Imber Tech Phase IV Presentation Slides B

  • View
    225

  • Download
    6

  • Category

    Design

Preview:

Citation preview

1B

Infinite ṁ

Specialized Propulsion Solutions:

enabling the missions of tomorrow

2B

Kyle KloudaDesign Team Lead (DTL)

Troy KillgoreCombustor section design

Cameron SchmittInlet design

Erik OmlidNozzle section design

Courtney HoughCompressor section design

Kevin WalkerTurbine section design

Jase HeinzerothCombustor section design

3B

• C-130 (50’s design)• 3 accidents

• P-2V Neptune (40’s design)• Half of accidents

• Half of firefighting fleet

4B

Figure 1B: P-2V Estimated Service Life

0

2

4

6

8

10

12

2010 2012 2014 2016 2018 2020 2022

Nu

mb

er

of

Ava

ilab

le P

-2V

Year

5B

• Current aircraft are modified

• Limitations in design increase risk during flights

• Limitation in airports for basing

• Torrent 19 mitigates risk by design and is purpose built

6B

• Designed to withstand the weather created by wildfires

• Uses latest technologies to ensure maneuverability in adverse conditions

7B

8B

• Aircraft Configuration Layout• Wing• Fuselage• Landing Gear• Weight and Balance• Stability and Control• Drag Polar• Powerplant• Performance Verification

Imber tech – Kevin Warren9B

10B

IAB Requirements:

• Ground roll no more than 6,000 ft. (IAB)

• Must maintain 100 ft/min climb with one engine inoperative upon takeoff (IAB)

• Must have emergency payload release lever within reach of both pilots (IAB)

11BImber tech – Kevin Warren

Imber tech – Kevin Warren12B

OUTBOUND

1. Taxi/Takeoff ground roll2. Climb3. Cruise4. Descent

INBOUND

5. Loiter/Slurry Drop6. Climb7. Cruise8. Descent9. Landing/Taxi

Imber tech – Kevin Warren13B

14BImber tech – Kevin Warren

10 Tanker DC-10-10 Evergreen 747-100

C-130J-30 Torrent 19

15B

Figure 2B: Torrent 19

Imber tech – Kelsey Kecherson16B

Figure 3B: Torrent 19

Imber tech – Kelsey Kecherson

Figure 4B: Torrent 19

17B

Figure 5B: Torrent 19

Imber tech – Kelsey Kecherson18B

Figure 6B: IM1 Dunamis

19B

Figure 7B: Pilot Seat in the Cabin

Imber tech – Kelsey Kecherson20B

Figure 8B: View From the Pilot Seat

Imber tech – Kelsey Kecherson21B

22B

• Clean CLmax at Vs (sea-level)

• CLmax for payload delivery phase

• Mcr and MDD during ferry phase

Imber tech – Jared Basile23B

Figure 9B: NASA SC(2)-0714 Experimental Data

Imber tech – Jared Basile24B

Imber tech – Jared Basile25B

Figure 10B: Torrent 19

Parameter Airfoil Wing

Clmax or CLmax 2.09 1.94

Clα or CLα 0.1204 0.0898

αstall 18o 20o

αl=0 -4o -4o

Table 4A: Wing Values

imber tech – Jared Basile26B

27Bimber tech – Jared Basile

Figure 11B: Torrent 19

Parameter Wing FlappedWing

CLmax 1.94 2.69

αstall ~19.5o ~17o

Table 4B: Comparison

Imber tech – Jared Basile28B

Figure 12B: Sizing of High-Lift Devices

Imber tech – Jared Basile29B

• Anderson Mcr estimation:

𝑀𝑐𝑟,𝑎𝑖𝑟𝑓𝑜𝑖𝑙 < 𝑀𝑐𝑟,𝑤𝑖𝑛𝑔 <𝑀𝑐𝑟,𝑎𝑖𝑟𝑓𝑜𝑖𝑙

cos Λ𝐿𝐸0.72 < 𝑀𝑐𝑟,𝑤𝑖𝑛𝑔 < 0.73

• Boeing MDD estimation:𝑀𝐷𝐷 = 𝑀𝑐𝑟,𝑤𝑖𝑛𝑔 + 0.08

Transonic Mach Parameter

Estimated Value

Mcr ~ 0.725

MDD ~ 0.805

Table 5B: Comparison

Imber tech – Jared Basile30B

Imber tech – Jared Basile31B

Figure 13B: Horizontal Tail

Parameter Airfoil HT HT w/Elevator

Clmax or CLmax 1.33 1.12 1.95

Clα or CLα 0.105 /deg 0.066 /deg 0.066 /deg

αstall 13o 21o 20o

αl=0 0o 0o -11o

Table 5A: Horizontal Tail Values

imber tech – Jared Basile32B

Imber tech – Jared Basile33B

Figure 14B: Vertical Tail

Parameter Airfoil VT VT w/Rudder

Clmax or CLmax

1.33 1.12 1.98

Clα or CLα 0.105 /deg 0.066 /deg 0.066 /deg

αstall 13o 22o 21o

αl=0 0o 0o -12o

Table 6A: Vertical Tail Values

imber tech – Jared Basile34B

35B

Figure 15B: Fuselage Length

(191 ft)

Imber tech – Michael Browne36B

Figure 16B: Effect of Nose Fineness on Drag Divergence Mach Numberhttp://adg.stanford.edu/aa241/fuselayout/fuseplanform.html

Imber tech – Michael Browne37B

Figure 17B: Tailcone Sizing

Imber tech – Michael Browne38B

Figure 18B: Fuselage Planform

Imber tech – Michael Browne39B

Figure 19B: Structural Layout

Imber tech – Michael Browne40B

41B

Figure 20B: Structural Layout

Imber tech – Anthony Salazar42B

Figure 21B: Initial Landing-Gear Layout

Imber tech – Anthony Salazar43B

Figure 22B: Initial Landing-Gear Layout

44BImber tech – Anthony Salazar

Figure 23B: Oleo Shock Absorber

Source: Raymer, page 367, 5th Edition

Figure 24B: Shock Absorber Efficiency

Source: Raymer, page 369, 5th Edition

Figure 25B: Aircraft Gear Load Factor

Source: Raymer, page 370, 5th Edition

Imber tech – Anthony Salazar45B

Ƞ = shock-absorbing effiencyL = average total load during deflectionS = strokeST = stroke of tire (half diameter minus rolling radius)Vvertical = vertical velocity capabilityDoleo = diameter of oleoLoleo = length of oleo

Imber tech – Anthony Salazar46B

Figure 26B: General Tip-Over CriterionSource: Raymer, page 356, 5th Edition

Imber tech – Anthony Salazar

STRUT TRAVEL (7 DEG BEST)

STATIC GROUND LINE

> TIPBACK ANGLE

STATIC TAILDOWN ANGLE TIP BACK ANGLE

47B

Figure 27B: Lateral Tip-Over CriterionSource: Roskam, Part 2, Page 221

Imber tech – Anthony Salazar48B

Figure 28B: Ground-Clearance CriterionSource: Roskam, Part, 2 Page 221

Imber tech – Anthony Salazar49B

Figure 29B: Side View

Main-Gear Retraction

Figure 30A: Bottom View

Main-Gear Retraction

Imber tech – Anthony Salazar50B

51B

• Roskam’s Initial Estimate: 580,000 lb

• Raymer’s Component Weight:552,277 lb

• Highest weight contributors: Fuel, slurry, wing and engines

• Baffles and flapper valves will be used

Imber tech – Matthew Hanus52B

Material Location Density (lb/in3)

Carbon-FiberComposite

Skin 0.056-0.0567

Al 7075-T6 Ribs, spars 0.100-0.102

Al 7475 T7351 Fuselage 0.100-0.102

Low carbon steel,AISI 1010

Landing-gear 0.282-0.285

Table 8B: Material Selection

Imber tech – Matthew Hanus53B

Aircraft Max Take-off Weight (lb)

Payload (lb)

DC-10 Air tanker 420,000 119,556

Boeing 747Evergreen

Supertanker

750,000 170,000

Torrent 19 552,277 120,000

Table 9B: Weight Comparison

Imber tech – Matthew Hanus54B

Table 10B: Component C.G. Locations

Call Out

Component X C.G. Location in ft (in.) Z C.G. Location in ft (in.)

A Wing 85 (1,020) 27 (321)

B Horizontal Tail 192 (2,315) 66 (797)

C Vertical Tail 173 (2,081) 47 (565)

D Fuselage 78 (932) 17 (204)

E Main Landing Gear

92 (1,104) 2 (29)

F Engines (average) 59 (707) 13 (159)

G Fuel (average) 87 (1,042) 24 (286)

H Slurry 88 (1,056) 17 (205)

I Slurry Tank 88 (1,056) 12 (148)

J Torrent 19 86 (1,037) 21 (248)

Imber tech – Matthew Hanus55B

C: Fully loaded fuel and slurryA: Empty Weight B: Fully loaded fuel, no slurry

Figure 31A: Center-of-Gravity Excursion Diagram

imber tech – Matthew Hanus56B

• Forward Limit: 971 in.

• Aft Limit: 1,087 in.

imber tech – Matthew Hanus57B

58B

Figure 32B: Dimensions of Tail

Imber tech – David Wilson59B

Figure 33B: Static Margin vs. Horizontal Tail Area

Imber tech – David Wilson60B

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

AC

Full

No slurry

No Fuel

empty

Horizontal tailX

Horizontal Tail

Imber tech – David Wilson61B

Figure 34B: Torrent 19

Figure 35B: Elevator Sizing

Imber tech – David Wilson62B

Figure 36B: Moment Diagram

Imber tech – David Wilson63B

Figure 37B: Horizontal Tail CL Curve

Imber tech – David Wilson64B

Figure 38B: Engine Positioning

Imber tech – David Wilson65B

Imber tech – David Wilson

• Vertical Tail Area: 1,275 ft2

• Wing sweep: 10 degrees

• Cl: drop phase: 1.4

• Cnβ : 0.116

66B

Imber tech – David Wilson

• Dihedral: 0 Degrees

• Wing Sweep: 10 degrees

• Wing Position: High Wing

• Vertical Tail: 1,275 ft2

67B

• Static Margin: 0.102 – 0.128

• Elevator chord: 30 %

• Vmc: 135.6 kts

• Cnβ = 0.116

• Clβ = -0.002

imber tech – David Wilson68B

69B

Imber tech – Inigo Ripodas70B

Figure 39B: Torrent 19

Wing and Stabilizing Surfaces

S (ft2)

Left Wing 6,947

Right Wing 6,947

Horizontal Stabilizer 6,791

Vertical Stabilizer 2,119

Total 22,804

Table 19A: Wetted Area of Wing and Stabilizing Surfaces

imber tech – Inigo Ripodas71B

Drag estimations modeled for various altitudes:

• From Sea-Level to 40,000 ft in altitude in 10,000 ft increments

Imber tech – Inigo Ripodas72B

imber tech – Inigo Ripodas

• Parasite Drag:• Skin friction

• Miscellaneous

• Leakages & Protuberances

• Wave Drag

• Induced Drag:• “Drag-due-to-lift” factor

73B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas74B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas75B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas76B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas77B

• Thrust Required is the same as Total Drag (Assuming SLUF)

• Thrust Available obtained from Infinite Mdot

• Plots from Sea-Level to 40,000 ft

Imber tech – Inigo Ripodas78B

79B

ṁ - Kyle Klouda

• Fan and Compressor Design• Low- and High-Pressure Turbine Design• Combustor • Labor Hour and Cost Estimation• Conclusions and Recommendations

80B

ṁ81B

ṁ - Troy Killgore

Figure 40B: GE90-85B(http://www.epower-propulsion.com)

82B

ṁ - Troy Killgore

Figure 41B: Trent 800(http://cv01.twirpx.net)

83B

ṁ - Troy Killgore

Figure 42B: PW4084(http://www.pw.utc.com)

84B

ṁ - Troy Killgore

Engine Characteristics

Dry Weight (engine) (lb) 15396

Thrust(dry) (lb) 96240

TSFC(dry) (lbm/hr*lbf) 0.3115

TSFC(cruise) (lbm/hr*lbf) 0.854

Cruise Altitude (feet) 38000

Cruise Speed (Mach) 0.75

Bypass Ratio 7.5

Overall Pressure Ratio 37

Spool No. 2

Fan Stages 1

LPC Stages 4

HPC Stages 9

LPT Stages 5

HPT Stages 2

airflow (lbm/s) 3995.8

Length (inches) 348

Case Diameter (inches) 169.5

Fan Diameter (inches) 136

Table 20B: Dunamis Values

85B

ṁ86B

Figure 43B: Constraint Diagram

(75, 0.62)

Climb

2G Maneuver

Aircraft Stall

ṁ - Troy Killgore87B

• Bleed air for slurry tank pressurization

• Design choices based on similar thrust class turbofan

engines

ṁ - Troy Killgore88B

ṁ - Troy Killgore

Ps ContoursMinimum Time to ClimbMission Profile

(4)

(1)

(2)

(3)

300 500 700 900 1100

40

30

20

10

Figure 44B : Ps Optimization

Alt

itu

de

(kft

)

Velocity (ft/s)

89B

Wing Loading (psf) 75

Thrust Loading 0.62

Aircraft Weight (lbf) 564,396

SLS Installed Thrust (lbf) 349,926

Number of Engines 4

SLS Installed Thrust per Engine (lbf) 87,483

SLS Uninstalled Thrust per Engine (lbf) 96,240

Design Point Mass Flow (lbm/s) 2440.30

Cruise TSFC (lbf/hr*lbm) 0.854

Table 21B: Engine Characteristics

ṁ - Troy Killgore

• 5% overall loss assumed

90B

ṁ91B

ṁ - Kyle Klouda

Figure 45B: Engine Dimensions

92B

Figure 46B: Final Inlet Design

93B

ṁ - Cameron Schmitt

Figure 47B: IM-1 DUNAMIS

94B

ṁ - Cameron Schmitt

Figure 48B: Inlet

95B

ṁ - Cameron Schmitt

Figure 49B: IM-1 DUNAMIS

96B

ṁ - Cameron Schmitt

Figure 50B: Blow-In-Door Configurations

97B

ṁ - Cameron Schmitt

Condition PEXT(psi) PINTpsi) ΔP (Psi) Doors

2-G Drop 9.95 8.54 1.41OPEN

T/O 11.17 9.59 1.58OPEN

Climb 10kft 9.95 8.54 1.41OPEN

Climb 17kft 6.60 8.02 -1.42CLOSED

Climb 24kft 4.74 6.21 -1.47CLOSED

Climb 31kft 3.30 4.74 -1.43CLOSED

Cruse 38kft 2.21 3.55 -1.34CLOSED

Climb Out 5.85 7.69 -1.84CLOSED

Table 22B: Pressure Calculations

98B

ṁ - Cameron Schmitt

A1=12076in2

Auxiliary area = 4524 in2

Condition M0 Alt (ft)M1 Φ(%) Φ(%)2-G Drop 0.232 10000 0.553 10.06 2.89T/O 0.232 7000 0.529 9.54 2.57Climb 10kft 0.232 10000 0.553 10.06 2.88Climb 17kft 0.612 17000 0.564 0.21 N/AClimb 24kft 0.658 24000 0.562 0.80 N/AClimb 31kft 0.704 31000 0.558 1.91 N/ACruse 38kft 0.75 38000 0.552 3.64 N/AClimb Out 0.66 19000 0.566 0.78 N/A

D1= 124in (10.33ft)

Table 23B: Install Losses

99B

ṁ - Cameron Schmitt

Figure 51B: Inlet Front View

100B

ṁ - Cameron Schmitt

Figure 52B: Cowling Profile

210in.

68in.62in.

101B

m - Erik Omlid

Figure 53B: Nozzle

102B

m - Erik Omlid

Figure 53B: Nozzle

103B

m - Erik Omlid

Figure 54B: Nozzle Chevrons

104B

m - Erik Omlid

External Nozzles

•EC1: 14 external chevrons (long)

•EC3: 18 external chevrons

•EC2: 14 spoon-shaped chevrons

•EC4: 18 external chevrons

Figure 55B: External Nozzles(http://www.lufthansagroup.com)

105B

m - Erik Omlid

•EC3: 18 external chevrons•IC1: 14 internal chevrons

Figure 56B: Nozzle Selection(http://www.lufthansagroup.com)

106B

m - Erik Omlid

Figure 57B: Core Plug

107B

m - Erik Omlid

Figure 58B: Thrust Reverser Location

108B

m - Erik Omlid

Figure 59B: Nozzle

109B

Takeoff/Landing 1.72%

2k ft/min Climb 1.66%

Cruise 1.58%

2G maneuver 1.68%

Slurry Drop 2.10%

• Based on similar engines

• 5% bogey combined with the inlet

• Mission analysis based on 5% bogey

m - Erik Omlid110B

• Initial Design Parameters

• Component Designs

• Fan

• Booster Compressor

• High Pressure Compressor

ṁ - Courtney Hough111B

• Fan

• Booster Compressor

• High-Pressure Compressor

ṁ - Courtney Hough

Design Point (Sea Level)

Mach 0

Altitude (ft) 0

Temperature (R) 490

Table 24B: Component Design Point

Low-Pressure Compressor

112B

ṁ - Courtney Hough

Figure 60B: Fan Dimensions

*All dimensions in inches

113B

ṁ - Courtney Hough

Figure 61B: Engine Model

114B

ṁ - Courtney Hough

Design Parameter

Stages 3

Pressure (psia) 25.91

Temperature Rise (R) 140.37

Entrance Angle (deg) 0

Tip Radius (in) 34.35

Angular Velocity(rad/s)

282.35

Inlet Mach 0.5

Mass Flow (lbm/s) 399.32

Design Pressure Ratio 1.94

Table 25B: Booster Design Parameters

115B

ṁ -Courtney HoughFigure 62B: Booster Dimensions

*All dimensions in inches

116B

ṁ - Courtney Hough

Design Parameter

Stages 9

Pressure (psia) 50.26

Temperature Rise (R) 812.70

Entrance Angle (deg) 0

Tip Radius (in) 15.94

Angular Velocity(rad/s)

1054

Inlet Mach 0.4

Mass Flow (lbm/s) 399.32

Design Pressure Ratio 10.57

Table 26B: HPC Design Parameters

117B

ṁ - Courtney Hough

Figure 63B: HPC Dimensions

*All dimensions are in inches

118B

ṁ - Courtney Hough

Figure 64B: Fan Model

Figure 66B: HPC Model

Figure 65B: Booster Model119B

Figure 67B: Turbine

120B

ṁ - Kevin Walker

Figure 68B: High-Pressure Turbine

121B

ṁ - Kevin Walker

• Materials

• Rim/disk - Nimonic 105

(wrought nickel superalloy)

• Airfoils – Rene’ 80

(nickel-based superalloy)

122B

ṁ - Kevin Walker

• Stage Loading Coefficient: Measure of stage work Typical

Values 1.3 – 2.2

• Flow Coefficient: Measure of ability to allow air through.

Typical Values 0.5 – 1.1

• Velocity Ratio: Ratio of the rotor speed to the equivalent

velocity due to total enthalpy drop.

Typical Values 0.5 – 0.6

123B

ṁ - Kevin Walker

Figure 69B: Low-Pressure Turbine

124B

ṁ - Kevin Walker

• Materials

• Rim/disk - Nimonic 105

(wrought nickel superalloy)

• Airfoils – Rene’ 80

(nickel-based superalloy)

125B

ṁ - Kevin Walker

• Stage Loading Coefficient: Measure of stage work Typical

Values 1.3 – 2.2

• Flow Coefficient: Measure of ability to allow air through.

Typical Values 0.5 – 1.1

• Velocity Ratio: Ratio of the rotor speed to the equivalent

velocity due to total enthalpy drop.

Typical Values 0.5 – 0.6

126B

ṁ127B

ṁ - Jase Heinzeroth

Figure 70B: Combustor Dimensions

128B

ṁ - Jase Heinzeroth

Figure 71B: Combustor

129B

ṁ - Jase Heinzeroth

Figure 72B: Combustor

130B

ṁ - Jase Heinzeroth

Figure 73B: Diffuser Side View

131B

ṁ - Jase Heinzeroth

Figure 74B: Diffuser Profile

132B

ṁ - Jase Heinzeroth

• Hastelloy X • Maximum material temperature: 2400 °R

• Calculated Gas Temperature inside combustor: 3280 °R

133B

ṁ - Jase Heinzeroth

Figure 75B: Combustor Cut

134B

ṁ - Jase Heinzeroth

Figure 76B: PZ Length

135B

ṁ - Jase Heinzeroth

Figure 77B: SZ Length

136B

ṁ - Jase Heinzeroth

Figure 78B: DZ Length

137B

ṁ - Kyle Klouda138B

ṁ - Kyle Klouda

Date Engineering Management Engineering Technical Administration Professional Development Sum Projected

8/30/2013 73.5 73.5 136.5

9/6/2013 5 158.5 237 273

9/13/2013 4 6 164.5 411.5 409.5

9/20/2013 25 31 3 42 126.5 639 546

9/27/2013 4 119.66 762.66 682.5

10/4/2013 10 28 42.3 842.96 819

10/11/2013 12 45 7 14 41.2 962.16 955.5

10/18/2013 30 85 9 52 98 1236.16 1092

10/25/2013 13 102.3 1351.46 1228.5

11/1/2013 11 75 22 1459.46 1365

11/8/2013 15 85 8 1567.46 1501.5

11/15/2013 22 74 12 1675.46 1638

11/22/2013 42 139.33 1856.79 1774.5

11/29/2013 25 87 11 10 3 1992.79 1911

12/6/2013 43 123 9 57 6 2230.79 2047.5

Table 27B: Hours Spent

139B

ṁ - Kyle Klouda140B

ṁ - Kyle Klouda

Table 28B: Hours Spent

Engineering Management 261Engineering 778.33Technical 39Professional Development 875.16Administrative 210.3total 1288.63

141B

ṁ - Kyle Klouda

Table 29B: Costs

Category Hours CostsEngineering Management 261 $26,100 Engineering 778.33 $50,591 Technical 39 $1,560 Administrative 210.3 $4,206 Sub-total 1,289 $82,457 Professional Development 875.16 $43,758 Total 2,164 $126,215

142B

• Research ways to design thrust reversers further

• Research ways to design engine structure and struts

143B

144B

145BImber tech – Kevin Warren

Sea Level

38,000 ft

• Cruise phase of mission

• Mach = 0.75

• Climb rate greater than zero

146Bimber tech – Kevin Warren

• Aircraft designed to withstand adverse weather of wildfires

• Severe up- and down-drafts have caused structural failure in other aircraft

Imber tech – Kevin Warren147B

Figure 79B: Max Thrust Takeoff with 3 engines

Imber tech – Kevin Warren148B

• RFP requires a 2,000 ft/min climb to 10,000 ft

• IAB requires a 100 ft/min climb with one engine inoperative upon takeoff

• Max rate-of-climb based on thrust, drag, weight and flight velocity

• At max thrust (sea-level) and minimum drag

Imber tech – Kevin Warren149B

Imber tech – Kevin Warren150B

Figure 80B: Torrent 19

• Flaps at 20 degrees

• Spoilers and Thrust Reversers

• Max Braking

Figure 81B: Landing Performance

Imber tech – Kevin Warren151B

152B

• Engines: $15 million each

• 40 years in service• 50 missions per year

• 2 airframes for static testing

153BImber tech – Kevin Warren

Table 30B: Labor Hours

Imber tech – Kevin Warren154B

Table 31B: Hours Spent

Category Hours

Management 359.2

Engineering 707.1

Technical 478.75

Administration 233.75

Subtotal 1778.8

Professional Development 674.75

Total 2453.55

Imber tech – Kevin Warren155B

Table 32B: Costs

Category Cost

Management $35,920

Engineering $45,961.5

Technical $19,150

Administration$4,675

Subtotal $105,706.5

Professional Development$33,737.5

Total $139,444

Imber tech – Kevin Warren156B

157B

• Structure:

• Analyze door system structure to ensure tail support is adequate

• Investigate different gear-door configurations

• Further define and analyze internal support structure

• S&C:• Analyze tail structure for feasibility, investigate reducing

areas

• Analyze engine placement

• Build scale model and perform wind tunnel testing to test and analyze performance characteristics

158BImber tech – Kevin Warren

159B

Recommended