32
Page 1 SAR-LINE™ Method - A new method for Squeak & Rattle simulation and test developed at SAAB Jens Weber, Ismail Benhayoun Saab Automobile AB 5 th European HyperWorks Technology Conference Bonn, Germany 2011 November 8 th – 9 th

SAR-LINE™ Method - A new method for Squeak & Rattle simulation and test developed at SAAB

Embed Size (px)

DESCRIPTION

 

Citation preview

  • 1. SAR-LINE Method - A new method forSqueak & Rattle simulation and testdeveloped at SAABJens Weber, Ismail BenhayounSaab Automobile AB5th European HyperWorks Technology ConferenceBonn, Germany 2011November 8th 9th Page 1

2. Squeak & Rattle (SAR) causesManufacturing Material pairsAssembling Surface finishing Relative displacement Temperature TolerancesRoad load Humidity Jens Weber, Ismail BenhayounPage 2 Ref: SAE 2010-01-1423 3. Instrument panel (IP) assemblySAAB 9-5 Jens Weber, Ismail BenhayounPage 3 Ref: SAE 2010-01-1423 4. IP assembly on quiet shaker F(t) Deformation scale factor 50 !Jens Weber, Ismail BenhayounPage 4Ref: SAE 2010-01-1423 5. ParametersGlobal stiffnessLocal stiffnessClips/snaps stiffnessContact / gapLoad Rel disp in local Coordinate System (CS) LoadRelative displacement SAR-LINESAR evaluation Jens Weber, Ismail BenhayounPage 5 Ref: SAE 2010-01-1423 6. Global stiffnessModal correlation Test - FEM123 7 4 6 89 5 10MAC 12 11 1413271516 20 263228 1721 29 1819 2233 23 3024 31 25- Only the lowest modesFoil (shell)are represented- Improved material data for plasticand foam/foil (Youngs modulus)Foam (solid) Jens Weber, Ismail BenhayounPage 6 Ref: SAE 2010-01-1423 7. Modal correlationLaser Scanning Vibrometer Jens Weber, Ismail BenhayounPage 7 Ref: SAE 2010-01-1423 8. Local stiffness MAC valueSimulation with shell elements:- thickness: t ~ k(E,t)/m - mass: m - Youngs modulus: EMode # Simulation [Hz] Simulation [Hz] Test [Hz] MAC value [ - ]2130 MPa2600 MPaTest 113.815.3 15.0 0.98 218.920.9 21.2 0.95 324.126.6 25.7 0.98 431.434.7 35.3 0.98 542.246.4 46.3 0.98 648.653.7 54.9 0.89 761.668.1 68.4 0.94 865.172.0 72.9 0.93 978.386.5 87.5 0.841085.093.9 95.0 0.87 Jens Weber, Ismail Benhayoun Page 8 Ref: SAE 2010-01-1423 9. S&R Cockpit test on quiet shakerGlobal stiffnessLocal stiffnessClips/snaps stiffness LoadContact / gap LoadRelative displacement Rattle v Squeakw [m/s2][mm]Part I uQZ P T [s]YT [s] GAP Part II Samplings frequency SFXJens Weber, Ismail BenhayounPage 9Ref: SAE 2010-01-1423 10. Contact / gapSAR-LINE method Local CS: x rattle- aligned to master surface - assigned as analysis CS to node # 1001 and 2001Master surfacez squeak1001RBE33D line (SAR line path)RBE3 Slave surfaceTCL script in HyperMesh 2001SAR line numbering convention:SAR line # 1065: 1001 / 2001 to 1065 / 2065SAR line # 3099: 3001 / 4001 to 3099 / 4099 ....Jens Weber, Ismail Benhayoun Page 10Ref: SAE 2010-01-1423 11. Contact / gapSAR line RBE3Local CS RBE3SAR lines Jens Weber, Ismail Benhayoun Page 11 Ref: SAE 2010-01-1423 12. Input signalPSD load definitionfor quiet shaker tableTime signal length? Time signalJens Weber, Ismail BenhayounPage 12Ref: SAE 2010-01-1423 13. Time length of input signal vs relative displacement Jens Weber, Ismail Benhayoun Page 13 Ref: SAE 2010-01-1423 14. Post processing relative displacement using HyperGraph Rel disp in node 1001-2001Max value 0.45 mm + Gap closing - Gap opening T=3s Ranking the peak amplitudes Mean value 0.19 mm20 % Mean value of 20 % of highest peak amplitudesJens Weber, Ismail BenhayounPage 14Ref: SAE 2010-01-1423 15. Analysis processFFT - Frequency response - iFFTdelta f = f(SF, T, 2n)TLOAD (random signal) Displacement in local CS (LCS)in time domainin time domain on SAR lineRADIOSSModal transient analysis Load TSTEP = 1/SF Displacement in LCS[m/s2][mm] T [s] T [s] Samplings frequency SFJens Weber, Ismail Benhayoun Page 15Ref: SAE 2010-01-1423 16. SAR-LINE evaluation process InputOutputNode pairs on SAR lines: Relative displacement (max or % value of highest peak amplitude)*.dat file Purpose Comparing design variants : material, mounting points Correlation to rattle and squeak occuranceGRID node #X Y Z 3D contour plot of all SAR lines showing the magnitude of rel disp Global Ranking all SAR lines (Histogram)Results on SAR line Relative displacement along the SAR line (in LCS)*.pch *.matLine User option: Magnitude, Squeak, RattleDisp T1/T2/T3 in LCS Relative displacement at each node pair in time domain PointTime = time length of input signal Ranked amplitudes Jens Weber, Ismail BenhayounPage 16 Ref: SAE 2010-01-1423 17. Global level - Contour plotJens Weber, Ismail BenhayounPage 17Ref: SAE 2010-01-1423 18. Global level - Ranking SAR Line ranking - Magnitude - Mean over 30% highest values (HV) 0.141 mmLine 13094Jens Weber, Ismail BenhayounPage 18Ref: SAE 2010-01-1423 19. Line level zLocal CS in each ySAR line point 70017027 Node 7001 Node 7027Node 7001Node 7027Jens Weber, Ismail BenhayounPage 19Ref: SAE 2010-01-1423 20. Point levelNode 7015 and 8015 z y Mean value over 30 % HVJens Weber, Ismail BenhayounPage 20Ref: SAE 2010-01-1423 21. Ranking comparison of design variantsVariant 1Remove mountingpointVariant 2Change material fromPP-LGF30 to ABS PC Jens Weber, Ismail Benhayoun Page 21 Ref: SAE 2010-01-1423 22. Line - comparison of design variantsVariant 1Node 3035Remove mountingpoint Node 3001Variant 2Change material from Node 3001 Node 3035PP-LGF30 to ABS PCJens Weber, Ismail Benhayoun Page 22Ref: SAE 2010-01-1423 23. Gap line vs contact lineContact line Gap lineRattle correlation Squeak correlationPeak amplitude > Gap size Peak to peak amplitude > 1/Impulse ratePeak to peak amplitude Gap sizeRel disp in contact plane Jens Weber, Ismail BenhayounPage 23 Ref: SAE 2010-01-1423 24. Rattle correlationRel disp in node 1001-2001 gap = meancrit Ranked peak amplitudes when rattle sound starts?% Rattle occurs when gap = meancrit value of ? % hightest peak amplitudes TEST SIMULATION Displacement measured with Displacement simulated with 3D Laser Vibrometermodal transient solverF (t) F (t)Jens Weber, Ismail BenhayounPage 24Ref: SAE 2010-01-1423 25. Rattle correlationJens Weber, Ismail BenhayounPage 25Ref: SAE 2010-01-1423 26. Rattle correlationJens Weber, Ismail BenhayounPage 26Ref: SAE 2010-01-1423 27. Squeak correlationdate10.08.2007time12:19:02 stick-slip test standparameters15 20 normal force50,3 Ntemperature25,09 Chumidity 54,06 % rel. F. 15rel. velocity5,8 mm/sRelative velocity10 10 stick-slip riskRPZ10 512 3 456 7 8 9 105grade groan rate 10,33 00grade acceleration 27,00grade impulse rate5,72 - 5-5 max. accel. 22,1 ggroan rate0,10 kHz -0 1impulse ratetesting duration 1,426,1 1/mm s Impulse rateimpulses 212-01 -5 1dyn. frict. force8,3 Ndyn. COF0,17-51-0 2 -0 2 -5 1-01- 5 - 0stat. frict. force13,4 N acce e r ton [ ]l a i g r se t f rce N ]eo [ m o t rs t t s o ausstat. COF 0,27version 2.00Jens Weber, Ismail BenhayounPage 27Ref: SAE 2010-01-1423 28. in contact planeSqueak correlation Relative displacement (in contact plane)Peak to peak amplitude 1/Impulse rate < peak to peak amplitude0.44 mm Relative velocityMax value Relative velocity max relative velocity22 mm/s Jens Weber, Ismail BenhayounPage 28 Ref: SAE 2010-01-1423 29. SAR-LINE applications interior / exteriorJens Weber, Ismail BenhayounPage 29Ref: SAE 2010-01-1423 30. SAR-LINE applications interior / exteriorVolvo 3PBy courtesy of Volvo 3P Jens Weber, Ismail BenhayounPage 30 Ref: SAE 2010-01-1423 31. Interior design processStart of productionVirtual engineering ValidationModal analysis Pulse analysis (Global CS) SAR-LINE analysisRoot cause analysis / test supportJens Weber, Ismail BenhayounPage 31Ref: SAE 2010-01-1423 32. Tack s mycket!Jens Weber, Ismail BenhayounPage 32Ref: SAE 2010-01-1423