6
This figure is far more sophis0cated than everything organova is communica0ng at this 0me. When did leading with research and IP become a lost founda0on for value in life science …

Sophisticated biotechnology vs experimental ideology

Embed Size (px)

DESCRIPTION

The billion cell construct: will three-dimensional printing get us there? PLoS Biol. 2014 Jun 17;12(6):e1001882. doi: 10.1371/journal.pbio.1001882. Miller JS. Department of Bioengineering, Rice University, Houston, Texas, How structure relates to function—across spatial scales, from the single molecule to the whole organism—is a central theme in biology. Bioengineers, however, wrestle with the converse question: will function follow form? That is, we struggle to approximate the architecture of living tissues experimentally, hoping that the structure we create will lead to the function we desire. A new means to explore the relationship between form and function in living tissue has arrived with three-dimensional printing, but the technology is not without limitations.

Citation preview

Page 1: Sophisticated biotechnology vs experimental ideology

This  figure  is  far  more  sophis0cated  than  everything  organova  is  communica0ng  at  this  0me.  When  did  leading  with  research  and  IP  become  a  lost  founda0on  for  value  in  life  science  …  

Page 2: Sophisticated biotechnology vs experimental ideology

Figure  1:  Anatomical  complexity  remains  unsolved.    

(A)  Leonardo  da  Vinci  famously  recognized  the  interpenetra:ng  networks  of  lung  vasculature  and  branched  airways  with  his  detailed  drawings  (c.  1500).  Image  courtesy  of  the  European  Union  Leonardo  Digitale.  (B)  Whole-­‐lung  vasculature  can  be  reconstructed  and  visualized  from  computed  tomography  (CT)  scans.  Reprinted  with  permission  from  [61].  (C)  Air  sac  architecture  of  adult  rat  lung  (electron  micrograph  of  decellularized  resin  cast).  Image  courtesy  of  Laura  Niklason,  addi:onal  research  available  via  [25],  scale  bar  =  1  mm.  (D)  Op:cal  projec:on  tomography  image  of  an  embryonic  day  15  mouse  lung  undergoing  branching  morphogenesis.  Epithelium  (E-­‐Cadherin,  magenta),  future  conduc:ng  airways  (SOX2,  white).  Image  courtesy  of  Jichao  Chen,  addi:onal  research  available  via  [62],  scale  bar  =  500  m.  

Page 3: Sophisticated biotechnology vs experimental ideology

Figure  2.  Tissue  engineering.    

Inves:ga:ons  with  engineered  :ssue  constructs  currently  span  at  least  eight  orders  of  magnitude.  Yet,  the  minimum  therapeu:c  threshold  for  recapitula:ng  solid  organ  func:on  in  humans  is  es:mated  at  the  level  of  1–10  billion  func:oning  parenchymal  cells.  We  s:ll  have  a  ways  to  go.  

Page 4: Sophisticated biotechnology vs experimental ideology

Figure  3.  Overview  of  3D  prin0ng.    

(A)  A  3D  model  can  be  generated  and  visualized  in  a  wide  range  of  so\ware  packages.  3D  model  available  under  Crea:ve  Commons  license  via  Thingiverse.com,  courtesy  of  ar:sts  Barak  Moshe  and  Faberdashery.  (B)  The  surface  topology  is  simplified  to  a  mesh  comprising  a  series  of  3D  coordinates  (ver:ces)  and  the  triangles  (faces)  that  connect  them.  (C)  The  surface  mesh  is  computa:onally  sliced  layer-­‐by-­‐layer  to  calculate  machine  instruc:ons  suitable  for  3D  prin:ng.  Machine  instruc:ons  can  be  visualized  en  face  or  in  cross-­‐sec:on  (inset).  (D)  3D  prin:ng  via  melt  extrusion  (inset)  can  easily  achieve  layer  heights  which  surpass  the  resolu:on  of  human  fingerprints.  Scale  bar  =  1  mm.  (E)  A  selec:on  of  the  diverse  parameter  space  of  3D  prin:ng  technologies.  Many  dozens  of  different  combina:ons  are  in  prac:ce  today.  

Page 5: Sophisticated biotechnology vs experimental ideology

FIGURE  4:  Recapitula0ng  whole  organ  vasculature.  Figure  4.  Journey  of  a  molecular  nutrient  through  na0ve  0ssues.    

Cellular  organiza:on  in  vascularized  :ssues  is  commonly  simplified  into  four  regimes,  which  are  rarely  recapitulated  together  in  engineered  :ssue  constructs.  Soluble  blood  components  vary  drama:cally  in  size,  concentra:on,  and  biochemistry,  and  each  has  dis:nct  targets  and  mechanisms  for  nego:a:ng  :ssue  architecture.  Artwork  render  and  anima:on  (Movie  S1)  performed  with  Blender.org  open-­‐source  so\ware.  

Page 6: Sophisticated biotechnology vs experimental ideology

FIGURE  5:  Recapitula0ng  whole  organ  vasculature.    It   should   be   possible   to   create  whole   vascularized   organoids   by  merging   current   anatomical  mapping   technologies  with   3D   prin:ng.   (A)   A   :ssue   or   organ   of   interest   is  scanned  via  microcomputed  tomography  (micro-­‐CT).  Source  2D  liver  scans  courtesy  of  Chris  Chen  and  Sangeeta  Bha:a,  addi:onal  research  available  via  [10].  The  resul:ng  voxels  (volumetric  pixels)  can  be  visualized  and  converted  into  a  3D  surface  topology.  (B)  Op:onally,  the  3D  surface  mesh  can  be  fully  parametrized  in  order  to  generate,  de  novo,   similar   vascular   architectures   as   a  new   topology.   (C)  Na:ve  or   synthe:cally   generated   vascular   architectures   are   then   computa:onally   sliced  and  prepared   for   3D  prin:ng  directly  (in  sacrificial   ink)  or  by  boolean  volumetric  subtrac:on  (in  addi:ve  ink).  A\er  physical  cleanup,  3D  prin:ng  can  yield  cell-­‐laden  hydrogels  containing  living  cells  and  perfusable  vasculature.  Shown  here  for  clarity  is  an  architecture  with  one  inlet  and  zero  outlets,  but  more  complete  or  complex  architectures  with  mul:ple  inlets  and  outlets  could  be  achieved  with  this  same  workflow.