–๐‘ฅ๐‘›

๐‘›

๐‘–=0

|๐‘Ž๐‘– โˆˆ ๐‘…

with X a formal variable and addition and multiplication defined by: (๐‘“ ๐‘ฅ = ๐‘Ž๐‘–๐‘ฅ๐‘–

๐‘– , ๐‘” ๐‘ฅ = ๐‘๐‘–๐‘ฅ

๐‘–๐‘– )

1. ๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ = ๐‘Ž๐‘– + ๐‘๐‘– ๐‘ฅ๐‘–

๐‘–

2. ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ = ๐‘Ž๐‘–๐‘๐‘— ๐‘ฅ๐‘–+๐‘—

๐‘–

R is a subring of R[X] when identified with the constant polynomials in R. The ring of formal

series ๐‘…[ ๐‘‹ ] is defined similarly but combinations need not be finite. Iterating, the ring of polynomials with variables ๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘› is ๐‘…[๐‘ฅ1, ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘› ]. (Formally, use the substitution

principle below to show we can identify ๐‘… ๐‘ฅ ๐‘ฆ with ๐‘…[๐‘ฅ, ๐‘ฆ].) Basic vocab: monomial, degree, constant, leading coefficient, monic Division with Remainder: Let ๐‘“, ๐‘” โˆˆ ๐‘…[๐‘‹] with the leading coefficient of ๐‘“ a unit. There are unique polynomials ๐‘ž, ๐‘Ÿ โˆˆ ๐‘…[๐‘‹] (the quotient and remainder) so that

๐‘” ๐‘ฅ = ๐‘“ ๐‘ฅ ๐‘ž ๐‘ฅ + ๐‘Ÿ ๐‘ฅ , deg ๐‘Ÿ < deg ๐‘“

Substitution Principle: Let ๐œ‘: ๐‘… โ†’ ๐‘…โ€ฒ be a ring homomorphism. Given ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› โˆˆ ๐‘…โ€ฒ, there is

a unique homomorphism ฮฆ: ๐‘… ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› โ†’ ๐‘…โ€ฒ which agrees with the map ๐œ‘ on constant polynomials, and sends ๐‘ฅ๐‘– โ†’ ๐‘Ž๐‘– . For ๐‘… = ๐‘…โ€ฒ, this map is just substituting ๐‘Ž๐‘– for the variable ๐‘ฅ๐‘– and evaluating the polynomial. A characterization of the GCD: The greatest common divisor ๐‘‘ of ๐‘“, ๐‘” โˆˆ ๐‘… = ๐น[๐‘ฅ] is the monic polynomial defined by any of the following equivalent conditions:

1. ๐‘…๐‘‘ = ๐‘…๐‘“ + ๐‘…๐‘”

2. Of all polynomials dividing f and g, ๐‘‘ has the greatest degree. 3. If ๐‘’|๐‘“, ๐‘” then ๐‘’|๐‘‘.

From (1), there exist ๐‘, ๐‘ž โˆˆ ๐‘… so ๐‘‘ = ๐‘๐‘“ + ๐‘ž๐‘”. Adjoining Elements Suppose ๐›ผ is an element satisfying no relation other than that implied by ๐‘“ ๐›ผ = 0 where ๐‘“ โˆˆ ๐‘…[๐‘ฅ] and has degree n. Then ๐‘… ๐›ผ โ‰… ๐‘… ๐‘ฅ /(๐‘“) is the ring extension. If f is monic, its

distinct elements are the polynomials in ๐›ผ (with coefficients in R) of degree less than n, with (1, ๐›ผ, โ€ฆ , ๐›ผ๐‘›โˆ’1) a basis. A polynomial in ๐›ผ is equivalent to its remainder upon division by f. ๐‘…

can be identified with a subring of ๐‘…[๐›ผ] as long as no constant polynomial is identified with 0.

3-2 โ„ž[๐‘‹] Tools for factoring in โ„ž[๐‘‹]:

1. Inclusion in โ„š[๐‘‹]. 2. Reduction modulo prime p:๐œ“๐‘ : โ„ž ๐‘‹ โ†’ ๐”ฝ๐‘[๐‘‹].

A polynomial in โ„ž[๐‘‹] is primitive if the greatest common divisor of its coefficients is 1, it is not constant, and the leading coefficient is positive. Gaussโ€™s lemma: The product of primitive polynomials is primitive. Pf. Any prime ๐‘ in โ„ž is prime in โ„ž[๐‘ฅ], and a prime divides a polynomial iff it divides every coefficient.

Every nonconstant polynomial ๐‘“ ๐‘ฅ โˆˆ โ„š[๐‘ฅ] can be written uniquely as ๐‘“ ๐‘ฅ = ๐‘๐‘“0 ๐‘ฅ , ๐‘ โˆˆ โ„š and ๐‘“0(๐‘ฅ) primitive.

If ๐‘“0 is primitive and ๐‘“0|๐‘” โˆˆ โ„ž[๐‘ฅ] in โ„š[๐‘ฅ], then ๐‘“0|๐‘” in โ„ž[๐‘ฅ]. If two polynomials have a

common nonconstant factor in โ„š[๐‘ฅ] , they have a common nonconstant factor in โ„ž[๐‘ฅ]. An element of โ„ž[๐‘ฅ] is irreducible iff it is a prime integer or a primitive irreducible

polynomial in โ„š[๐‘ฅ], so every irreducible element of โ„ž[๐‘ฅ] is prime.

Hence โ„ž[๐‘ฅ] is a UFD, and each nonzero polynomial can be written uniquely (up to

ordering) as (๐‘๐‘– primes, ๐‘ž๐‘– primitive irreducible polynomials) ๐‘“ ๐‘ฅ = ยฑ๐‘1 โ‹ฏ ๐‘๐‘š๐‘ž1 ๐‘ฅ โ‹ฏ๐‘ž๐‘›(๐‘ฅ)

This technique can be generalized: replace โ„ž with a UFD R, and โ„š with the field of fractions of R.

By induction, if R is a UFD, then ๐‘…[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ] is a UFD.

Rational Roots Theorem: Let ๐‘“ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž0 , ๐‘Ž๐‘› โ‰  0. โ€“๐‘0

๐‘1 (in reduced form) is a root

iff ๐‘1๐‘ฅ + ๐‘0 divides f; if ๐‘1๐‘ฅ + ๐‘0 divides f then ๐‘1|๐‘Ž๐‘› and ๐‘0|๐‘Ž0.

3-3 Irreducible Polynomials The derivative of a polynomial is formally defined (without calculus) as

๐‘Ž๐‘–๐‘ฅ๐‘–

๐‘›

๐‘–=0

โ€ฒ

= ๐‘–๐‘Ž๐‘–๐‘ฅ๐‘–โˆ’1

๐‘›

๐‘–=1

.

๐›ผ is a multiple root of ๐‘“ ๐‘ฅ โˆˆ ๐น ๐‘ฅ iff ๐›ผ is a root of both ๐‘“(๐‘ฅ) and ๐‘“ โ€ฒ ๐‘ฅ . ๐›ผ appears as

a root exactly ๐‘› times if ๐‘“ ๐‘– ๐›ผ = 0 for 0 โ‰ค ๐‘– < ๐‘› but ๐‘“ ๐‘› ๐›ผ โ‰  0.

๐‘“, ๐‘“โ€ฒ have a common factor other than 1 iff there is a field extension where f has a multiple root.

If f is irreducible, and ๐‘“ โ€ฒ โ‰  0, then f has no multiple root (in any field extension). If F has characteristic 0, then f has no multiple root (in any field extension).

If ๐‘“ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž0 โˆˆ โ„ž[๐‘ฅ], ๐‘ โˆค ๐‘Ž๐‘› , and the residue of f modulo p is irreducible in ๐”ฝ๐‘[๐‘ฅ],

then f is irreducible in โ„š[๐‘ฅ]. Irreducible polynomials in ๐”ฝ๐‘[๐‘ฅ] can be found using the sieve

method.

Eisenstein Criterion: If ๐‘“ ๐‘ฅ = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž0 โˆˆ โ„ž ๐‘ฅ , ๐‘ โˆค ๐‘Ž๐‘› , ๐‘|๐‘Ž๐‘›โˆ’1, โ€ฆ , ๐‘Ž0, ๐‘2 โˆค ๐‘Ž0, then f is

irreducible in โ„š[๐‘ฅ].

Pf. Factor and take it modulo p; get ๐‘“ = ๐‘๐‘Ÿ๐‘ฅ๐‘Ÿ (๐‘๐‘ ๐‘ฅ

๐‘ ). But if ๐‘Ÿ, ๐‘  โ‰  0, ๐‘2|๐‘Ž0.

Extended Eisensteinโ€™s Criterion

Schรถnemannโ€™s Criterion: Suppose

๐‘˜ = ๐‘“๐‘› + ๐‘๐‘”, ๐‘› โ‰ฅ 1, ๐‘ prime, ๐‘“, ๐‘” โˆˆ โ„ž[๐‘ฅ]

deg ๐‘“๐‘› > deg(๐‘”)

๐‘˜ primitive

๐‘“ is irreducible in ๐”ฝ๐‘[๐‘ฅ]

๐‘“ โˆค ๐‘” .

Then k is irreducible in โ„š[๐‘ฅ].

Cohnโ€™s Criterion: Let ๐‘ โ‰ฅ 2 and let p be a prime number. Write ๐‘ = ๐‘Ž๐‘›๐‘๐‘› + โ‹ฏ + ๐‘Ž1๐‘ + ๐‘Ž0 in

base b. Then ๐‘“ ๐‘‹ = ๐‘Ž๐‘›๐‘‹๐‘› + โ‹ฏ + ๐‘Ž1๐‘‹ + ๐‘Ž0 is irreducible in โ„š[๐‘‹].

Capelliโ€™s Theorem: Let K be a subfield of โ„‚ and ๐‘“, ๐‘” โˆˆ ๐พ[๐‘‹]. Let ๐‘Ž be a complex root of f and

assume that f is irreducible in ๐พ[๐‘‹] and ๐‘” ๐‘‹ โˆ’ ๐‘Ž is irreducible in ๐พ ๐‘Ž [๐‘‹]. Then ๐‘“ ๐‘” ๐‘‹ is

irreducible in ๐พ[๐‘‹].

[Add proof sketches.]

3-4 Cyclotomic Polynomials A primitive nth root of unity satisfies ๐œ”๐‘› = 1, but ๐œ”๐‘š โ‰  1 for ๐‘› โˆˆ โ„•, 0 < ๐‘š < ๐‘›. The nth cyclotomic polynomial is

ฮฆ๐‘› ๐‘‹ = (๐‘‹ โˆ’ ๐œ”)๐œ” primitive nth root

.

The cyclotomic polynomial is an irreducible polynomial in โ„ž[๐‘‹] of degree ๐œ‘(๐‘›). Each

polynomial ๐‘‹๐‘› โˆ’ 1 is a product of cyclotomic polynomials:

๐‘‹๐‘› = ฮฆ๐‘‘(๐‘‹)๐‘‘|๐‘›

โ‡’ ฮฆ๐‘› ๐‘‹ =๐‘‹๐‘› โˆ’ 1

โˆ ฮฆ๐‘‘ ๐‘‹ ๐‘‘|๐‘› ,๐‘‘<๐‘›

so ฮฆ๐‘›(๐‘‹) has integer coefficients. Pf. of irreducibility: Lemma- if ๐œ” is a primitive nth root of unity and a zero of ๐‘“ โˆˆ โ„ž[๐‘‹] then

๐œ”๐‘ is a root for ๐‘ โˆค ๐‘›. Proof- Suppose ฮฆ๐‘› = ๐‘”๐‘•, ๐‘• ๐œ” = 0, h irreducible (the minimal polynomial of ๐œ”). ๐œ”๐‘ is also a zero of ฮฆ๐‘› . Suppose it is a zero of ๐‘”. Then ๐œ” is a zero of ๐‘”(๐‘ฅ๐‘), so ๐‘” ๐‘ฅ๐‘ = ๐‘•๐‘˜. Mod p, ๐‘” ๐‘ฅ ๐‘ = ๐‘•๐‘˜, so g and h have a root in cogmmon, contradicting

that ๐‘‹๐‘› โˆ’ 1 โˆˆ โ„ž๐‘[๐‘‹] has no multiple root (derivative has no common factors with ๐‘‹๐‘› โˆ’ 1).

Hence ๐œ”๐‘ is a zero of h. โˆŽ Take powers to different primes to show that all primitive nth roots of unity divide h. Then ๐‘• = ฮฆ๐‘› is irreducible.

3-5 Varieties

1. The set ๐ด๐‘› of n-tuples in a field K is the affine n-space.

2. If S is a set of polynomials in ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› then ๐‘‰ ๐‘† = ๐‘ฅ โˆˆ ๐ด๐‘› ๐‘“ ๐‘ฅ = 0 for all ๐‘“ โˆˆ ๐‘†

is a (affine) variety.

3. For ๐‘‹ โŠ† ๐ด๐‘› , define the ideal of X to be ๐ผ ๐‘‹ = ๐‘“ โˆˆ ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› ๐‘“ vanishes on ๐‘‹

Note ๐‘† โŠ† ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› , ๐‘‹ โŠ† ๐ด๐‘› , ๐‘‰ ๐‘† โŠ† ๐ด๐‘› , ๐ผ ๐‘‹ โŠ† ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› . 4. The radical of the ideal I in a ring T is the ideal

๐ผ = {๐‘“ โˆˆ ๐‘…|๐‘“๐‘Ÿ โˆˆ ๐ผ for some ๐‘Ÿ โˆˆ โ„•} ๐ด๐‘› can be made into a topology (the Zariski topology) by taking varieties as closed sets (1-4 below).

Properties: 1. ๐‘‰ ๐‘† = ๐‘‰ ๐ผ where I is the ideal generated by S.

2. โˆฉ ๐‘‰ ๐ผ๐‘— = ๐‘‰(โˆช ๐ผ๐‘— )

3. If ๐‘‰๐‘— = ๐‘‰(๐ผ๐‘— ) then โ‹ƒ ๐‘‰๐‘—๐‘Ÿ๐‘—=1 = ๐‘‰( ๐‘“1 โ‹ฏ ๐‘“๐‘Ÿ ๐‘“๐‘— โˆˆ ๐ผ๐‘— , 1 โ‰ค ๐‘— โ‰ค ๐‘Ÿ ).

4. ๐ด๐‘› = ๐‘‰ 0 , ๐œ™ = ๐‘‰(1)

5. ๐‘‹ โŠ† ๐‘Œ โ‡’ ๐ผ ๐‘Œ โŠ† ๐ผ(๐‘‹), ๐‘† โŠ† ๐‘‡ โ‡’ ๐‘‰ ๐‘‡ โŠ† ๐‘‰(๐‘†) 6. ๐‘† โŠ† ๐ผ๐‘‰ ๐‘† , ๐‘‹ โŠ† ๐‘‰๐ผ(๐‘‹) 7. ๐‘‰๐ผ๐‘‰ ๐‘† = ๐‘‰ ๐‘† , ๐ผ๐‘‰๐ผ ๐‘‹ = ๐ผ(๐‘‹)

8. ๐ผ 0 = ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] 9. If K is an infinite field, ๐ผ ๐ด๐‘› = {0}.

a. For n=1, a nonzero polynomial only has finitely many zeros. Extend by induction.

10. ๐ผ ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› = (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘› ) (the ideal generated by ๐‘‹๐‘– โˆ’ ๐‘Ž๐‘– ) a. Use division with remainder.

11. If ๐‘Ž1, โ€ฆ ๐‘Ž๐‘› โˆˆ ๐ด๐‘› then ๐ผ = (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›) is a maximal ideal. a. Apply the division algorithm to ๐‘“ โˆˆ ๐ฝ\๐ผ.

12. ๐ผ โŠ† ๐ผ๐‘‰(๐ผ)

3-6 Nullstellensatz Hilbert Basis Theorem: If R is Noetherian, then ๐‘…[๐‘ฅ] is Noetherian. Thus so is ๐‘…[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ]. In particular, this holds for ๐‘… = โ„ž or a field F. Pf. For ๐ผ โŠ† ๐‘…[๐‘ฅ] an ideal, the set whose elements are the leading coefficients of the polynomials in I (including 0) forms the ideal of leading coefficients in R. Take generators for this ideal and polynomials with those leading coefficients, multiplying by x as necessary so they have the same degree n. The polynomials with degree less than n form a free, Noetherian R-module P with basis (1, ๐‘ฅ, โ€ฆ ๐‘ฅ๐‘›โˆ’1). ๐‘ƒ โˆฉ ๐ผ has a finite generating set. Put the two generating sets together. The ring of formal power series ๐‘…[ ๐‘‹ ] is also Noetherian. Noether Normalization Lemma: Let A be a finitely generated K-algebra. There exists a

subset ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿ of A such that the ๐‘ฆ๐‘– are algebraically independent over K and A is integral over ๐พ[๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿ] (all elements of A are algebraic integers over ๐พ[๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿ]). Pf. Induct on n; n=1 trivial. Take a maximally algebraically independent subset ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘Ÿ โŠ†{๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›}; assume ๐‘› > ๐‘Ÿ. By algebraic dependency, there exists ๐‘“ โˆˆ ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› so that ๐‘“ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = 0. Lexicographically order the monomials, and choose weights ๐‘ค๐‘– to match

the lexicographic order. Set ๐‘ฅ๐‘– = ๐‘ง๐‘– + ๐‘ฅ๐‘›๐‘ค๐‘– . Then we get a polynomial in ๐‘ฅ๐‘› , where term with

the highest power of ๐‘ฅ๐‘› is uncancelled. ๐‘ฅ๐‘› is integral over ๐พ[๐‘ง1, โ€ฆ , ๐‘ง๐‘›โˆ’1]; finish by induction.

Cor. If B is a finitely generated K-algebra, and I is a maximal ideal, then ๐ต ๐ผ is a finite

extension of K (K is embedded via ๐‘ โ‡ ๐‘ + ๐ผ.): In the above, we must have ๐‘Ÿ = 0; B/I is algebraic over K.

Hilbertโ€™s Nullstellensatz: For any field K and ๐‘› โˆˆ โ„•, the following are equivalent: 1. K is algebraically closed. 2. (Maximal Ideal Theorem) The maximal ideals of ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] are the ideals of the

form (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›). 3. (Weak Nullstellensatz) If I is a proper ideal of ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘›], then ๐‘‰(๐ผ) is not empty.

4. (Strong Nullstellensatz) If I is an ideal of ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] then ๐ผ๐‘‰ ๐ผ = ๐ผ. (2)โ‡’(3): For I a proper ideal, let J be a maximal ideal containing it. Then ๐‘‰ ๐ฝ โŠ† ๐‘‰(๐ผ) so ๐ฝ = (๐‘‹1 โˆ’ ๐‘Ž1 , โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›), ๐‘Ž โˆˆ ๐‘‰(๐ฝ).

(3)โ‡’(4): Rabinowitsch Trick: 1. Let ๐‘“ โˆˆ ๐ผ๐‘‰ ๐ผ . Let ๐‘“1, โ€ฆ , ๐‘“๐‘š be a generating set for ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› , ๐‘Œ]. Let ๐ผโˆ— be the ideal

generated by ๐‘“1, โ€ฆ , ๐‘“๐‘š , 1 โˆ’ ๐‘Œ๐‘“.

2. ๐‘‰ ๐ผโˆ— = ๐œ™ a. If ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› , ๐‘Ž๐‘›+1 โˆˆ ๐ด๐‘›+1 and ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› โˆˆ ๐‘‰ ๐ผ , then ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› , ๐‘Ž๐‘›+1 โˆ‰ ๐‘‰(๐ผโˆ—)

since it is not a zero of 1 โˆ’ ๐‘Œ๐‘“. b. If ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› โˆ‰ ๐‘‰ ๐ผ then ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› , ๐‘Ž๐‘›+1 โˆ‰ ๐‘‰(๐ผโˆ—) (an even weaker statement).

3. Using the weak Nullstellensatz (see below), we can write

1 = ๐‘”๐‘–๐‘“๐‘– + ๐‘• 1 โˆ’ ๐‘Œ๐‘“

๐‘š

๐‘–=1

since ๐‘‰ ๐ผโˆ— = ๐œ™ โ‡’ 1 โˆˆ ๐ผโˆ— = ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› , ๐‘Œ]. 4. Set ๐‘Œ = 1/๐‘“, and multiply to clear denominators

๐‘“๐‘Ÿ = ๐‘•๐‘– ๐‘‹1, โ€ฆ , ๐‘‹๐‘› ๐‘“๐‘– ๐‘‹1, โ€ฆ ๐‘‹๐‘›

๐‘š

๐‘–=1

โˆˆ ๐ผ

(4)โ‡’(3): The radical of an ideal is the intersection of all prime ideals containing I. I is in a

maximal, prime ideal P; so is ๐ผ, so ๐ผ is proper. ๐ผ๐‘‰(๐ผ) is proper by (4), so ๐‘‰ ๐ผ โ‰  ๐œ™.

(3)โ‡’(2): For I maximal, there is ๐‘Ž โˆˆ ๐‘‰(๐ผ). Since I is maximal, it must be in (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘ฅ๐‘› โˆ’๐‘Ž๐‘›).

(1)โ‡’(2): Let I be a maximal ideal. K can be imbedded via ๐‘ โ‡ ๐‘ + ๐ผ in ๐พ ๐‘‹1, โ€ฆ , ๐‘‹๐‘› ๐ผ ; by the corollary to Noether Normalization Lemma, this is a finite extension of K so must be K (since

it is algebraically closed). Then ๐‘‹๐‘– + ๐ผ = ๐‘Ž๐‘– + ๐ผ โ‡’ ๐‘‹๐‘– โˆ’ ๐‘Ž๐‘– โˆˆ ๐ผ, ๐‘‹1 โˆ’ ๐‘Ž1 , โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘› โŠ† ๐ผ, with equality since the LHS is maximal. (2)โ‡’(1): If f is a nonconstant polynomial in ๐พ[๐‘‹1] with no root in K, regard it as a polynomial

in ๐พ[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] with no root in ๐ด๐‘› . Then I is in a maximal ideal (๐‘‹1 โˆ’ ๐‘Ž1, โ€ฆ , ๐‘‹๐‘› โˆ’ ๐‘Ž๐‘›), so has

root ๐‘‹1 = ๐‘Ž1. Combinatorial Nullstellensatz: Let F be a field, ๐‘“ โˆˆ ๐น[๐‘‹1, โ€ฆ , ๐‘‹๐‘› ] and let ๐‘†1, โ€ฆ , ๐‘†๐‘› be nonempty subsets of F.

1. If ๐‘“ ๐‘ 1, โ€ฆ , ๐‘ ๐‘› = 0 for all ๐‘ 1, โ€ฆ , ๐‘ ๐‘› โˆˆ ๐‘†1 ร— โ‹ฏ ร— ๐‘†๐‘› (i.e. ๐‘“ โˆˆ ๐‘‰(๐‘†1 ร— โ‹ฏ ร— ๐‘†๐‘›)) then ๐‘“ lies in the ideal generated by the polynomials ๐‘”๐‘– ๐‘‹๐‘– = โˆ (๐‘‹๐‘– โˆ’ ๐‘ )๐‘ โˆˆ๐‘†๐‘–

. The polynomials

๐‘•1, โ€ฆ , ๐‘•๐‘› satisfying ๐‘“ = ๐‘”1๐‘•1 + โ‹ฏ + ๐‘”๐‘›๐‘•๐‘›

can be chosen so that deg ๐‘•๐‘– โ‰ค deg ๐‘“ โˆ’ deg(๐‘”๐‘–) for all i. If ๐‘”1, โ€ฆ , ๐‘”๐‘› โˆˆ ๐‘…[๐‘‹1, โ€ฆ , ๐‘‹๐‘›] for some subring ๐‘… โŠ† ๐น, we can choose ๐‘•๐‘– โˆˆ ๐‘…[๐‘‹1, โ€ฆ , ๐‘‹๐‘›].

a. The ๐‘  โˆˆ ๐‘†๐‘– are all zeros of ๐‘”๐‘– of degree |๐‘†๐‘–| so by subtracting multiples of ๐‘”๐‘–

every ๐‘‹๐‘–๐‘˜ in f can be replaced with a linear combination of 1, โ€ฆ , ๐‘ฅ๐‘–

๐‘†๐‘– โˆ’1. Then by

counting zeros the result is actually 0; i.e. f is in the form above. 2. If deg ๐‘“ = ๐‘ก1 + โ‹ฏ + ๐‘ก๐‘› where ๐‘ก๐‘– are nonnegative integers with ๐‘ก๐‘– < |๐‘†๐‘–|, and if the

coefficient of ๐‘‹1๐‘ก1 โ‹ฏ ๐‘‹๐‘›

๐‘ก๐‘› is not 0, then there exist ๐‘ ๐‘– โˆˆ ๐‘†๐‘– so that ๐‘“ ๐‘ 1, โ€ฆ , ๐‘ ๐‘› โ‰  0, i.e.

๐‘“ โˆ‰ ๐‘“ โˆˆ ๐‘‰(๐‘†1 ร— โ‹ฏ ร— ๐‘†๐‘›).

4 Fields Examples of Fields An extension K of a field F (also denoted ๐พ/๐น) is a field containing F.

Number field: subfield of โ„‚

Finite field: finitely many elements

Function field: Extensions of โ„‚(๐‘ก) of rational functions

4-1 Fundamental Theorem of Algebra Fundamental Theorem of Algebra: Every nonconstant polynomial with complex coefficients has a complex zero. Thus, the field of complex numbers is algebraically closed, and every polynomial in โ„‚[๐‘ฅ] splits completely.

Pf. Let ๐‘“ ๐‘ฅ = ๐‘ฅ๐‘› + ๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0. Let ๐‘ฅ = ๐‘Ÿ๐‘’๐œƒ๐‘– - the parameterization of a circle about the origin. ๐‘“ ๐‘ฅ โˆ’ ๐‘ฅ๐‘› is small for large r, so for large r, ๐‘“(๐‘ฅ) winds around the origin n

times as ๐œƒ goes from 0 to 2๐œ‹๐‘›.2 (f is a person walking a dog on a circular path n times around the origin. The dog will also walk around the origin n times provided the leash is shorter than the radius.) For small r, ๐‘“ ๐‘ฅ makes a small loop around ๐‘Ž0, and winds around

the origin 0 times. For some intermediate value, ๐‘“ ๐‘ฅ will pass through the origin.

4-2 Algebraic Elements

Let K be an extension, and ๐›ผ be an element of K. ๐›ผ is algebraic over F if it is the zero of a polynomial in ๐น[๐‘ฅ], and transcendental otherwise. ๐›ผ is transcendental iff the substitution

homomorphism ๐œ‘: ๐น ๐‘ฅ โ†’ ๐พ is injective. ๐น ๐›ผ is the smallest subfield of K that contains F and ๐›ผ. The irreducible polynomial ๐‘“ of ๐›ผ

over F is the monic polynomial of lowest degree in ๐น[๐‘ฅ] having ๐›ผ as a zero.

Any polynomial in ๐น[๐‘ฅ] having ๐›ผ as a zero divides ๐‘“.

๐น ๐‘ฅ /(๐‘“) is an extension field of F with ๐‘ฅ a root of ๐‘“ ๐‘ฅ = 0. The substitution map ๐น ๐‘ฅ /(๐‘“) โ†’ ๐น[๐›ผ] is an isomorphism, so ๐น ๐‘ฅ /(๐‘“) โ‰… ๐น(๐›ผ). [*]

For every polynomial in F[x], there is an extension field in which it splits (factors) completely, i.e. every polynomial has a splitting field.

If f has degree ๐‘› then ๐น(๐›ผ) is a vector space with dimension ๐‘› and basis

(1, ๐›ผ, โ€ฆ , ๐›ผ๐‘›โˆ’1).

Let ๐›ผ, ๐›ฝ be elements of ๐พ/๐น, ๐ฟ/๐น algebraic over F. There is an isomorphism of fields ๐น ๐›ผ โ†’ ๐น(๐›ฝ) sending ๐›ผ โ‡ ๐›ฝ iff ๐›ผ, ๐›ฝ have the same irreducible polynomial.

Let ๐พ, ๐ฟ be extensions of F. A F-isomorphism is an isomorphism ๐œ‘: ๐พ โ†’ ๐ฟ that restricts to the identity on F. Then K and L are isomorphic as field extensions. If ๐›ผ is a zero of ๐‘“ in ๐พ, then ๐œ‘(๐›ผ) is a zero of ๐‘“.

4-3 Degree of a Field Extension The degree [๐พ: ๐น] is the dimension of K as an F-vector space.

If ๐›ผ is algebraic over F, then [๐น ๐›ผ : ๐น] is the degree of the irreducible polynomial of ๐›ผ

over F, and if ๐›ผ is transcendental, ๐น ๐›ผ : ๐น = โˆž.

๐พ: ๐น = 1 iff ๐น = ๐พ.

2 i.e. it is homotopic to the loop going around the origin n times in โ„‚ โˆ’ 0 .

If ๐พ: ๐น = 2 then K can be obtained by adjoining a square root ๐›ฟ of an element in F: ๐›ฟ2 โˆˆ ๐น

Multiplicative property: If ๐น โŠ† ๐พ โŠ† ๐ฟ, then ๐ฟ: ๐น = ๐ฟ: ๐พ [๐พ: ๐น]. o If K is a finite extension of F, and ๐›ผ โˆˆ ๐พ, then the degree of ๐›ผ divides [๐พ: ๐น]. o If ๐›ผ โˆˆ ๐ฟ is algebraic over F, it is algebraic over ๐พ with degree less than or

equal to its degree over ๐น. o A field extension generated by finitely many algebraic elements is a finite

extension. o The set of elements of K that are algebraic over F is a subfield of K.

Let L be an extension field of F, and let ๐พ, ๐นโ€ฒ be subfields of L that are finite

extensions of F. Let ๐พโ€ฒ : ๐น = ๐‘, ๐พ: ๐น = ๐‘š, ๐นโ€ฒ : ๐น = ๐‘›. Then m and n divide N, and ๐‘ โ‰ค ๐‘š๐‘›.

Finding the Irreducible Polynomial of ๐›พ (The dum way) Compute powers of ๐›พ, and find a relation between them. (The smart way)

1. If ๐›พ = ๐‘Ž1 + โ‹ฏ + ๐‘Ž๐‘› , ๐‘Ž1 โ‹ฏ ๐‘Ž๐‘› where each ๐‘Ž1 is algebraic (for example a nth root), then

its conjugates (other zeros of the irreducible polynomial) are in the form ๐‘1 + โ‹ฏ +๐‘๐‘› , ๐‘1 โ‹ฏ ๐‘๐‘› , respectively where ๐‘๐‘– is a conjugate of ๐‘Ž๐‘– . (Not all these may be conjugates.)

2. The irreducible polynomial is โˆ (๐‘ฅ โˆ’ ๐›พโ€ฒ)๐›พ โ€ฒ conjugate of ๐›พ . [Note: This gives an elementary

proof of the fact that the algebraic numbers/ integers form a field/ ring. For ๐‘Ž, ๐‘ algebraic, expand the product (๐‘ฅ โˆ’ ๐‘Žโ€ฒ โˆ’ ๐‘โ€ฒ ), ๐‘Žโ€ฒ , ๐‘โ€ฒ running over the conjugates of ๐‘Ž, ๐‘, and use the Fundamental Theorem on Symmetric Polynomials.]

4-4 Application: Constructions! Rules:

1. Two points (0,0) and (1,0) are given (constructed). 2. If P, Q have been constructed, we can draw (construct)

a. the line through them b. a circle with center at P and passing through Q.

3. Points of intersection of constructed lines and circles are constructed. 4. A number is constructible if (a,0) is constructible.

Finding all constructible numbers: 1. If ๐‘ƒ = ๐‘Ž0, ๐‘Ž1 , ๐‘„ = (๐‘0 , ๐‘1) have coordinates in F, then the line in (2a) is defined by a

linear equation with coefficients in F, while the circle in (2b) is defined by a quadratic equation with coefficients in F.

2. The point of intersection of two lines/ circles whose equations have coefficients in F has coordinates in a real quadratic extension of F.

3. Let P be a constructible point. There is a chain of fields โ„š = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘› = ๐พ such that

a. K is a subfield of โ„. b. The coordinates of P are in ๐น๐‘› . c. ๐น๐‘–+1: ๐น๐‘– = 2, and ๐พ: โ„š = 2๐‘› .

๐พโ€ฒ

๐น

๐นโ€ฒ ๐พ ๐‘ โ‰ค ๐‘š๐‘›

๐‘› ๐‘š

โ‰ค ๐‘› โ‰ค ๐‘š

Thus a constructible number has degree over โ„š a power of 2. 4. Conversely, if a chain of fields satisfies the conditions above, then every element of K

is constructible. Examples:

1. Trisecting the angle with compass and straightedge is impossible. cos 20ยฐ is not constructible.

2. For p prime, a regular p-gon can be constructed iff ๐‘ = 2๐‘Ÿ + 1.

4-5 Finite Fields A finite field is a vector space over ๐”ฝ๐‘ for some prime p, so has order ๐‘ž = ๐‘๐‘Ÿ . The (unique)

field of order q is denoted by ๐”ฝ๐‘ž .

1. The elements in a field of order q are roots of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ = 0 (everything is modulo p). a. The multiplicative group ๐”ฝ๐‘ž

ร— of nonzero elements has order ๐‘ž โˆ’ 1. The order of

any element divides ๐‘ž โˆ’ 1 so ๐›ผ๐‘žโˆ’1 = 0 for any ๐›ผ โˆˆ ๐”ฝ๐‘ž.

2. ๐”ฝ๐‘žร— is a cyclic group of order ๐‘ž โˆ’ 1.

a. By the Structure Theorem for Abelian Groups, ๐”ฝ๐‘žร— is a direct product of cyclic

subgroups of orders ๐‘‘1| โ‹ฏ |๐‘‘๐‘˜ , and the group has exponent ๐‘‘๐‘˜ . ๐‘ฅ๐‘‘๐‘˜ โˆ’ 1 = 0

has at most ๐‘‘๐‘˜ roots, so ๐‘˜ = 1, ๐‘‘๐‘˜ = ๐‘ž โˆ’ 1. 3. There exists a unique field of order q (up to isomorphism).

a. Existence: Take a field extension where ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ splits completely. If ๐›ผ, ๐›ฝ are roots of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ = 0 then ๐›ผ + ๐›ฝ ๐‘ž = ๐›ผ + ๐›ฝ. Since โˆ’1 is a root, โˆ’๐›ผ is a root. The roots form a field.

b. Uniqueness: Suppose ๐พ, ๐พโ€ฒ have order ๐‘ž. Let ๐›ผ be a generator of ๐พร—; ๐พ = ๐น(๐›ผ). The irreducible polynomial ๐‘“ โˆˆ ๐พ[๐‘ฅ] with root ๐›ผ divides ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ.

๐‘ฅ๐‘ž โˆ’ ๐‘ฅ splits completely in both ๐พ, ๐พโ€ฒ, so f has a root ๐›ผโ€ฒ โˆˆ ๐พโ€ฒ. Then ๐น ๐›ผ โ‰…๐น ๐‘ฅ /(๐‘“) โ‰… ๐น(๐›ผโ€ฒ) = ๐พโ€ฒ.

4. A field of order ๐‘๐‘Ÿ contains a subfield of order ๐‘๐‘˜ iff ๐‘˜|๐‘Ÿ. (Note this is a relation between the exponents, not the orders.)

a. ๐”ฝ๐‘๐‘˜ โŠ† ๐”ฝ๐‘๐‘Ÿ โ‡’ ๐‘˜|๐‘Ÿ: Multiplicative property of the degree.

b. ๐”ฝ๐‘๐‘˜ โŠ† ๐”ฝ๐‘๐‘Ÿ โ‡ ๐‘˜|๐‘Ÿ: ๐‘๐‘Ÿ โˆ’ 1|๐‘๐‘˜ โˆ’ 1. Cyclic ๐”ฝ๐‘๐‘Ÿร— contains a cyclic group of order ๐‘๐‘˜ .

Including 0, they are the roots of ๐‘ฅ๐‘๐‘˜โˆ’ ๐‘ฅ = 0 and thus form a field by 3a.

5. The irreducible factors of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ over ๐”ฝ๐‘ are the irreducible polynomials ๐‘” in ๐น[๐‘ฅ]

whose degrees divide r.

a. โ‡’: Multiplicative property b. โ‡: Let ๐›ฝ be a root of g. If ๐‘˜|๐‘Ÿ, by (4), ๐”ฝ๐‘ž contains a subfield isomorphic to

๐น(๐›ฝ). ๐‘” has a root in ๐”ฝ๐‘ž so divides ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ.

6. For every r there is an irreducible polynomial of degree r over ๐”ฝ๐‘ .

a. ๐”ฝ๐‘ž(๐‘ž = ๐‘๐‘Ÿ) has degree r over ๐”ฝ๐‘ , and has a cyclic multiplicative group

generated by an element ๐›ผ. ๐”ฝ๐‘(๐›ผ) has degree r over ๐”ฝ๐‘ .

To compute in ๐”ฝ๐‘ž , take a root ๐›ฝ of the irreducible factor of ๐‘ฅ๐‘ž โˆ’ ๐‘ฅ of degree r; (1, ๐›ฝ, โ€ฆ , ๐›ฝ๐‘Ÿโˆ’1)

is a basis. Let ๐‘Š๐‘(๐‘‘) be the number of irreducible monic polynomials of degree d in ๐”ฝ๐‘ . Then by (2),

๐‘๐‘› = ๐‘‘๐‘Š๐‘(๐‘‘)๐‘‘|๐‘›

.

By Mรถbius inversion,

๐‘Š๐‘ ๐‘› =1

๐‘› ๐œ‡

๐‘›

๐‘‘ ๐‘๐‘‘

๐‘‘|๐‘›

.

Primitive elements Let K be a field extension of F. An element ๐›ผ โˆˆ ๐พ such that ๐พ = ๐น(๐›ผ) is a primitive element for the extension. Primitive Element Theorem: Every finite extension of a field F contains a primitive element. Proof when F has characteristic 0: Show that if ๐พ = ๐น(๐›ผ, ๐›ฝ) with ๐›ผ, ๐›ฝ โˆˆ ๐พ then ๐›พ = ๐›ฝ + ๐‘๐›ผ is a primitive element for K over F. Let ๐‘“, ๐‘” be the irreducible polynomials of ๐›ผ, ๐›ฝ, and ๐›ผ๐‘– , ๐‘๐‘— be

the conjugates of ๐›ผ, ๐›ฝ. For all but finitely many ๐‘, the numbers ๐›ฝ๐‘— + ๐‘๐›ผ๐‘– are all distinct. For

such a value of ๐‘, to show that ๐›พ = ๐›ฝ + ๐‘๐›ผ is a primitive element, consider ๐‘• ๐‘ฅ =๐‘” ๐›พ โˆ’ ๐‘๐‘ฅ โˆˆ ๐น(๐›พ). gcd ๐‘“, ๐‘• = ๐‘ฅ โˆ’ ๐›ผ by choice of c, so ๐›ผ โˆˆ ๐น(๐›พ) as desired.

5 Modules

More structureโ†’

No division Division

More complex โ†“

Ring Field

Module Vector Space

Algebra Division Algebra

5-1 Modules

A left/right R-module ๐‘€๐‘… /๐‘€๐‘… over the ring R is an abelian group (M,+) with addition and

scalar multiplication (๐‘… ร— ๐‘€ โ†’ ๐‘€ or ๐‘€ ร— ๐‘… โ†’ ๐‘€) defined so that for all ๐‘Ÿ, ๐‘  โˆˆ ๐‘… and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€,

Left Right

1. Distributive ๐‘Ÿ ๐‘ฅ + ๐‘ฆ = ๐‘Ÿ๐‘ฅ + ๐‘Ÿ๐‘ฆ ๐‘ฅ + ๐‘ฆ ๐‘Ÿ = ๐‘ฅ๐‘Ÿ + ๐‘ฆ๐‘Ÿ

2. Distributive ๐‘Ÿ + ๐‘  ๐‘ฅ = ๐‘Ÿ๐‘ฅ + ๐‘ ๐‘ฅ ๐‘ฅ ๐‘Ÿ + ๐‘  = ๐‘ฅ๐‘Ÿ + ๐‘ฅ๐‘ 

3. Associative ๐‘Ÿ ๐‘ ๐‘ฅ = ๐‘Ÿ๐‘  ๐‘ฅ ๐‘ฅ๐‘Ÿ ๐‘  = ๐‘ฅ(๐‘Ÿ๐‘ )

4. Identity 1๐‘ฅ = ๐‘ฅ ๐‘ฅ1 = ๐‘ฅ

A (S,R)-bimodule ๐‘€๐‘…๐‘† has both the structure of a left S-module and right R-modules.

Modules are generalizations of vector spaces. All results for vector spaces hold except ones

depending on division (existence of inverse in R). ๐‘† โŠ† ๐‘€ is linearly dependent if there exist

๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› โˆˆ ๐‘† such that ๐‘Ÿ๐‘–๐‘ฃ๐‘– โ‰  0 and ๐‘Ÿ1๐‘ฃ1 + โ‹ฏ + ๐‘Ÿ๐‘›๐‘ฃ๐‘› = 0.

Again, a basis is a linearly independent set that generates the module. Note that if elements are linearly independent, it is not necessary that one element is a linear combination of the others, and bases do not always exist. Every basis for V (if it exists) contains the same number of elements. V is finitely generated if it contains a finite subset spanning V. The rank is the size of the smallest generating set. A submodule of a R-module is a nonempty subset closed under addition and scalar

multiplication. Viewing R as an R-module, the submodules of R are the ideals in R. In โ„ž๐‘› , submodules correspond to lattices, with the area/volume of a fundamental parallelogram/parallelepiped equal to the determinant. A free module with n generators has a basis with n elements. It is isomorphic to ๐‘…๐‘› . An isomorphism preserves addition and scalar multiplication. Unlike vector spaces, not all

finitely generated modules are isomorphic to some ๐‘…๐‘› . Basic Theorems:

1. If W is a submodule of V, the quotient module ๐‘‰/๐‘Š is a R-module, and the canonical

map ๐œ‹: ๐‘‰ โ†’ ๐‘‰/๐‘Š is a homomorphism. 2. Mapping Property: Let ๐‘“: ๐‘‰ โ†’ ๐‘‰โ€ฒ be a homomorphism of R-modules with kernel

containing W. There is a unique homomorphism ๐‘“ with ๐‘“ = ๐‘“ โˆ˜ ๐œ‹.

3. First Isomorphism Theorem: If ๐‘“ is surjective with kernel W, ๐‘“ is an isomorphism.

4. Correspondence Theorem: Let ๐‘“: ๐‘‰ โ†’ ๐‘‰โ€ฒ be a surjective homomorphism. There is a bijective correspondence between submodules of V' and submodules of V that containing ker ๐‘“ = ๐‘Š: ๐‘† with ๐‘Š โŠ† ๐‘† โŠ† ๐‘‰ is associated with ๐‘“(๐‘†); ๐‘‰/๐‘† โ‰… ๐‘‰ โ€ฒ/๐‘“(๐‘†).

V'

V G

๐‘“

๐‘“ ๐œ‹

5. Second Isomorphism Theorem: Let ๐‘† and ๐‘‡ be submodules of ๐‘€, and let ๐‘† + ๐‘‡ = ๐‘ฅ + ๐‘ฆ โˆถ ๐‘ฅ โˆˆ ๐‘†, ๐‘ฆ โˆˆ ๐‘‡ . Then ๐‘† + ๐‘‡ and ๐‘† โˆฉ ๐‘‡ are submodules of ๐‘€ and

๐‘† + ๐‘‡

๐‘‡โ‰…

๐‘†

๐‘† โˆฉ ๐‘‡

6. Third Isomorphism Theorem: Let ๐‘ โŠ† ๐ฟ โŠ† ๐‘€ be modules. Then ๐‘€/๐ฟ โ‰… (๐‘€/๐‘)/(๐ฟ/๐‘).

5-2 Structure Theorem

Matrices, invertible matrices, the general linear group, the determinant, and change of bases matrices all generalize to a ring R. However, a R-matrix A is invertible iff its determinant is a unit.

Properties of matrices in a field such as det(๐ด๐ต) = det ๐ด det ๐ต continue to hold in a ring, because they are polynomial identities. Smith Normal Form For a matrix over an Euclidean domain R [*] (such as โ„ž or ๐น[๐‘ก]), elementary row/ column operations correspond to left and right multiplication by elementary matrices and include:

(1) Interchanging 2 rows/ columns (2) Multiplying any row/ column by a unit (3) Adding any multiple of a row/ column to another row/ column

However, note arbitrary division in R is illegal. A ๐‘š ร— ๐‘› matrix is in Smith (or Hermite) normal form if

1. It is diagonal. 2. The entries ๐‘‘1, โ€ฆ , ๐‘‘๐‘› on the main diagonal satisfy ๐‘‘๐‘˜|๐‘‘๐‘˜+1, 1 โ‰ค ๐‘˜ < min(๐‘š, ๐‘›). (Ones

at the end may be 0.)

Every matrix is equivalent to a unique matrix N in normal form. For a ๐‘š ร— ๐‘› matrix A, follow this algorithm to find it:

1. Make the first column

๐‘0โ‹ฎ0

.

a. Choose the nonzero entry ๐‘“ in the first column that has the least norm.

b. For each other nonzero entry ๐‘, use division to write ๐‘ = ๐‘“๐‘ž + ๐‘Ÿ, where ๐‘Ÿ is the remainder upon division. Subtract ๐‘ž times the row with ๐‘“ from the row with ๐‘.

c. Repeat a and b until there is (at most) one nonzero entry. Switch the first row with that row if necessary.

2. Put the first row in the form ๐‘ 0 โ‹ฏ 0 by following the steps above but exchanging the words โ€œrowsโ€ and โ€œcolumnsโ€.

3. Repeat 1 and 2 until the first entry ๐‘” is the only nonzero entry in its row and column. (This process terminates because the least degree decreases at each step.)

4. If ๐‘” does not divide every entry of A, find the first column with an entry not divisible by g and add it to column 1, and repeat 1-4; the degree of โ€œgโ€ will decrease. Else, go to the next step.

5. Repeat with the ๐‘š โˆ’ 1 ร— (๐‘› โˆ’ 1) matrix obtained by removing the first row and column.

Solving ๐ด๐‘‹ = ๐ต in R: 1. Write ๐ด = ๐‘„๐ดโ€ฒ๐‘ƒโˆ’1, where ๐ดโ€ฒ is in normal form. Suppose the nonzero diagonal entries

are ๐‘‘1, ๐‘‘2, โ€ฆ , ๐‘‘๐‘˜ . 2. The solutions ๐‘‹โ€ฒ of the homogeneous system ๐ดโ€ฒ๐‘‹โ€ฒ = 0 are the vectors whose first k

coordinates are 0.

3. The solutions of ๐ด๐‘‹ = 0 are in the form ๐‘‹๐‘• = ๐‘ƒ๐‘‹โ€ฒ.

4. The equation has a solution iff ๐ต is in the form ๐‘„๐‘Œโ€ฒ , ๐‘Œโ€ฒ =

๐‘Ÿ1๐‘‘1

โ‹ฎ๐‘Ÿ๐‘˜๐‘‘๐‘˜

0โ‹ฎ

. Use linear algebra to

find a particular solution ๐‘‹๐‘ . (The condition guarantees that the entries are in R.)

Then the solutions are ๐‘‹๐‘• + ๐‘‹๐‘ , for ๐‘‹๐‘• a homogeneous solution.

Structure Theorem: (a.k.a. Fundamental Decomposition Theorem)

Let M be a finitely generated module over the PID R (such as โ„ž or ๐น[๐‘ก]). Then M is a direct sum of cyclic modules and a free module ๐ถ1 โŠ• โ‹ฏ โŠ• ๐ถ๐‘˜ โŠ• ๐ฟ, where ๐ถ๐‘– โ‰… ๐‘…/(๐‘‘๐‘–). The cyclic modules can be chosen to satisfy either of the following conditions:

1. ๐‘‘1|๐‘‘2 โ‹ฏ |๐‘‘๐‘˜ 2. Each ๐‘‘๐‘– is the power of an irreducible element.

5-3 Noetherian and Artinian Rings The following conditions on a R-module V are equivalent:

1. Every submodule is finitely generated.

2. Ascending chain condition: There is no infinite strictly increasing chain ๐‘Š1 โŠ‚ ๐‘Š2 โŠ‚ โ‹ฏ of submodules. (Pf. of โ‡’: Union of chain finitely generated.)

A ring is Noetherian if every ideal of R is finitely generated. In a Noetherian ring, every proper ideal is contained in a maximal ideal.

Let ๐œ‘ be a homomorphism of R-modules. 1. If V is finitely generated and ๐œ‘ is surjective, then ๐‘‰โ€ฒ is finitely generated. 2. If ker ๐œ‘ , im ๐œ‘ are finitely generated, so is V. (Pf. Take a generating set for the kernel

and some preimage of a generating set for the image.)

3. In particular, if ๐‘‰ is finitely generated, so is ๐‘‰/๐‘Š. If ๐‘‰/๐‘Š and ๐‘Š are finitely generated, so is ๐‘‰.

If R is Noetherian, then every submodule of a finitely generated R-module is finitely generated.

Pf. Using a surjective map ๐œ‘: ๐‘…๐‘š โ†’ ๐‘‰, it suffices to prove it for ๐‘…๐‘š . Induct on m. For the

projection ๐œ‹: ๐‘…๐‘š โ†’ ๐‘…๐‘šโˆ’1, the image and kernel are finitely generated. A ring is Artinian if it satisfies the descending chain condition on ideals: There is no infinite

strictly decreasing chain ๐ผ1 โŠƒ ๐ผ2 โŠƒ โ‹ฏ of ideals.

5-4 Application 1: Abelian Groups

An abelian group corresponds to a โ„ž-module with integer multiplication defined by ๐‘›๐‘ฃ = ๐‘ฃ + ๐‘ฃ + โ‹ฏ + ๐‘ฃ

๐‘› times

. Abelian groups and โ„ž-modules are equivalent concepts, so

generalizing linear algebra for modules helps us study abelian groups. If W is a free abelian group of rank m, and U is a subgroup, then U is a free abelian group of

rank at most ๐‘š. Pf. Choose a (finite) set of generators ๐›ฝ = (๐‘ข1, โ€ฆ , ๐‘ข๐‘›) for U and a basis ๐›พ = (๐‘ค1, โ€ฆ , ๐‘ค๐‘š ) for

W. Write ๐‘ข๐‘— = ๐‘ค๐‘–๐‘Ž๐‘–๐‘—๐‘– . Then left multiplication by A is an surjective homomorphism โ„ž๐‘› โ†’

โ„ž๐‘š . Diagonalizing A, we can find an explicit basis for U with at most ๐‘› โ‰ค ๐‘š elements.

Generators and Relations

Let A be a matrix, and let ๐ด๐‘…๐‘› denote the image of ๐‘…๐‘› under left multiplication by ๐ด. The module ๐‘‰ = ๐‘…๐‘š /๐ด๐‘…๐‘› is presented by the matrix A.

An abelian group G with n generators ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘› can be identified with a quotient module of

โ„ž๐‘› . The set of ๐‘Ž1, โ€ฆ , ๐‘Ž๐‘› ๐‘‡ โˆˆ โ„ž๐‘› such that

๐‘Ž๐‘–๐‘ฃ๐‘–

๐‘›

๐‘–=1

= 0

forms a submodule of โ„ž๐‘› . They are the relations in G, and form the kernel of the map

โ„ž๐‘› โ†’ ๐บ. If ๐‘Ž๐‘–1 , โ€ฆ , ๐‘Ž๐‘–๐‘› ๐‘‡ โˆˆ โ„ž๐‘› generate this submodule, letting A be the matrix with these rows,

๐‘๐‘–๐‘ฃ๐‘–

๐‘›

๐‘–=1

= 0 โ‡” ๐‘1

โ‹ฎ๐‘๐‘›

= ๐ด๐‘ฃ for some ๐‘ฃ โˆˆ โ„ž๐‘›

Then G corresponds to the module โ„ž๐‘›/๐ดโ„ž๐‘› ; G is presented by A. An abelian group that is presented by a matrix needs only satisfy the relations implied (through linearity) by the relations given by the columns of A. To determine a group from its presentation:

1. Use elementary row and column operations to write A in normal form. 2. Delete any columns of 0โ€™s (trivial relations). 3. If 1 is the only nonzero entry in its column, delete that row and column. (This is a

relation of the form ๐‘ฃ = 0.)

4. If the diagonal entries are ๐‘‘1, โ€ฆ , ๐‘‘๐‘˜ , and there are ๐‘™ zero rows, then the group is

isomorphic to โ„ž๐‘‘1โŠ• โ‹ฏ โŠ• โ„ž๐‘‘๐‘˜

โŠ• โ„ž๐‘™ โ‰… ๐ถ๐‘‘1โŠ• โ‹ฏ โŠ• ๐ถ๐‘‘๐‘˜

โŠ• ๐‘™๐ถโˆž .

Structure Theorem for Finitely Generated Abelian Groups: a.k.a Unicity Theorem for Abelian Group Decomposition, Basis Theorem

A finitely generated abelian group V is the direct sum of cyclic subgroups and a free abelian group: ๐‘‰ = ๐ถ๐‘‘1

โŠ• โ‹ฏ โŠ• ๐ถ๐‘‘๐‘˜โŠ• ๐ฟ. The orders can be chosen uniquely to satisfy either of the

following two conditions:

1. 1 < ๐‘‘1|๐‘‘2 โ‹ฏ |๐‘‘๐‘˜ 2. All the ๐‘‘๐‘– are prime power orders. (Uniqueness follows from counting orders in p-

groups.)

5-5 Application 2: Linear Operators A linear operator T on a F-vector space corresponds to a ๐น[๐‘ก]-module with multiplication by a polynomial defined by ๐‘ก๐‘ฃ = ๐‘‡ ๐‘ฃ , ๐‘“ ๐‘ก ๐‘ฃ = ๐‘“ ๐‘‡ (๐‘ฃ). A submodule corresponds to a T-invariant subspace. The structure theorem gives: Rational Canonical Form: Every linear operator T on finite-dimensional V has a rational canonical form.

๐‘‡ ๐›ฝ =

๐ถ1 ๐‘‚๐‘‚ ๐ถ2

โ‹ฏ ๐‘‚โ‹ฏ ๐‘‚

โ‹ฎ โ‹ฎ๐‘‚ ๐‘‚

โ‹ฎโ‹ฏ ๐ถ๐‘Ÿ

where each ๐ถ๐‘– is the companion matrix of an invariant factor ๐‘๐‘– . The rational canonical form

โ„ž๐‘›

UL

W

๐ถ

๐‘–

๐ต

โ„ž๐‘š ๐ด

is unique under the condition ๐‘๐‘–+1|๐‘๐‘– for each 1 โ‰ค ๐‘– < ๐‘Ÿ.

The companion matrix of the monic polynomial ๐‘ ๐‘ก = ๐‘Ž0 + ๐‘Ž1๐‘ก + โ‹ฏ + ๐‘Ž๐‘˜โˆ’1๐‘ก๐‘˜โˆ’1 + ๐‘ก๐‘˜ is

๐ถ(๐‘) =

0 01 00 1

โ‹ฏ 0 โˆ’๐‘Ž0

โ‹ฏ 0 โˆ’๐‘Ž1

โ‹ฏ 0 โˆ’๐‘Ž2

โ‹ฎ โ‹ฎ0 0

โ‹ฑ โ‹ฎ โ‹ฎโ‹ฏ 1 โˆ’๐‘Ž๐‘˜โˆ’1

because the characteristic polynomial of C(p) is โˆ’1 ๐‘˜๐‘(๐‘ก).

The product of the invariant factors is the characteristic polynomial of T.

5-6 Polynomial Rings in Several Variables

Let ๐‘… = โ„‚ ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘˜ = โ„‚ ๐‘‹ ๐‘‹ โˆˆ โ„‚๐‘˜ , and V be a finitely generated R-module with presentation matrix ๐ด(๐‘‹). V is a free module of rank ๐‘Ÿ iff ๐ด(๐‘) has rank ๐‘š โˆ’ ๐‘Ÿ at every point

๐‘ โˆˆ โ„‚๐‘˜ . The subspace ๐‘Š(๐‘) spanned by the columns varies continuously as c if the dimension does not โ€œjump around.โ€ Continuous families of vector spaces are vector bundles. V is free iff

๐‘Š(๐‘) forms a vector bundle over โ„‚๐‘› .

5-7 Tensor Products Commutative Rings: The tensor product ๐‘€ โŠ—๐‘… ๐‘ of R-modules M and N is the (unique) R-module T (along with a bilinear map ๐‘•: ๐‘€ ร— ๐‘ โ†’ ๐‘‡) satisfying the Universal Mapping Property: for any bilinear map

๐‘“: ๐‘€ ร— ๐‘ โ†’ ๐‘ƒ, there is a unique R-homomorphism ๐‘”: ๐‘‡ โ†’ ๐‘ƒ such that ๐‘“ = ๐‘”๐‘•.

One way to construct it is as follows: Let F be the free module with basis ๐‘€ ร— ๐‘, and let ๐บ be the submodule generated by ๐‘ฅ + ๐‘ฅโ€ฒ , ๐‘ฆ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅโ€ฒ , ๐‘ฆ), ๐‘ฅ, ๐‘ฆ + ๐‘ฆ โ€ฒ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅ, ๐‘ฆ โ€ฒ), ๐‘Ÿ๐‘ฅ, ๐‘ฆ โˆ’ ๐‘Ÿ(๐‘ฅ, ๐‘ฆ), ๐‘ฅ, ๐‘Ÿ๐‘ฆ โˆ’ ๐‘Ÿ(๐‘ฅ, ๐‘ฆ) for all ๐‘ฅ, ๐‘ฅโ€ฒ โˆˆ ๐‘€; ๐‘ฆ, ๐‘ฆ โ€ฒ โˆˆ ๐‘, ๐‘Ÿ โˆˆ ๐‘…. Then ๐‘€ โŠ—๐‘… ๐‘ = ๐น/๐บ;

๐‘ฅ โŠ— ๐‘ฆ denotes ๐‘ฅ, ๐‘ฆ + ๐บ. The relations make ๐‘ฅ โŠ— ๐‘ฆ linear: 1. ๐‘ฅ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ

2. ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฆ โ€ฒ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅ โŠ— ๐‘ฆ โ€ฒ 3. ๐‘Ÿ ๐‘ฅ โŠ— ๐‘ฆ = ๐‘Ÿ๐‘ฅ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘Ÿ๐‘ฆ

Note that in general, an element of ๐‘€ โŠ— ๐‘ is a sum (linear combination) of elements in the

form ๐‘ฅ โŠ— ๐‘ฆ. Basic properties (prove using UMP)

1. ๐‘€ โŠ— ๐‘ โ‰… ๐‘ โŠ— ๐‘€ 2. ๐‘€ โŠ— ๐‘ โŠ— ๐‘ƒ โ‰… ๐‘€ โŠ— (๐‘ โŠ— ๐‘ƒ)

3. ๐‘€ โŠ— ๐‘ โŠ• ๐‘ƒ โ‰… ๐‘€ โŠ— ๐‘ โŠ• (๐‘€ โŠ— ๐‘ƒ)

4. ๐‘… โŠ—๐‘… ๐‘€ โ‰… ๐‘€, ๐‘…๐‘š โŠ— ๐‘€ โ‰… ๐‘€๐‘š where ๐ด๐‘š means the direct sum of m copies of A. 5. ๐‘…๐‘š โŠ— ๐‘…๐‘› = ๐‘…๐‘š๐‘› .

The tensor product ๐‘“1 โŠ— ๐‘“2 of homomorphisms ๐‘“1: ๐‘€1 โ†’ ๐‘1, ๐‘“2: ๐‘€2 โ†’ ๐‘2 is the map ๐‘“: ๐‘€1 โŠ—๐‘€2 โ†’ ๐‘1 โŠ— ๐‘2 such that ๐‘“ ๐‘ฅ1 โŠ— ๐‘ฅ2 = ๐‘“1 ๐‘ฅ1 โŠ— ๐‘“2(๐‘ฅ2). Note that ๐‘”1 โŠ— ๐‘”2 โˆ˜ ๐‘“1 โŠ— ๐‘“2 = ๐‘”1 โˆ˜ ๐‘“1 โŠ— (๐‘”2 โˆ˜ ๐‘“2). When applied to the linear transformations corresponding to the

homomorphisms, the tensor (Kronecker) product of ๐‘ ร— ๐‘ž matrix A and ๐‘Ÿ ร— ๐‘  matrix B is

๐‘€ ร— ๐‘ ๐‘ƒ

๐‘‡ ๐‘•

๐‘“

๐‘”

๐ดโจ‚๐ต =

๐‘Ž11๐ต โ‹ฏ ๐‘Ž1๐‘ž๐ต

โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘1๐ต โ‹ฏ ๐‘Ž๐‘๐‘ž ๐ต

. The ordering of the basis is ๐‘ฃ1 โŠ— ๐‘ค1, โ€ฆ , ๐‘ฃ1 โŠ— ๐‘ค๐‘ž , โ€ฆ , ๐‘ฃ๐‘ โŠ— ๐‘ค๐‘ž .

For the tensor product of algebras, multiplication is given by ๐‘Ž โŠ— ๐‘ ๐‘Žโ€ฒ โŠ— ๐‘โ€ฒ = ๐‘Ž๐‘Žโ€ฒ โŠ— ๐‘๐‘โ€ฒ. Noncommutative rings: The tensor product ๐‘€ โŠ—๐‘… ๐‘ of right R-module ๐‘€๐‘… and left R-module ๐‘๐‘…

is an abelian

group T (along with a bilinear map ๐‘•: ๐‘€ ร— ๐‘ โ†’ ๐‘‡) satisfying the Universal Mapping Property: for any biadditive, R-balanced map ๐‘“: ๐‘€ ร— ๐‘ โ†’ ๐‘ƒ

1. ๐‘“ ๐‘ฅ + ๐‘ฅโ€ฒ , ๐‘ฆ = ๐‘“ ๐‘ฅ, ๐‘ฆ + ๐‘“ ๐‘ฅโ€ฒ , ๐‘ฆ , ๐‘“ ๐‘ฅ, ๐‘ฆ + ๐‘ฆ โ€ฒ = ๐‘“ ๐‘ฅ, ๐‘ฆ + ๐‘“ ๐‘ฅ, ๐‘ฆ โ€ฒ 2. ๐‘“ ๐‘ฅ๐‘Ÿ, ๐‘ฆ = ๐‘“(๐‘ฅ, ๐‘Ÿ๐‘ฆ)

there is a unique abelian group homomorphism ๐‘”: ๐‘‡ โ†’ ๐‘ƒ such that ๐‘“ = ๐‘”๐‘•.

One way to construct it is as follows: Let F be the free module with basis ๐‘€ ร— ๐‘, and let ๐บ be the submodule generated by ๐‘ฅ + ๐‘ฅโ€ฒ , ๐‘ฆ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅโ€ฒ , ๐‘ฆ), ๐‘ฅ, ๐‘ฆ + ๐‘ฆ โ€ฒ โˆ’ ๐‘ฅ, ๐‘ฆ โˆ’ (๐‘ฅ, ๐‘ฆ โ€ฒ), ๐‘ฅ๐‘Ÿ, ๐‘ฆ โˆ’ (๐‘ฅ, ๐‘Ÿ๐‘ฆ) for all ๐‘ฅ, ๐‘ฅโ€ฒ โˆˆ ๐‘€; ๐‘ฆ, ๐‘ฆ โ€ฒ โˆˆ ๐‘, ๐‘Ÿ โˆˆ ๐‘…. Then ๐‘€ โŠ—๐‘… ๐‘ = ๐น/๐บ; ๐‘ฅ โŠ— ๐‘ฆ denotes ๐‘ฅ, ๐‘ฆ + ๐บ. The relations make ๐‘ฅ โŠ— ๐‘ฆ biadditive and R-balanced:

1. ๐‘ฅ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅโ€ฒ โŠ— ๐‘ฆ 2. ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฆ โ€ฒ = ๐‘ฅ โŠ— ๐‘ฆ + ๐‘ฅ โŠ— ๐‘ฆ โ€ฒ

3. ๐‘ฅ๐‘Ÿ โŠ— ๐‘ฆ = ๐‘ฅ โŠ— ๐‘Ÿ๐‘ฆ

If M is a (S,R) bimodule and N is a (R,T) module, then ๐‘€ โŠ— ๐‘ is a S-T bimodule. Definitions generalize to more modules with multiadditive balanced maps.

The above properties all hold except for commutativity; (2) is replaced by ๐‘€ โŠ—๐‘… ๐‘ โŠ—๐‘† ๐‘ƒ โ‰… ๐‘€ โŠ—๐‘… ๐‘ โŠ—๐‘† ๐‘ƒ โ‰… ๐‘€ โŠ—๐‘… (๐‘ โŠ—๐‘† ๐‘ƒ).

๐‘€ ร— ๐‘ ๐‘ƒ

๐‘‡ ๐‘•

๐‘“

๐‘”

6 Galois Theory 6-1 Symmetric Polynomials

Symmetric Polynomials A symmetric polynomial is fixed by every permutation of the variables.

The elementary symmetric polynomial in n variables ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› of degree k is

๐‘ ๐‘˜ = ๐‘ฅ๐‘– 1 โ‹ฏ๐‘ฅ๐‘– ๐‘˜

1โ‰ค๐‘–(1)<โ‹ฏ<๐‘–(๐‘˜)โ‰ค๐‘›

.

Vietaโ€™s Theorem: If ๐‘ฅ โˆ’ ๐›ผ1 โ‹ฏ ๐‘ฅ โˆ’ ๐›ผ๐‘› = ๐‘ฅ๐‘› + ๐‘Ž1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž๐‘›

Then ๐›ผ๐‘– = โˆ’1 ๐‘–๐‘Ž๐‘– .

Newtonโ€™s identities: Let ๐‘ค๐‘˜ = ๐›ผ1๐‘˜ + โ‹ฏ + ๐›ผ๐‘›

๐‘˜ . Then

๐‘ค๐‘˜ โˆ’ ๐‘ 1๐‘ค๐‘˜โˆ’1 + โ‹ฏ + โˆ’1 ๐‘˜๐‘ ๐‘˜๐‘ค1 + โˆ’1 ๐‘˜๐‘˜๐‘ ๐‘˜ = 0 Fundamental Theorem of Symmetric Polynomials: Every symmetric polynomial in ๐‘…[๐‘ฅ] can be written in a unique way as a polynomial in the elementary symmetric polynomials. The polynomial will be in ๐‘…[๐‘ฅ]. Pf. Introduce a lexicographic ordering of the monomials and use induction. Corollaries:

1. If ๐‘“ ๐‘ฅ โˆˆ ๐น[๐‘ฅ] has roots ๐›ผ1, โ€ฆ , ๐›ผ๐‘› in ๐พ โŠ‡ ๐น, and ๐‘” ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› โˆˆ ๐น[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› ] is a symmetric polynomial, then ๐‘” ๐›ผ1, โ€ฆ , ๐›ผ๐‘› โˆˆ ๐น.

2. If ๐‘1, โ€ฆ , ๐‘๐‘˜ is the orbit of ๐‘1 for the operation of the symmetric group on the variables, and ๐‘•(๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘˜) is a symmetric polynomial, then ๐‘•(๐‘1, โ€ฆ , ๐‘๐‘˜) is a symmetric polynomial.

6-2 Discriminant If ๐‘ƒ ๐‘ฅ = ๐‘ฅ๐‘› + ๐‘Ž1๐‘ฅ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž๐‘› has roots ๐›ผ1, โ€ฆ , ๐›ผ๐‘› , then the discriminant of P is

๐ท = ๐›ผ๐‘– โˆ’ ๐›ผ๐‘— 2

1โ‰ค๐‘–<๐‘—โ‰ค๐‘›

.

Since D is a symmetric polynomial in the ๐‘ข๐‘– , it can be written in terms of the elementary symmetric polynomials. (It can always be defined in terms of ฮ” whether or not P splits completely.)

๐ท ๐›ผ1, โ€ฆ , ๐›ผ๐‘› = ฮ” ๐‘ 1, โ€ฆ , ๐‘ ๐‘› = ฮ”(โˆ’๐‘Ž1, โ€ฆ , โˆ’1 ๐‘›๐‘Ž๐‘›) Ex.

1. ๐ท ๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ = ๐‘2 โˆ’ 4๐‘.

2. ๐ท ๐‘ฅ3 + ๐‘๐‘ฅ + ๐‘ž = โˆ’4๐‘3 โˆ’ 27๐‘ž2.

6-3 Galois Group Assume fields have characteristic 0. The F-automorphisms of an extension K form the Galois group ๐บ(๐พ/๐น) of K over F. ๐พ/๐น is

a Galois extension3 if |๐บ(๐พ/๐น)| = [๐พ: ๐น]. Ex. ๐บ(โ„‚/โ„) = {๐ผ, conjugation}. Any two splitting fields of ๐‘“ over F are isomorphic.

3 In general (when K is not necessarily a finite extension) a Galois extension is defined as a normal, separable field

extension. A separable polynomial has no repeated roots in a splitting field; n element is separable over F if its minimal

polynomial is separable; a separable field extension has every element separable over F.

Pf. (a) An extension field contains at most one splitting field of ๐‘“ over F. (b) Suppose ๐พ1, ๐พ2 are 2 splitting fields. Take a primitive element ๐›พ โˆˆ ๐พ1 with irreducible polynomial ๐‘”. Choose

an extension L of ๐พ2 so that g has a root ๐›พโ€ฒ. Then use (a).

6-4 Fixed Fields

Let H be a group of automorphisms of a field K. The fixed field of H, ๐พ๐ป, is the set of elements of K fixed by every group element.

๐พ๐ป = ๐›ผ โˆˆ ๐พ ๐œŽ ๐›ผ = ๐›ผ โˆ€๐œŽ โˆˆ ๐ป Fixed Field Theorem:

1. ๐พ: ๐พ๐ป = ๐ป : The degree of K over ๐พ๐ป is equal to the order of the group. 2. ๐ป = ๐บ(๐พ/๐พ๐ป): K is a Galois extension of ๐พ๐ป with Galois group H.

Pf.

1. Let ๐›ฝ1 โˆˆ ๐พ with H-orbit ๐›ฝ1, โ€ฆ , ๐›ฝ๐‘Ÿ . For any ๐‘–, there is ๐œŽ โˆˆ ๐ป with ๐œŽ ๐›ฝ1 = ๐›ฝ๐‘– . Thus ๐‘ฅ โˆ’ ๐›ฝ๐‘– |๐‘•. Since ๐‘” ๐‘ฅ = ๐‘ฅ โˆ’ ๐›ฝ1 โ‹ฏ ๐‘ฅ โˆ’ ๐›ฝ๐‘Ÿ โˆˆ ๐พ๐ป[๐‘ฅ] by symmetry, ๐‘” is the irreducible

polynomial for ๐›ฝ1 over ๐พ๐ป. r divides the order of H. 2. If ๐พ: ๐น = โˆž, there exist elements in K whose degrees over F are arbitrarily large.

3. By (1), ๐พ/๐พ๐ป is algebraic, so by (2), [๐พ: ๐พ๐ป] is finite. The stabilizer of a primitive

element is trivial, so the orbit has order ๐‘› = |๐ป|. By (1), ๐›พ has degree ๐‘› over ๐พ๐ป.

Then ๐พ: ๐พ๐ป = ๐‘›. 4. Let ๐บ = ๐บ(๐พ/๐พ๐ป). Then ๐ป โŠ† ๐บ โ‡’ ๐พ๐บ โŠ† ๐พ๐ป. By definition, every element of G acts as

the identity on ๐พ๐ป so ๐พ๐ป โŠ† ๐พ๐บ . Lรผrothโ€™s Theorem: Let ๐น โŠƒ โ„‚ be a subfield of the field โ„‚(๐‘ก) of rational functions. Then ๐น is a field โ„‚(๐‘ข) of rational functions.

6-5 Galois Extensions and Splitting Fields Splitting Fields A splitting field of ๐‘“ โˆˆ ๐น[๐‘ฅ] over ๐น is an extension ๐พ/๐น such that

1. ๐‘“ splits completely in K: ๐‘“ ๐‘ฅ = ๐‘ฅ โˆ’ ๐›ผ1 โ‹ฏ ๐‘ฅ โˆ’ ๐›ผ๐‘› , ๐›ผ๐‘– โˆˆ ๐พ. 2. ๐พ = ๐น(๐›ผ1, โ€ฆ , ๐‘Ž๐‘›)

A splitting field is a finite extension, and every finite extension is contained in a splitting field. Splitting Theorem: If K is the splitting field of some ๐‘“ ๐‘ฅ โˆˆ ๐น[๐‘ฅ], then any irreducible

polynomial ๐‘” ๐‘ฅ โˆˆ ๐น[๐‘ฅ] with one root in K splits completely in K. (A field satisfying the latter condition is called a normal extension of F.) Conversely, any finite normal extension is a splitting field. Pf. Suppose ๐‘”(๐‘ฅ) has the root ๐›ฝ โˆˆ ๐พ. Then ๐‘1 ๐›ผ1, โ€ฆ , ๐›ผ๐‘› = ๐›ฝ for some ๐‘1 โˆˆ ๐น[๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›]. Let

๐‘1, โ€ฆ , ๐‘๐‘˜ be the orbit of ๐‘1 under the symmetric group. Then โˆ ๐‘ฅ โˆ’ ๐‘๐‘– ๐›ผ1, โ€ฆ , ๐›ผ๐‘› ๐‘˜๐‘–=1 โˆˆ ๐น[๐‘ฅ]

by symmetry so it is divisible by ๐‘”(๐‘ฅ), the irreducible polynomial of ๐›ฝ.

If K is an extension of F, then an intermediate field satisfies ๐น โŠ† ๐ฟ โŠ† ๐พ. A proper intermediate field is neither F nor K. Note ๐น โŠ† ๐ฟ โ‡’ ๐บ ๐พ ๐ฟ โŠ† ๐บ(๐พ ๐น ).

The order of ๐บ = ๐บ(๐พ ๐น ) divides [๐พ: ๐น], since ๐บ = [๐พ: ๐พ๐บ] and ๐พ: ๐น = ๐พ: ๐พ๐บ [๐พ๐บ : ๐น]. Characteristic Properties of Galois Extensions: For a finite extension K, the following are equivalent.

1. ๐พ ๐น is a Galois extension. 2. ๐พ๐บ = ๐น where ๐บ = ๐บ(๐พ ๐น ).

3. ๐พ is a splitting field over F. Pf. (1)โ‡”(2): By the Fixed Field Theorem, ๐บ = [๐พ: ๐พ๐บ]. (1)โ‡”(3): Let ๐›พ1 be a primitive element for K, with irreducible polynomial ๐‘“. Let ๐›พ1, โ€ฆ , ๐›พ๐‘Ÿ be

the roots of ๐‘“ in K. There is a unique F-automorphism ๐œŽ๐‘– sending ๐›พ1 โ‡ ๐›พ๐‘– for each i, and these make up the group ๐บ(๐พ ๐น ). Thus the order of ๐บ(๐พ ๐น ) is equal to the number of

conjugates of ๐›พ1 in K. So ๐พ ๐น Galoisโ‡” ๐‘Ÿ = ๐บ = ๐พ: ๐พ๐บ โ‡” ๐‘“ (degree r) splits completely in

Kโ‡” K is a splitting field. If ๐พ ๐น is a Galois extension, and ๐‘” โˆˆ ๐น[๐‘ฅ] splits completely in K with roots ๐›ฝ1, โ€ฆ , ๐›ฝ๐‘Ÿ , then

G operates on the set of roots {๐›ฝ๐‘–}. G operates faithfully if K is a splitting field of ๐‘” over ๐น.

G operates transitively if ๐‘” is irreducible over F.

If K is the splitting field of irreducible ๐‘”, then G embeds as a transitive subgroup of ๐‘†๐‘Ÿ .

6-6 Fundamental Theorem Fundamental Theorem of Galois Theory: Let K be a Galois extension of a field F, and let ๐บ = ๐บ(๐พ/๐น). Then there is a bijection between subgroups of G and intermediate fields, defined by

๐ป โ‡ ๐พ๐ป ๐บ(๐พ ๐ฟ ) โ‡œ ๐ฟ

Let ๐ฟ = ๐พ๐ป (the fixed field of a subgroup H of G). ๐ฟ ๐น is a Galois extension iff H is a normal subgroup of G. If so, ๐บ ๐ฟ ๐น โ‰… ๐บ ๐ป .

Pf. Let ๐›พ1 be a primitive element for ๐ฟ ๐น and let ๐‘” be the irreducible polynomial for ๐›พ1 over

F. Let the roots of ๐‘” in ๐พ be ๐›พ1, โ€ฆ , ๐›พ๐‘Ÿ . For ๐œŽ โˆˆ ๐บ, ๐œŽ ๐›พ1 = ๐›พ๐‘– , the stabilizer of ๐›พ๐‘– is ๐œŽ๐ป๐œŽโˆ’1.

Thus ๐œŽ๐ป๐œŽโˆ’1 = ๐ป โ‡” ๐›พ๐‘– โˆˆ ๐ฟ = ๐พ๐ป. H is normalโ‡”All ๐›พ๐‘– โˆˆ ๐ฟ โ‡” ๐ฟ ๐น Galois. Restricting ๐œŽ to L gives a homomorphism ๐œ‘: ๐บ โ†’ ๐บ(๐ฟ ๐น ) with kernel H.

6-7 Roots of Unity

Let ๐œ๐‘› = ๐‘’2๐œ‹๐‘–

๐‘› . ๐น(๐œ๐‘›) is a cyclotomic field. For p prime, the Galois group of ๐น(๐œ๐‘) is

isomorphic to ๐”ฝ๐‘ร—, of order ๐‘ โˆ’ 1.

Ex. For ๐‘ = 2๐‘Ÿ + 1, G is cyclic of order 2๐‘Ÿ . Let ๐œ‰ be a primitive root modulo ๐‘, and ๐œŽ ๐œ = ๐œ๐œ‰ .

The degree of each extension in the following chain is 2: ๐น = ๐พโŒŒ๐œŽโŒ โŠ‚ ๐พโŒŒ๐œŽ2โŒ โŠ‚ โ‹ฏ โŠ‚ ๐พโŒŒ๐œŽ2๐‘Ÿโˆ’1โŒ โŠ‚

๐พโŒŒ๐œŽ2๐‘ŸโŒ = ๐พ. cos

2๐œ‹

๐‘ generates ๐พโŒŒ๐œŽ2๐‘Ÿโˆ’1

โŒ so the regular p-gon can be constructed.

Kronecker-Weber Theorem: Every Galois extension of โ„š whose Galois group is abelian is contained in a cyclotomic field โ„š(๐œ๐‘›). Ex. If p is prime and L is the unique quadratic extension of โ„š in โ„š(๐œ๐‘),

1. If ๐‘ โ‰ก 1 (mod 4) then ๐ฟ = โ„š( ๐‘).

2. If ๐‘ โ‰ก 3 (mod 4) then ๐ฟ = โ„š(๐‘– ๐‘).

Show this by letting ๐œŽ be a generator as before, take the orbit sums of the roots for โŒŒ๐œŽ2โŒ. Kummer Extensions

K

L

F

{ }

} ๐บ = ๐บ(๐พ ๐น ) operates on K fixing F.

๐ป = ๐บ(๐พ ๐ฟ ) operates on K fixing L.

๐ป normal: ๐บ ๐ป โ‰… ๐บ ๐ฟ ๐น operates here.

Let ๐น be a subfield of โ„‚ containing ๐œ = ๐‘’2๐œ‹๐‘– ๐‘ , and let ๐พ ๐น be a Galois extension of degree p. Then K is obtained by adjoining a pth root (some ๐›ฝ with ๐›ฝ๐‘ โˆˆ ๐น). Pf.

1. For ๐‘ โˆˆ ๐น, ๐‘” ๐‘ฅ = ๐‘ฅ๐‘ โˆ’ ๐‘ is either irreducible in F, or splits completely in F. (Take

๐ผ โ‰  ๐œŽ โˆˆ ๐บ(๐พ ๐น ); then ๐œŽ๐‘˜ ๐›ฝ = ๐œ๐‘˜๐‘ฃ๐›ฝ for some ๐‘ฃ โ‰  0, so G operates transitively on the roots of ๐‘”.)

2. K is a vector space over F; each ๐œŽ โˆˆ ๐บ is a linear operator. Choose a generator ๐œŽ.

๐œŽ๐‘ = ๐ผ implies that the matrix is diagonalizable and all eigenvalues are powers of ๐œ.

Let ๐›ฝ be an eigenvector with eigenvalue ๐œ† โ‰  1; then ๐œŽ ๐›ฝ๐‘ = ๐›ฝ๐‘ โ‡’ ๐›ฝ๐‘ โˆˆ ๐พ๐บ = ๐น, but

๐›ฝ โˆ‰ ๐น, so ๐น ๐›ฝ = ๐พ.

6-8 Cubic Equations Let K be the splitting field of an irreducible cubic polynomial ๐‘“ over F with roots ๐›ผ1, ๐›ผ2 , ๐›ผ3, let

D be the discriminant of ๐‘“, and let ๐บ = ๐บ ๐พ ๐น . Ifโ€ฆ ๐พ: ๐น ๐บ โ‰… Chain Proper intermediate fields

๐ท is not a square in F

3 ๐ด3 โ‰… ๐ถ3 ๐น โŠ‚ ๐น ๐›ผ1 = ๐พ None

๐ท is a square in F 6 ๐บ โ‰… ๐‘†3 ๐น โŠ‚ ๐น ๐›ผ1 โŠ‚ ๐น ๐›ผ1, ๐‘Ž2 = ๐พ

๐น ๐›ผ1 , ๐น ๐›ผ2 , ๐น ๐›ผ3 , ๐น(๐›ฟ)

Pf. Let ๐›ฟ = ๐›ผ1 โˆ’ ๐›ผ2 ๐›ผ1 โˆ’ ๐›ผ3 ๐›ผ2 โˆ’ ๐›ผ3 = ยฑ ๐ท. ๐›ฟ โˆˆ ๐น โ‡” ๐›ฟ fixed by every element of G โ‡” only even permutations in G.

In general, for an irreducible polynomial of any degree, ๐›ฟ = ๐ท โˆˆ ๐น โ‡” G contains only even permutations.

Cubic Formula

To solve ๐‘ฅ3 + ๐‘Ž2๐‘ฅ2 + ๐‘Ž1๐‘ฅ + ๐‘Ž0 = 0 first substitute ๐‘ฅ = ๐‘ฆ โˆ’ ๐‘Ž2/3 (Tschirnhausen

transformation) to put it in the form ๐‘ฅ3 + ๐‘๐‘ฅ + ๐‘ž = 0.

For roots ๐›ผ1, โ€ฆ , ๐›ผ๐‘› , ๐‘ง = ๐›ผ1 + ๐œ”๐›ผ2 + ๐œ”2๐›ผ3, ๐‘งโ€ฒ = ๐›ผ1 + ๐œ”2๐›ผ2 + ๐œ”๐‘Ž3 are eigenvectors for

๐œŽ = (123). Let ๐ด = ๐›ผ13

cyc , ๐ต = ๐›ผ12

cyc ๐›ผ2, ๐ถ = ๐›ผ1๐›ผ22

cyc . Then ๐ต โˆ’ ๐ถ = ๐ท. Express

๐ด, ๐ต + ๐ถ in terms of elementary symmetric polynomials, apply Vietaโ€™s formula, and solve for ๐ด, ๐ต, ๐ถ. Find ๐‘ง3, then take the cube root:

๐‘ฅ = โˆ’๐‘ž

2+

๐‘3

27+

๐‘ž2

4

3

โˆ’ ๐‘ž

2+

๐‘3

27+

๐‘ž2

4

3

6-9 Quartic Equations Let ๐‘“ โˆˆ ๐น[๐‘ฅ] be an irreducible quartic polynomial.

Let ๐›ฝ1 = ๐›ผ1๐›ผ2 + ๐›ผ3๐›ผ4, ๐›ฝ2 = ๐›ผ1๐›ผ3 + ๐›ผ2๐›ผ4, ๐›ฝ3 = ๐›ผ1๐›ผ4 + ๐›ผ2๐›ผ3. ๐‘” ๐‘ฅ = ๐‘ฅ โˆ’ ๐›ฝ1 ๐‘ฅ โˆ’ ๐›ฝ2 (๐‘ฅ โˆ’ ๐›ฝ3) is the resolvent cubic of ๐‘“.

What is ๐บ = ๐บ(๐พ/๐น)?

D square D not square

๐‘” reducible ๐ท2 (๐‘” splits completely) ๐ท4 or ๐ถ4 (๐‘” has 1 root in F)

๐‘” irreducible ๐ด4 ๐‘†4

๐ท2 = {๐ผ, 12 34 , 13 24 , 14 23 } For the ambiguous case, let ๐›พ = ๐›ผ1๐›ผ2 โˆ’ ๐›ผ3๐›ผ4, ๐œ– = ๐›ผ1 + ๐›ผ2 โˆ’ ๐›ผ3 โˆ’ ๐›ผ4. ๐›ฟ๐›พ or ๐›ฟ๐œ– is a square in F iff ๐บ = ๐ถ4.

Pf. The ๐›ฝ๐‘– are distinct since ๐›ฝ1 โˆ’ ๐›ฝ2 = ๐›ผ1 โˆ’ ๐›ผ4 (๐›ผ2 โˆ’ ๐›ผ3). ๐‘†4 operates on ๐ต = {๐›ฝ๐‘–}, giving ๐œ‘: ๐‘†4 โ†’ ๐‘†3. If ๐‘” irreducible, G operates transitively on B, so 3| ๐บ .

Special case: ๐‘“ ๐‘ฅ = ๐‘ฅ4 + ๐‘๐‘ฅ2 + ๐‘ = 0. Then the roots are ๐›ผ1, ๐›ผ2 = โˆ’๐‘ยฑ ๐‘2โˆ’4๐‘

2,

๐›ผ3 = โˆ’๐›ผ1, and ๐›ผ4 = โˆ’๐›ผ2, so ๐บ โŠ† ๐ท4. Look at expressions such as ๐›ผ1๐›ผ2. Quartics are solvable in the following way:

1. Adjoin ๐›ฟ = ๐ท. 2. Use Cardanoโ€™s formula to solve for a root of the resolvent cubic ๐‘”(๐‘ฅ) and adjoin it.

3. The Galois group over the field extension K is a subgroup of ๐ท2. At most 2 more square root extensions suffice.

6-10 Quintic Equations and the Impossibility Theorem Quintic Equations Impossibility Theorem: The general quintic equation is not solvable by radicals. Pf.

1. The following are equivalent: (We say that ๐›ผ is solvable [by radicals] over F.) a. There is a chain of subfields ๐น = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘Ÿ = ๐พ โŠ‚ โ„‚ such that ๐›ผ โˆˆ

๐น๐‘Ÿ , ๐น๐‘—+1 = ๐น๐‘— (๐›ฝ๐‘— +1) where a power of ๐›ฝ๐‘— +1 is in ๐น๐‘— .

b. There is a chain of subfields ๐น = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘Ÿ = ๐พ โŠ‚ โ„‚ such that ๐›ผ โˆˆ ๐น๐‘Ÿ , and ๐น๐‘—+1 is a Galois extension of ๐น๐‘— of prime degree. (Equivalent to (a) by

Kummerโ€™s Theorem.)

c. There is a chain of subfields ๐น = ๐น0 โŠ‚ ๐น1 โŠ‚ โ‹ฏ โŠ‚ ๐น๐‘Ÿ = ๐พ โŠ‚ โ„‚ such that ๐›ผ โˆˆ ๐น๐‘Ÿ , and ๐น๐‘—+1 is an abelian Galois extension of ๐น๐‘— .

2. Let ๐‘“, ๐‘” โˆˆ ๐น[๐‘ฅ], and let ๐นโ€ฒ be a splitting field of ๐‘“๐‘”. ๐พโ€ฒ contains a splitting field ๐พ of ๐‘“, and a splitting field ๐นโ€ฒ of ๐‘”. Let ๐บ = ๐บ ๐พ ๐น , ๐ป = ๐บ ๐นโ€ฒ ๐น , ๐’ข = ๐บ(๐พโ€ฒ /๐น). Then ๐บ, ๐ป

are quotients of ๐’ข (Fundamental Theorem) and ๐’ข is isomorphic to a subgroup of

๐บ ร— ๐ป.

a. Let the canonical maps ๐’ข โ†’ ๐บ, ๐’ข โ†’ ๐ป send ๐œŽ โ‡ ๐œŽ๐‘“ , ๐œŽ โ‡ ๐œŽ๐‘” . Then ๐’ข โ†’ ๐บ ร— ๐ป

defined by ๐œŽ โ‡ (๐œŽ๐‘“ , ๐œŽ๐‘”) is injective.

3. Let ๐‘“ โˆˆ ๐น[๐‘ฅ] be a polynomial whose Galois group G is simple and nonabelian. Let ๐นโ€ฒ be a Galois extension of F with Galois group of prime order, and let ๐พโ€ฒ be a splitting field of ๐‘“ over ๐นโ€ฒ. Then ๐บ ๐พโ€ฒ ๐นโ€ฒ โ‰… ๐บ. In other words, we cannot make progress solving for the roots by replacing F by a prime extension.

a. From (3), |๐บ| divides |๐’ข| and |๐’ข| divides ๐บ ร— ๐ป = ๐‘|๐บ|. 2 cases:

i. ๐’ข = ๐บ : Then ๐พโ€ฒ = |๐พ|, ๐ป is a quotient of |๐’ข|, contradicting simplicity. ii. ๐’ข = ๐บ ร— ๐ป : Then ๐บ = ๐บ(๐พโ€ฒ ๐นโ€ฒ ).

4. If ๐‘“ is an irreducible quintic polynomial with Galois group ๐ด5 or ๐‘†5 then the roots of ๐‘“ are not solvable over F.

a. Adjoin ๐›ฟ = ๐ท to reduce to ๐ด5 case. b. ๐ด5 is simple. c. By (3), in the โ€œsolvable series,โ€ each field extension has Galois group ๐ด5. ๐‘“

remains irreducible after each extension.

5. There exists a polynomial with Galois group ๐‘†5.

๐พโ€ฒ

๐นโ€ฒ ๐พ

๐น ๐บ ๐ป

๐’ข

a. A subgroup of ๐‘†5 containing a 5-cycle and transposition is the whole group. b. If ๐‘“ is a quintic irreducible polynomial with exactly 3 real roots, then the Galois

group is ๐‘†5 by (a).

c. Example: ๐‘ฅ5 + 16๐‘ฅ + 2. In general, a polynomial equation over a field of characteristic 0 is solvable by radicals iff its Galois group is a solvable group. In (4) above, the Galois group after adjoining an element is a subgroup of the previous one, with factor group prime cyclic.

6-11 Transcendence Theory

Lindemannโ€“Weierstrass Theorem: If ๐›ผ1, . . . , ๐›ผ๐‘› are algebraic numbers linearly independent

over the rational numbers โ„š, then ๐‘’๐›ผ1 , . . . , ๐‘’๐›ผ๐‘› are algebraically independent over โ„š; in other words the extension field โ„š ๐‘’๐›ผ1 , . . . , ๐‘’๐›ผ๐‘› has transcendence degree n over โ„š. [Incomplete]

7 Algebras An algebra ๐’œ over a ring R is a module ๐’œ over R with multiplication defined so that for all

๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐’œ, ๐‘ โˆˆ ๐‘…,

1. Associative ๐‘ฅ ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ฆ ๐‘ง

2. Distributive ๐‘ฅ ๐‘ฆ + ๐‘ง = ๐‘ฅ๐‘ฆ + ๐‘ฅ๐‘ง, ๐‘ฅ + ๐‘ฆ ๐‘ง = ๐‘ฅ๐‘ง + ๐‘ฆ๐‘ง 3. ๐‘ ๐‘ฅ๐‘ฆ = ๐‘๐‘ฅ ๐‘ฆ = ๐‘ฅ(๐‘๐‘ฆ)

If there is an element 1 โˆˆ ๐’œ so that 1๐‘ฅ = ๐‘ฅ1 = ๐‘ฅ, then 1 is the identity element. ๐’œ is commutative if ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ. ๐’œ is a division algebra if each element has an inverse (๐‘ฅ๐‘ฅโˆ’1 = 1).

7-1 Division Algebras Frobenius Theorem: The only finite-dimensional division algebras D over the real numbers

are โ„ (the real numbers), โ„‚ (the complex numbers) and ๐ป (the quaternions). Pf. Associate with each ๐‘‘ โˆˆ ๐ท the linear transformation ๐‘‡๐‘‘ ๐‘ฅ = ๐‘‘๐‘ฅ.

1. Lemma: The set V of all ๐‘Ž โˆˆ ๐ท such that ๐‘Ž2 โˆˆ โ„, ๐‘Ž2 โ‰ค 0 forms a subspace of codimension 1 (i.e. dimโ„(๐‘‰/๐ท) = 1).

Proof: Let ๐‘ be the characteristic polynomial of ๐‘‡๐‘Ž . By Cayley-Hamilton, ๐‘ ๐‘‡๐‘Ž = 0.

Since there are no zero factors in D, one irreducible real factor of ๐‘ must be 0 at ๐‘Ž. If the factor is linear (๐‘ฅ โˆ’ ๐‘Ÿ), then ๐‘Ž โˆˆ โ„, ๐‘Ž = 0. If the factor is irreducible quadratic (๐‘ฅ2 โˆ’ 2โ„œ ๐‘Ÿ ๐‘ฅ + ๐‘Ÿ 2), then this is the minimal polynomial. Since the minimal

polynomial has the same factors as the characteristic polynomial, ๐‘ ๐‘ฅ = ๐‘ฅ2 โˆ’2โ„œ ๐‘Ÿ ๐‘ฅ + ๐‘Ÿ 2 ๐‘˜ . Since our minimal polynomial has no repeated complex root, ๐‘‡๐‘Ž is

diagonalizable over โ„‚ (see Linear Algebra notes, 8-2). a. If trace ๐‘‡๐‘Ž = 0, then the eigenvalues are pure imaginary ยฑ๐‘Ÿ๐‘–, and ๐‘‡๐‘Ž

2 is

diagonalizable with eigenvalues โ€“ ๐‘Ÿ2. Thus ๐‘‡๐‘Ž2 = โˆ’๐‘Ÿ2๐ผ๐‘‰ โ‡’ ๐‘Ž2 = โˆ’๐‘Ÿ2 โ‰ค 0.

b. Conversely, if ๐‘Ž2 โ‰ค 0, then ๐‘‡๐‘Ž2 = โˆ’๐‘Ÿ2๐ผ๐‘‰ for some ๐‘Ÿ, and the eigenvalues of ๐‘‡๐‘Ž

can only be ยฑ๐‘Ÿ๐‘–. Then trace ๐‘‡๐‘Ž = 0. c. Hence ๐‘‰ = {๐‘Ž| trace ๐‘‡๐‘Ž โ‰ค 0}. ๐‘‡: ๐‘Ž โ†’ trace(๐‘‡๐‘Ž) is a linear operator with range

โ„ (dimension 1). Since V is the kernel, V has codimension 1. 2. From (1), ๐ท = ๐‘‰ โŠ• โ„. Since ๐‘‰2 = {๐‘ฃ2|๐‘ฃ โˆˆ ๐‘‰} gives the reals in (โˆ’โˆž, 0], ๐‘‰4 gives the

reals in [0, โˆž) and V generates D as an algebra.

3. Let ๐ต ๐‘Ž, ๐‘ =โˆ’๐‘Ž๐‘โˆ’๐‘๐‘Ž

2=

๐‘Ž2+๐‘2โˆ’ ๐‘Ž+๐‘ 2

2. From the definition of V, B is an inner product

(positive definite, symmetric). Choose a minimal subspace W of V generating D as

an algebra, and let ๐‘’๐‘– 1 โ‰ค ๐‘– โ‰ค ๐‘› be an orthonormal basis with respect to B. Then

i โ€“ ๐‘’๐‘–2 = 1, ii ๐‘’๐‘–๐‘’๐‘— = โˆ’๐‘’๐‘—๐‘’๐‘–(๐‘– โ‰  ๐‘—).

a. If ๐‘› = 0, ๐‘‰ โ‰… โ„.

b. If ๐‘› = 1, ๐‘‰ โ‰… โ„‚. (๐‘’12 = โˆ’1)

c. If ๐‘› = 2, ๐‘‰ โ‰… ๐ป. (Check the relations.)

d. If ๐‘› > 2, then using then from (ii) ๐‘’1๐‘’2๐‘’๐‘› 2 = 1 โ‡’ ๐‘’1๐‘’2๐‘’๐‘› = ยฑ1 โ‡’ ๐‘’๐‘› = ยฑ๐‘’1๐‘’2. So span ๐‘’๐‘– 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 โŠ‚ ๐‘Š with basis ๐‘’๐‘– 1 โ‰ค ๐‘– โ‰ค ๐‘› โˆ’ 1 also generates D as an algebra, contradicting minimality.

Simple and Semisimple Algebras

[See group theory notes.] [Add some stuff here.]

References [A] Algebra by Michael Artin [EoAA] Elements of Abstract Algebra by Richard Dean [PftB] Proofs from the Book by Titu Andreescu and Gabriel Dospinescu [TBGY] Abstract Algebra: The Basic Graduate Year, by Robert Ash Wikipedia

Recommended