17
Strictly Private and Confidential Authors: Paul Weindorf, Paul Morris (Visteon Corporation) Shadi Mere (Insono Systems) Automotive Total Biometric Automatic Luminance Control System

Total biometric auto luminance revb

Embed Size (px)

Citation preview

Page 1: Total biometric auto luminance revb

Strictly Private and Confidential

Authors: Paul Weindorf, Paul Morris (Visteon Corporation)Shadi Mere (Insono Systems)

Automotive Total Biometric Automatic Luminance Control System

Page 2: Total biometric auto luminance revb

Introduction

SID 2015 Paper – Forward Looking Light Sensor Utilization for Automatic Luminance Control

Page 2

Internallightsensor

PWI = peak white intensityWSI = white stroke intensityFFVI = forward field of view intensityTC = time constantEXP = exponential function

fc .273X

Log potmanual

XPWI100

XFFVIWSI

Log

Remotelightsensor

X1.126

+0.2982

fc %PWI

TC↑ = 1 secTC↓ = 60 sec

exp

WSI(fL)

> 1

SetGF = 1

No

X YesGammacorrect

Tovideoamps

FFVI (fL)

Gain factor

Foward Looking Light SensorAmbient Light Sensor

Silverstein Automatic Display Luminance System[Paper reference 1, pg. 304 redrawn for clarity & adapted with loop arrows]

Page 3: Total biometric auto luminance revb

Introduction

SID 2015 Paper – Used a logarithmic forward looking light sensor and a logarithmic ambient light sensor

Page 3

ALSLogAmp

LogarithmicAmbientLight Sensor(ALS)

21

A/DLuminance Ratio Table

0 38.71 231 50.00 1232 64.58 2233 83.41 3234 107.72 4235 139.13 5236 179.69 6237 232.08 7238 299.74 8239 387.13 923

10 500.00 1023

ND LSEL 10 bit

A/D GF Table

DisplayUser Bias

∆NBD

DISPLAY5

ESLD

4 43 KNNK BDD

∆N

GF ∆N 1 0

1.328803 1 1.765719 2 2.346293 3 3.117763 4 4.142894 5 5.505092 6 7.315185 7 9.720443 8 12.91656 9 17.16357 10

LogarithmicFowardLookingLight Sensor(FFLS)

FLLS

LogAmp

A/D

Luminance Ratio Table

0 49.60 231 84.33 1232 143.35 2233 243.70 3234 414.29 4235 704.30 5236 1197.30 6237 2035.42 7238 3460.21 8239 5882.35 923

10 10000.00 1023

NH ESLH 10 bit

A/D

1.125log10 (LSEL )

GF

21 KNK H

0.2982

1.125log10 (FFVI) ESLH

HUD

13 DBD C

ODNN

D DBLBR

HUD UserBias ∆NBH

12

9

10

11

3

6

7

8

Page 4: Total biometric auto luminance revb

IntroductionSID 2016 Paper – Automotive Biometric Automatic Luminance Control System

– Biometric Forward Looking Light Sensor– Calculate pupil diameters using Unified Formula to construct step number table

Page 4

ALSLogAmp

LogarithmicAmbientLight Sensor(ALS)

21

A/DLuminance Ratio Table

0 38.71 231 50.00 1232 64.58 2233 83.41 3234 107.72 4235 139.13 5236 179.69 6237 232.08 7238 299.74 8239 387.13 923

10 500.00 1023

ND LSEL 10 bit

A/D GF Table

DisplayUser Bias

∆NBD

DISPLAY5

ESLD

4 43 KNNK BDD

∆N

GF ∆N 1 0

1.328803 1 1.765719 2 2.346293 3 3.117763 4 4.142894 5 5.505092 6 7.315185 7 9.720443 8 12.91656 9 17.16357 10

LogarithmicFowardLookingLight Sensor(FFLS)

Luminance Ratio Table

1.125log10 (LSEL )

GF

21 KNK H

0.2982

1.125log10 (FFVI) ESLH

HUD

13 DBD C

ODNN

D DBLBR

HUD UserBias ∆NBH

12

9 10

11

3

6

7

8

Camera

EyeEye GazeSystem

NH D log(La) ESLH 0 7.6 0.068 47

1 7.4 0.733 80

2 7.1 1.399 137

3 6.7 2.065 234

4 6.1 2.730 400

5 5.2 3.396 684

6 4.3 4.062 1170

7 3.5 4.728 2000

8 2.9 5.393 3420

9 2.5 6.059 5848

10 2.3 6.725 10000

Page 5: Total biometric auto luminance revb

Introduction

Forward looking light sensor is required to solve the light adaptation problem

Objective is to replace both the forward looking light sensor and the ambient light sensor with a biometric pupil diameter based light sensor measured by an eye gaze camera

Page 5

Forward-Looking Light Sensor

AmbientLight Sensor

SS

C

Driver Facing Camera

Page 6: Total biometric auto luminance revb

ObjectiveUtilize an eye gaze camera to determine driver pupil size

Use the pupil diameter to determine the driver observed reflected display background luminance instead of the ambient light sensors on the front of the display

Page 6

Figure 1-2. Eye Tracking Camera Images

Figure 1-3. Pupil Diameter Pupillometry Showing “Glint” [Reference 2]

Page 7: Total biometric auto luminance revb

Background

Many different models have been developed to determine pupil diameter.

Unified formula developed by Watson and Yellott from Stanley Davies formula appears to be a good model.

Unified formula uses the concept of corneal flux density which is a function of both luminance “L” and the viewing area “a” in degrees squared.

Page 7

Figure 2-1. Pupil Diameter Functions [Reference 4, Figure 16], Unified parameters are: Age=30 years, Binocular Vision, 60° Field Diameter

284684675.575.7,( 41.0

41.0

LaLaaLDSD

SDSDU DyyDD 009562.002132.00

y0 =28.58 yearsy = age in years

Page 8: Total biometric auto luminance revb

Background

Log of corneal flux density “La” may be derived from Unified Formula

Older person’s pupil does not dilate as much as a younger person under low luminance conditions

Page 8

0

41.0

0

0022.02

846205279.0

75.7

log41.01log

yyDyy

D

La

-1012345678

2 3 4 5 6 7 8lo

g(La

)Pupil Diameter D (mm)

28.58yr

60yr

y0 =28.58 years

y = age in years

Figure 2-2. Ages Factor Example for Pupil Dilation

Page 9: Total biometric auto luminance revb

Background

Determining the display reflected steady state value is more difficult due to short glance times

The eye pupil diameter responds in an exponential manner after a latency time

Page 9

Figure 2-4. Latency of the Pupil Light Reflex for Different Stimulus Intensities [8]

Figure 2-3. Pupillary light reflex to a blue light stimulus [7], Note: ADOA is an acronym for “autosomal dominant optic atrophy”

Page 10: Total biometric auto luminance revb

Implementation

Use the instantaneous diameter, velocity (slope) and acceleration vectors to determine the final steady state pupil diameter.

Page 10

ASDDF

2

D = Instantaneous Pupil Diameter

S = Instantaneous Velocity (slope)

A = Instantaneous Acceleration

DF = Final Steady State Pupil Diameter

Figure 2-5. Pupil Diameter Response Time Model [9]

Page 11: Total biometric auto luminance revb

Implementation

Example using exponential equation

Page 11

-0.08

0

0.08

0.16

0.24

0.32

0.4

0

1

2

3

4

5

6

0 10 20 30

Slop

e S

or A

ccel

erati

on A

Pupi

l Dia

met

er D

(mm

)

Time (sec)

D

S

A

Figure 2-6. Pupil Rise Time Example

64 10 teD

t D S A τ DF 0 2

0.1 2.039801 0.398007 0.2 2.079205 0.394046 -0.0396 9.950083 6

0.3 2.118218 0.390126 -0.03921 9.950083 6 0.4 2.156842 0.386244 -0.03882 9.950083 6 0.5 2.195082 0.382401 -0.03843 9.950083 6 0.6 2.232942 0.378596 -0.03805 9.950083 6 0.7 2.270425 0.374829 -0.03767 9.950083 6 0.8 2.307535 0.371099 -0.0373 9.950083 6 0.9 2.344275 0.367406 -0.03692 9.950083 6

1 2.38065 0.363751 -0.03656 9.950083 6 1.1 2.416663 0.360131 -0.03619 9.950083 6 1.2 2.452318 0.356548 -0.03583 9.950083 6 1.3 2.487618 0.353 -0.03548 9.950083 6 1.4 2.522567 0.349488 -0.03512 9.950083 6

1.0

1.0

tDtDS

ASDDF

2

1.0

1.0

tStSA

Page 12: Total biometric auto luminance revb

Implementation

Example for dynamic changing background luminance conditions

Page 12

-20246810121416

22.05

2.12.15

2.22.25

2.32.35

2.42.45

0 1 2 3

τ(s

ec) o

r Pu

pil D

F (m

m)

Dupi

l Dia

met

er (m

m)

Time after 400ms gaze transition (sec)

D

τ

DF

Figure 2-7. Gaze Time Example

Page 13: Total biometric auto luminance revb

Implementation

Calculating perceived luminance from steady state pupil diameter

Page 13

0.1

1

10

100

1000

10000

100000

1000000

2 3 4 5 6Lu

min

ance

cd/m

^2Pupil Diameter (mm)

L(a=1090)

L(a=500)

L(a=2000)

Figure 2-8. Luminance as a Function of Pupil Diameter for Various Solid Angles “a” in deg2

aDDLBG

84622

75.7 41.0141.0

1

Page 14: Total biometric auto luminance revb

Implementation

Page 14

LogarithmicAmbientLight Sensor(ALS)

DF Luminance Ratio Table

GF Table

DisplayUser Bias

∆NBD

DISPLAY5ESLD

4 43 KNNK BDD

∆N

GF ∆N 1 0

1.328803 1 1.765719 2 2.346293 3 3.117763 4 4.142894 5 5.505092 6 7.315185 7 9.720443 8 12.91656 9 17.16357 10

LogarithmicFowardLookingLight Sensor(FFLS)

Luminance Ratio Table

1.125log10 (LSEL )

GF

21 KNK H

0.2982

1.125log10 (FFVI) ESLH

HUD

13 DBD C

ODNN

D DBLBR

HUD UserBias ∆NBH

12

9 10

11

6

7

8

Camera

EyeEye GazeSystem

NH D log(La) ESLH 0 7.6 0.068 47

1 7.4 0.733 80

2 7.1 1.399 137

3 6.7 2.065 234

4 6.1 2.730 400

5 5.2 3.396 684

6 4.3 4.062 1170

7 3.5 4.728 2000

8 2.9 5.393 3420

9 2.5 6.059 5848

10 2.3 6.725 10000

Eye

Camera 2

1

Eye GazeSystem 3A

Final Pupil Diameter

ND LSEL log(LBG) DF 0 38.71 -0.215 6.0 1 50 0.193 5.5 2 64.58 0.600 4.9 3 83.41 1.007 4.4 4 107.72 1.414 3.9 5 139.13 1.821 3.4 6 179.69 2.228 3.0 7 232.08 2.635 2.7 8 299.74 3.042 2.5 9 387.13 3.449 2.4

10 500 3.856 2.3

3B

Page 15: Total biometric auto luminance revb

Conclusion

A biometric ambient light sensor may be developed using an eye gaze camera to measure the driver’s pupil diameter.

A biometric ambient light sensor is expected work better because the driver’s perceived display reflected background intensity is being utilized.

Age compensation is possible by changing the look-up table based on the Unified Formula and driver’s personalization data (age).

Page 15

Page 16: Total biometric auto luminance revb

Auto-luminance Book Debut

Announcing the release of auto-luminance book

Collection of papers

First Edition with more Chapters to follow

180 pages

Limited copies and memory sticks available at the Visteon Table

Will be available in the near future on Visteon website, www.visteon.com. Select “Innovation” and then select “Technical Papers”

Page 16

Page 17: Total biometric auto luminance revb

Page 17

www.visteon.com