A Preliminary Study on Helicopter Crashworthy Stages...

Preview:

Citation preview

A Preliminary Study on Helicopter Crashworthy Stages Adapted to Different Impact ConditionsPaolo Astori

Department of Aerospace Science and Technology

CrashLab Research Group

Crash and dynamic test facilities and numerical tools

2

3Crash conditions

ax

az

High vertical component of acceleration

Main injury risk:• High lumbar spine load

Crash loads mitigation

Energy absorption by:• Landing gear shock absorber (certification at v = 2 m/s)• Subfloor (general recommendations)• Seat (certification at 9.15 m/s, 30 g’s)

4

ax

az

Object

Preliminary study:1. Set-up a numerical model of the relevant structural area and systems2. Define the mechanical parameters that could be controllable and

adaptive3. Carry out parametrical analyses at increasing impact speeds

5

Landing gear 6

0 50 100 150 2000

0.5

1

1.5

2

2.5x 10

4

Shock-Absorber Stroke [mm]

Gro

und R

eact

ion [

N]

AW109H02 -2pt limit

Landing gear 7

0 50 100 150 200

-20

0

20

40

60

80

Shock

-Abso

rber

Pre

ssure

[bar]

Shock-Absorber Stroke [mm]

AW109H02 -2pt limit

-0.5 0 0.5 1 1.5 2

-20

0

20

40

60

80

SA Rate [m/s]

DeltaPr

[bar]

AW109H02 -2pt limit

Compression

Release

0 50 100 150 200

-20

0

20

40

60

80

Shock

-Abso

rber

Pre

ssure

[bar]

Shock-Absorber Stroke [mm]

AW109H02 -2pt limit

GAS

OIL

TOTAL

Increases with SA rate

Landing gear

Adaptive shock absorber

Metering of the side orifice areas by electrically-controlled shuttersControl of max spool displacementMagneto-rheological fluids

8

CLOSED OPEN

FLOW FLOW

Seat 9

a = 30 g

Seat

Adaptive energy absorber

Roller distance calibrated by a micro-actuation system

10

Numerical model 11

Simplified model based on lumped parameters approachAnthrpomorphic Test Dummy, Seat system and Landing Gear validated against experimental data in certification dynamic conditions

Numerical analysis

Sensitivity analysis - response surface:

• max lumbar spine loads as functions of the mechanical characteristics of landing gear shock absorber and seat energy absorber

12

Numerical analysis: model and definition of parameters

Landing gear3 rigid bodies: wheel, piston block and cylinder blockPolytropic response: fixedViscous response: from 0 to 2 m/s from experimental data

from 2 to 4 m/s extrapolated but fixedfrom 4 to 8 m/s variable

13

45%

15%

-2 0 2 4 6 8-50

0

50

100

150

200

250

300

350Shock absorber viscous response

Stroke rate [m/s]

Loa

d [k

N]

Numerical analysis: model and definition of parameters

14

Stroke

Loa

d

BOTTOMING

190 mm

LOAD LEVEL RANGE: 6000 TO 16000 N

Seat energy absorber2 rigid bodies: lower fixed part and upper moveable partElastic – perfectly plastic response

Numerical analysis: results

Response surfaces vs. impact speed from 11 to 15 m/s (std speed for seats v = 9.15 m/s)

15

4 .7

4.7

4.7

5.7

5. 7

5.7 5. 7

5.7

5.7

6.7

6 .7

6.7

7.7

7. 7

7.7

8.7

8.7

8.7

9.7

9. 7

9.7

10.7

1 0.7

10.7

1 1.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

45

55

5565

65

65

75

75

75

8 5

85

85

9 5

9 5

95

105

10 5

105

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

16 5

165

165

1 75

175

175

185

185

185

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

30

40

40

40

50

50

50

50

60

60

60

70

70

70

80

80

90

90

100

100

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

11 m/s

Numerical analysis: results

Response surfaces vs. impact speed from 11 to 15 m/s (std speed for seats v = 9.15 m/s)

16

4 .7

4.7

4.7

5.7

5. 7

5.7 5. 7

5.7

5.7

6.7

6 .7

6.7

7.7

7. 7

7.7

8.7

8.7

8.7

9.7

9. 7

9.7

10.7

1 0.7

10.7

1 1.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

45

55

5565

65

65

75

75

75

8 5

85

85

9 5

9 5

95

105

10 5

105

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

16 5

165

165

1 75

175

175

185

185

185

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

30

40

40

40

50

50

50

50

60

60

60

70

70

70

80

80

90

90

100

100

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

11 m/s12

5.7

5.76 .7

6.7

6.7

6.7

6.7

7.7

7. 7

7 .7

8.7

8.7

8.7

9.7

9.7

9.7

10.7

10.7

10. 7

11.7

11. 7

11. 7

12.7

12.713

.713

.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

55

65

65

75

75

85

85

8 5

95

95

9 5

105

105

1 05

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

1 65

165

165

175

175

175

185

185

185

195

195

1 95

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

60

6070

70

70

80

80

80

90

90

90

100

100

100

100

110

110

110

120

120

130

130

140150

16017 0

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

Numerical analysis: results

Response surfaces vs. impact speed from 11 to 15 m/s (std speed for seats v = 9.15 m/s)

17

4 .7

4.7

4.7

5.7

5. 7

5.7 5. 7

5.7

5.7

6.7

6 .7

6.7

7.7

7. 7

7.7

8.7

8.7

8.7

9.7

9. 7

9.7

10.7

1 0.7

10.7

1 1.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

45

55

5565

65

65

75

75

75

8 5

85

85

9 5

9 5

95

105

10 5

105

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

16 5

165

165

1 75

175

175

185

185

185

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

30

40

40

40

50

50

50

50

60

60

60

70

70

70

80

80

90

90

100

100

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

11 m/s1213

5.7

5.76 .7

6.7

6.7

6.7

6.7

7.7

7. 7

7 .7

8.7

8.7

8.7

9.7

9.7

9.7

10.7

10.7

10. 7

11.7

11. 7

11. 7

12.7

12.713

.713

.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

55

65

65

75

75

85

85

8 5

95

95

9 5

105

105

1 05

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

1 65

165

165

175

175

175

185

185

185

195

195

1 95

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

60

6070

70

70

80

80

80

90

90

90

100

100

100

100

110

110

110

120

120

130

130

140150

16017 0

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

6.7

6.7

6.7

7.7

7.7

7 .7

7.7

8 .7

8.7

8.7

9.7

9.7

9 .7

10.7

10.7

10.7

11.7

11.7

1 1. 7

1 2.7

12.7

12.7

13.7

13.7

13.7

14.7

14.7

15.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

65

75

7585

85

95

95

105

105

115

115

125

125

125

135

135

135

145

145

145

155

155

155

165

165

1 65

175

175

175

185

185

185

195

195

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

90

901 00

100

110

110

110

120

120

120 130

130

140

140

140

150

150

160

160

160

170

170

170

180

180190

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

Numerical analysis: results

Response surfaces vs. impact speed from 11 to 15 m/s (std speed for seats v = 9.15 m/s)

18

4 .7

4.7

4.7

5.7

5. 7

5.7 5. 7

5.7

5.7

6.7

6 .7

6.7

7.7

7. 7

7.7

8.7

8.7

8.7

9.7

9. 7

9.7

10.7

1 0.7

10.7

1 1.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

45

55

5565

65

65

75

75

75

8 5

85

85

9 5

9 5

95

105

10 5

105

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

16 5

165

165

1 75

175

175

185

185

185

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

30

40

40

40

50

50

50

50

60

60

60

70

70

70

80

80

90

90

100

100

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

11 m/s121314

5.7

5.76 .7

6.7

6.7

6.7

6.7

7.7

7. 7

7 .7

8.7

8.7

8.7

9.7

9.7

9.7

10.7

10.7

10. 7

11.7

11. 7

11. 7

12.7

12.713

.713

.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

55

65

65

75

75

85

85

8 5

95

95

9 5

105

105

1 05

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

1 65

165

165

175

175

175

185

185

185

195

195

1 95

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

60

6070

70

70

80

80

80

90

90

90

100

100

100

100

110

110

110

120

120

130

130

140150

16017 0

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

6.7

6.7

6.7

7.7

7.7

7 .7

7.7

8 .7

8.7

8.7

9.7

9.7

9 .7

10.7

10.7

10.7

11.7

11.7

1 1. 7

1 2.7

12.7

12.7

13.7

13.7

13.7

14.7

14.7

15.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

65

75

7585

85

95

95

105

105

115

115

125

125

125

135

135

135

145

145

145

155

155

155

165

165

1 65

175

175

175

185

185

185

195

195

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

90

901 00

100

110

110

110

120

120

120 130

130

140

140

140

150

150

160

160

160

170

170

170

180

180190

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

6.7

7. 7

7.7

8.7

8.7

8 .7

9.7

9.7

9 .7

10. 7

10.7

10.7

11.7

11.7

11.7

12.7

12.7

1 2.7

1 3. 7

13.7

13.7

14.7

14.7

1 4.7

15 .7

15.7

15.7

16.7

16.7

16.7

17. 7

17.7

1 7.718.7

18.7

18.7 19.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

8595105115

125

135

145

145

1 55

155

165

165

175

175

1 85

185

185

195

195

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

140

140

1 50

150

160

160

170

170

180

180

190

190

190

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

Numerical analysis: results

Response surfaces vs. impact speed from 11 to 15 m/s (std speed for seats v = 9.15 m/s)

19

4 .7

4.7

4.7

5.7

5. 7

5.7 5. 7

5.7

5.7

6.7

6 .7

6.7

7.7

7. 7

7.7

8.7

8.7

8.7

9.7

9. 7

9.7

10.7

1 0.7

10.7

1 1.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

45

55

5565

65

65

75

75

75

8 5

85

85

9 5

9 5

95

105

10 5

105

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

16 5

165

165

1 75

175

175

185

185

185

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

30

40

40

40

50

50

50

50

60

60

60

70

70

70

80

80

90

90

100

100

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

11 m/s12131415

5.7

5.76 .7

6.7

6.7

6.7

6.7

7.7

7. 7

7 .7

8.7

8.7

8.7

9.7

9.7

9.7

10.7

10.7

10. 7

11.7

11. 7

11. 7

12.7

12.713

.713

.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

55

65

65

75

75

85

85

8 5

95

95

9 5

105

105

1 05

115

115

115

125

125

125

135

135

135

145

145

145

155

155

155

1 65

165

165

175

175

175

185

185

185

195

195

1 95

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

60

6070

70

70

80

80

80

90

90

90

100

100

100

100

110

110

110

120

120

130

130

140150

16017 0

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

6.7

6.7

6.7

7.7

7.7

7 .7

7.7

8 .7

8.7

8.7

9.7

9.7

9 .7

10.7

10.7

10.7

11.7

11.7

1 1. 7

1 2.7

12.7

12.7

13.7

13.7

13.7

14.7

14.7

15.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

65

75

7585

85

95

95

105

105

115

115

125

125

125

135

135

135

145

145

145

155

155

155

165

165

1 65

175

175

175

185

185

185

195

195

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

90

901 00

100

110

110

110

120

120

120 130

130

140

140

140

150

150

160

160

160

170

170

170

180

180190

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

6.7

7. 7

7.7

8.7

8.7

8 .7

9.7

9.7

9 .7

10. 7

10.7

10.7

11.7

11.7

11.7

12.7

12.7

1 2.7

1 3. 7

13.7

13.7

14.7

14.7

1 4.7

15 .7

15.7

15.7

16.7

16.7

16.7

17. 7

17.7

1 7.718.7

18.7

18.7 19.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

8595105115

125

135

145

145

1 55

155

165

165

175

175

1 85

185

185

195

195

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

140

140

1 50

150

160

160

170

170

180

180

190

190

190

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

7.7

8.79.710.711.7

12.7

12.7

13.7

13.7

14.7

14.7

15.7

15.7

16 .7

16.7

17.7

17.718.7

18.7

19.7

1 9.7

F Seat [kN]

w S

h A

bs [%

]

Lumbar spine load [kN]

6 8 10 12 14 1615

20

25

30

35

40

45

145155165

175185

19 5

195

F Seat [kN]

w S

habs

[%]

Seat stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

190

190

F Seat [kN]

w S

habs

[%]

Subfloor stroke [mm]

6 8 10 12 14 1615

20

25

30

35

40

45

MIGRATION OF THEDESGIN POINT vs. SPEED

20System arming

Crash landing condition triggered by ground proximity and vertical velocity detection

Pre-setting of landing gear shock absorber and seat energy absorber as a function of velocity (and occupant weight)

orClosed-loop control?

Work in progress

Test rig for adaptive seat energy absorber

21

FORCE

ACTUATOR

ADJUSTABLEROLLER

controller actuator

sensors?

roller position EA forceref

lumbar spine load

Extra slides 22

Full-scale test

Helisafe TA EU project, full scale UH-1 crash test, 15 m/s, 32°

23

Landing gear

Introduction of a passive crash stage

24

Subfloor 25

Numerical analysis: model and definition of parameters

Subfloor1 rigid body: floorElastic – perfectly plastic responseMechanical structure made of joined components ⇒ adaptive system hardly feasible

26

Stroke

Lo

ad

BOTTOMING

190 mm

CRUSHING LOAD FIXED TO 6000 N (OPTIMUM IN HIGH SPEED CONDITION)

Recommended