25
Elas%c Recoil Detec%on and Positron Annihila%on Studies of the Mild Baking Effect A. Romanenko Fermilab L. Goncharova, P. Simpson Univ. of Western Ontario D. Gidley UMich

Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Embed Size (px)

Citation preview

Page 1: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Elas%c  Recoil  Detec%on  and  Positron  Annihila%on  Studies  of  the  Mild  

Baking  Effect  A.  Romanenko    

Fermilab  L.  Goncharova,  P.  Simpson    Univ.  of  Western  Ontario  

D.  Gidley    UMich  

Page 2: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  mild  baking  mechanisms  

•  Models  previously  considered    –  Inters%%al  oxygen-­‐based  models  

– Natural  oxide  modifica%on  

•  Inters%%al  hydrogen  in  the  near-­‐surface  region    •  LaJce  defects  

– Local  misorienta%on  (disloca%on  density)  reduc%on  with  baking  revealed  by  EBSD  studies  

Page 3: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Historical  Prospec%ve  

•  “Stage  III  controversy”  •  Origin  -­‐  observa%ons  of  resis%vity  recovery  (strong  change)  in  different  group  V  metals  (tungsten,  molybdenum,  niobium)  aSer  either  deforma%on  or  irradia%on  in  1960-­‐70s  

•  Controversy  essence  -­‐  is  it  inters%%al  impuri%es  or  laJce  defects,  which  are  changing  in  Stage  III  

•  Stage  III  happens  in  niobium  around  -­‐50C  without  any  hydrogen  and  at  around  120C  with  hydrogen  presence    

•  Near-­‐surface  niobium  is  exactly  that  -­‐  niobium  with  some  hydrogen  

Page 4: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

D.  E.  Peacock,  A.  A.  Johnson,  Philosophical  Magazine,  Volume  8,  Issue  88  April  1963  ,  pages  563  -­‐  577    

A  clear  resis%vity  recovery  stage  in  neutron  irradiated  niobium  iden%fied  at  around  100-­‐120C  

•   Radia%on  damage  –  laJce  defects  –  mostly  vacancies  and  disloca%on  loops  •   Degree  of  recovery  depends  on  the  amount  of  damage  –  the  “recovering”  en%ty  is  laJce  defects  •   Similar  stage  found  in  Mo  

Page 5: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

L.  Stals  and  J.  Nihoul,  Phys.  Stat.  Sol.  8,  785,  1965  

Same  resis%vity  recovery  stage  in  heavily  cold  worked  niobium  iden%fied  at  around  100-­‐120C  

•   Heavy  cold  work  –  laJce  defects  –  mostly  disloca%ons  and  vacancies  •   From  the  analysis  of  recovery  at  different  temperatures  –  driving  process  most  likely  bimolecular  process  –  vacancies  annihila%ng  with  self-­‐inters%%als  •   Abributed  to  the  recovery  of  point  defects  

Page 6: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

P.  Hautojarvi  et  al,  Phys.  Rev.  B,  Vol.  32,  Num.  7,  1985  

Positron  annihila%on  –  studies  of  open  volume  defects  (vacancies)  

•   Temperature  of  the  Stage  III  recovery  depends  on  the  hydrogen  presence  -­‐  vacancies  are  bound  by  hydrogen  up  to  100-­‐120C    •   Similar  effect  found  in  Ta  

Page 7: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Physica  Scripta.  Vol.  20,683-­‐684,  1979  Annealing  of  Defects  in  Irradiated  Niobium  0.  K.  Alekseeva  et  al.  

Positron  annihila%on  –  studies  of  open  volume  defects  (vacancies)  

•   Clear  decrease  in  open  volume  defects  (i.e.  vacancies)  starts  at  around  120C  

Page 8: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Hydrogen-­‐induced  defects  •  Hydrogen  can  cause  laJce  

defects  –  vacancies  and  disloca%ons  depending  on  the  concentra%on  –  equivalent  to  heavy  cold-­‐work  

•  Superabundant  Vacancies  (SAVs)  –  general  phenomenon  recently  uncovered  for  M-­‐H  systems  –  emerges  when  surface  chemisorp%on  is  preferable  to  inters%%al  solu%on  

29  orders  of  magnitude  higher  concentra%on  of  vacancies  in  the  presence  of  hydrogen  as  compared  to  thermal  equilibrium  

For  review  –  A.  Pundt  and  R.  Kirchheim,  Annu.  Rev.  Mater.  Res.  2006.  36:555–608  

Page 9: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Inves%ga%on  of  near-­‐surface  hydrogen  

•  Mo%vated  by  the  possible  driving  mechanism  for  the  mild  baking  effect  –  Vac-­‐H  complexes  dissocia%on  occuring  around  100-­‐120C  

•  Leading  to  the  elimina%on  of  the  HFQS  by  – LaJce  defect  density  reduc%on  in  the  near-­‐surface  layer?  [A  Romanenko  and  H  Padamsee  2010  Supercond.  Sci.  Technol.  23  045008]  

– Or  hydrogen  concentra%on  decrease?  -­‐  inves%gated  by  Elas%c  Recoil  Detec%on  (ERD)  

Page 10: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Elas%c  Recoil  Detec%on  

•  Based  on  the  detec%on  of  recoiled  H  ions  •  Sensi%vity  of  order  1  at.%  •  Depth  resolu%on  achievable  ~  1  nm  •  Depth  profile  is  reconstructed  from  energy  spectrum  of  ions  

He+  

H+  

Sample  Incident  energy  =  1.6MeV  He+  

Incident  angle  =  75o  

Scabering  Angle  =  29o  

Dose:  normalized  to  1µC  

Facility  at  the  Univ.  of  Western  Ontario  (Prof.  L.  Goncharova)  

Page 11: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

• Area under each peak corresponds to the concentration of the element in a 1nm slab • Peak shapes and positions come from energy loss, energy straggling and instrumental

resolution. • The sum of the contributions of the different layers describes the depth profile.

Hydrogen Concentration profiles obtained from energy spectra simulations

Page 12: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Samples  inves%gated  with  ERD  

Sample   Origin   Treatment  

HA-­‐1   Single  grain  Nb     BCP  150  um  

HA-­‐2   Single  grain  Nb   BCP  150  um  +  800C  4  hrs  

HA-­‐3   Single  grain  Nb   BCP  150  um  +  800C  4  hrs  +  110C  74  hrs  

HA-­‐4   Single  grain  Nb   BCP  150  um  +  800C  4  hrs  +  110C  74  hrs  +  HF  rinse  10  min  

HA-­‐5   Single  grain  Nb   BCP  150  um  +  600C  10  hrs  

HA-­‐6   Single  grain  Nb   BCP  150  um  +  600C  10  hrs  +  110C  54  hrs  

LE1-­‐37  hot  spot   Large  grain  Nb  cavity  cutout  

BCP  200  um  

TE1AES004  cold  spot   Fine  grain  Nb  EP  cavity  cutout    

EP  100  um  +  120C  48  hrs  

Page 13: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Experimental  data  (Overview)  

Incident  energy  =  1.6MeV  He+  

Incident  angle  =  75o  

Scabering  Angle  =  29o  

Dose:  normalized  to  1µC  

He+  

H+  

Page 14: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Experimental  data  (vs  Energy)  

Page 15: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  posi%ons  at  the  surface  

ERD  results  for  different  posi%ons  on  the  surface  are  shown;  integrated  intensi%es  for  bulk  (ch.100-­‐240)  and  surface  (ch.240-­‐320)  hydrogen  yield  are  listed  below  

•  difference  between  different  spots  is  noted  in  the  table  

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

HA-1 1 566 1038

2 513 925

HA-2 1 383 761

2 347 756

3 347 846

BCP  BCP+800C  2  hrs  

Page 16: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  posi%ons  at  the  surface  

ERD  results  for  different  posi%ons  on  the  surface  are  shown;  integrated  intensi%es  for  bulk  (ch.100-­‐240)  and  surface  (ch.240-­‐320)  hydrogen  yield  are  listed  below  

•  difference  between  different  spots  is  noted  in  the  table  

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

HA-3 1 355 860

2 365 882

3 354 918

HA-4 1 472 1041

2 521 1136

3 533 1102

Page 17: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Different  posi%ons  at  the  surface  

ERD  results  for  different  posi%ons  on  the  surface  are  shown;  integrated  intensi%es  for  bulk  (ch.100-­‐240)  and  surface  (ch.240-­‐320)  hydrogen  yield  are  listed  below  

•  difference  between  different  spots  is  noted  in  the  table  

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

HA-5 1 393 1220

2 417 1045

HA-6 1 375 855

2 347 696

Page 18: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

HA-­‐X  ERD  Summary  

Sample  #

Treatment Surface  Content Bulk  Content

HA-­‐1 BCP 53Å  Nb0.79H0.21 Nb0.994H0.008

HA-­‐2   BCP  +  800C  4hrs 48Å  Nb0.80H0.20 Nb0.994H0.006

HA-­‐3   BCP  +  800C  4  hrs  +  110C  54  hrs 53Å  Nb0.80H0.20 Nb0.994H0.006

HA-­‐4 BCP  +  800C  4  hrs  +  110C  54  hrs  +  HF  10  min

110ÅNb0.91H0.09/  170Å  Nb0.96H0.04

Nb0.992H0.008

HA-­‐5   BCP  +  600C  10  hrs 62Å    Nb0.77H0.23 Nb0.994H0.006

HA-­‐6 BCP  +  600C  10  hrs  +  110C  72  hrs 65Å    Nb0.85H0.15 Nb0.994H0.006

Page 19: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Data  on  cutout  samples  

•  Used  samples,  which  were  cut  out  of  real  RF  cavi%es  characterized  with  thermometry  during  the  tests    

•  One  sample  from  the  “hotspot”  in  Cornell  high  field  Q-­‐slope  limited  large  grain  BCP  cavity  

•  One  sample  from  FNAL  baked  fine  grain  EP  cavity  –  no  high  field  Q-­‐slope,  cavity  limited  by  local  quench  at  around  150  mT  at  the  other  loca%on    

Page 20: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Cutouts  Data  

Incident  energy  =  1.6MeV  He+  

Incident  angle  =  75o  

Scabering  Angle  =  29o  

Dose  =  4µC  

He+  

H+  

Page 21: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Sample Spot Integrated Yield, ch 100-240 Integrated Yield, ch 240-310

Large grain BCP cutout 1 464 1666

2 528 1877

3 511 2075

4 506 2082

EP baked cutout 1 579 1829

2 596 2292

3 558 2279

4 636 2121

Large  grain  BCP  hot  spot   Fine  grain  EP  baked  cutout  

Page 22: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Sample #

Surface Content Bulk Content

1 7.6 nm Nb0.78H0.22 Nb0.994H0.006

2 7.5 nm Nb0.77H0.23 Nb0.994H0.006

Sample  1  –  Hot  Spot  in  the  high  field  Q-­‐slope  of  large  grain  BCP  cavity  –  strong  dissipa%on  detected  by  thermometry  

Sample  2  from  baked  EP  cavity  –  no  high  field  Q-­‐slope,  losses  negligible  

But  –  hydrogen  profile  is  the  same!  

Page 23: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Positron  Annihila%on    Doppler  Broadening  Spectroscopy  

•   Positron  life%me  depends  on  the  electron  density  –  lives  longer  at  open  volume  defects  (i.e.  vacancies)  •   Width  of  the  spectra  of  gamma  quants  produced  on  annihila%on  depends  on  the  local  electron  density  and  momenta  

•   Characterized  by  S-­‐parameter  –  roughly  the  higher  S  the  larger  the  concentra%on  of  open  volume  defects    

•   Varying  positron  energy  –  non-­‐destruc%ve  depth  profiling  

Page 24: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Doppler  broadening  spectroscopy  –  preliminary  results  

UMich/NCSU  data   UWO  data  

Baking  120C  in  situ  

Baked/unbaked  

Decrease  in  the  density  of  vacancies  detected  in  both  cases  Life%me  spectra  

Page 25: Romanenko - Elastic Recoil Detection and Positron Annihilation Studies of the Mild Baking Effect

Conclusions  

•  Hydrogen  seems  to  be  uncorrelated  with  the  mild  baking  improvement  in  the  HFQS  – Same  H  content  with/without  HFQS  

•  HF  rinsing  results  in  the  smearing  of  H-­‐profile  •  Preliminary  positron  annihila%on  data  –  decrease  in  near-­‐surface  laJce  defects  during  mild  baking  

•  Same  samples  from  ERD  are  going  to  be  used  for  further  positron  annihila%on  studies