46
University of Zagreb Faculty of Electrical Engineering and Computing Analysis of Signal Propagation in Optical Fiber Based on Finite - Difference Method Sonja Zentner Pilinsky Doctoral Thesis, Zagreb, 2003

Ph ddefence

Embed Size (px)

DESCRIPTION

Analysis of Signal Propagation in Optical Fiber Based on Finite-Difference Method, PhD presentation

Citation preview

Page 1: Ph ddefence

University of ZagrebFaculty of Electrical Engineering and Computing

Analysis of Signal Propagation in Optical Fiber Based on

Finite - Difference Method

Sonja Zentner Pilinsky

Doctoral Thesis, Zagreb, 2003

Page 2: Ph ddefence

22

Contents:

1. Introduction

2. Pulse propagation in optical fiber

3. Numerical model and its accuracy

4. Selected simulation results

5. Conclusions

Page 3: Ph ddefence

33

1. Introduction

Motivation and goal

What we model

How we model

Additional devices needed

Page 4: Ph ddefence

44

Motivation

- need for accurate program with all effects included:

new sophisticated optical links

upgrade of existing fiber links

- expensive experiments

why to model optical link

- linear fiber communications at the edge (bit rates, capacity)- optical transmission very sensitive to:

dispersion (cromatic, polarization mode)lossnonlinear effectsnoise

Page 5: Ph ddefence

55

Goal - to model modern optical links

dispersion map

Page 6: Ph ddefence

66

What we model

Nonlinear Schrödinger equation (NLSE)

0

2

2 2

d

d

nonlinear coeff.describing SPM

fiber loss in dB/km

time

1

1

gv

distance along fiber

optical pulsecomplex envelope

2 0

eff

n

cA

Page 7: Ph ddefence

77

How we model

- FDM Cranck - Nicholson

- pseudospectral SSFM

- testing accuracy on canonical problems

- comparison with OptiSystem 2.0.

Models for additional devices

- EDFA model (G, ASE noise)

- Optical filter model (transfer function)

Page 8: Ph ddefence

88

2. Pulse propagation in optical fiber

Propagation equation

Fiber loss

Group velocity dispersion

Self - phase modulation

Polarization dispersion

Page 9: Ph ddefence

99

Maxwell equations

0f

t

t

f

BE

DH J

D

B

0

0

D E P

B H M

Optical fiber:-no sources Jf ,f = 0 -nonmag.mat M = 0

10, ,L t t t t dt

P r E r

30 1 2 3 1 2 3 1 2 3, , , , , ,NL ijklt t t t t t t t t t dt dt dt

P r E r E r E r

Page 10: Ph ddefence

1010

Assumption and approximation:

2/ E E E

2 2 E E E E

WGA (ncore – ncladding)/ ncore << 1

- the EM field maintains its polarization along the fiber

- Weakly guiding approximation

Page 11: Ph ddefence

1111

- PNL is treated as a small perturbation to PL

- nonlinear effects: Kerr and Raman (neglected for T0 > 1ps)

instantaneousresponse

3 31 2 3 1 2 3, ,ijkl t t t t t t t t t t t t

- SVEA - slowly varying envelope approximation

- envelope is slowly varying in z and t - removes backscattered part of the envelope

0 , 1 L NLkc

230

3, , , ,

4NL NL NLP t E t E t r r r

Page 12: Ph ddefence

1212

22

32 0 0

4

,2 3

, 8

,

I

xxxx effeff eff

F x y dxdyn k Z

AA n cA

F x y dxdy

Propagation equation for pulse complex envelope:

SVEA assumption: 00 0, , , e j zE F x y A z r

HE11 mode

0

0

,

,, a

J a

F x y aJ a e a

Page 13: Ph ddefence

1313

- [dB/km]=-10log-[1/km]

- absorption (intrinsic and extrinsic)- scattering - linear: Rayleigh and Mie

- nonlinear: Raman and Brillouin

Fiber loss:

Page 14: Ph ddefence

1414

- caused by material and waveguide dispersion- mathematically described by

2 3

0 1 0 2 0 3 0

1 1..

2 3!.

n

c

1

1 ps

kmg

g

n

c v

0 0

2 23 20

2 2 2 2

ps

2

d n d n

c d c d km

0 0

2 3 3

3 02 3

1 ps3

km

d n d n

c d d

20

2D

TL

30

3D

TL

Group velocity dispersion:

Page 15: Ph ddefence

1515

2

2

2,2

I En E n n

Z Kerr effect

SPMXPMFWM

2 0 2 0 1

Wkm

I I

eff eff

n k n

A cA

SPM without dispersion:

2

00

,

1,

z

NL

NL

U je U U

z L

AU L

PP

Self Phase Modulation:

0 2

2 2 In z n I t z

,

2

, 0,

1, 0, ,

NLi z T

zeff

NL effNL

U z T U T e

z ez T U T z

L

Page 16: Ph ddefence

1616

Polarization mode dispersion

- caused by circular asymmetries in the fiber

- locally birefringence

2x y

x y

nc cn n

1 1

2B

x y

Ln

- measure of pulse splitting in biref. fiber - DGD

g

L d n d nL L

v d c c d

Page 17: Ph ddefence

1717

222

2 2

22 2

2 2

2

2 2 2 3

2

2 2 2 3

x x xx x y x

y y yy y x y

A A AjA j A A A

z t t

A A AjA j A A A

z t t

PMD (cont.)

- alternative method for linear optical element

,

out in

a b

b a

J A J A

0

00

2 20 0 0

1

x

y

jxx

jy y

x y

a eE

EE a e

E E E

J

DGD 2 22 a b a’() [a(+) – a()] /

- globally - birefringence combined with random polarization mode coupling:

Page 18: Ph ddefence

1818

3. Numerical model and its accuracy

FDM or SSFM ?

Accuracy check and comparison with

OptiSystem 2.0

EDFA model and filter model

Page 19: Ph ddefence

1919

- FDMs: Crank - Nicholson scheme

- pseudospectral method: SSFM

Nonlinear PDE modeling:

Criterion for selected FDM model:

- accuracy- stability

Page 20: Ph ddefence

2020

- solving numerical scheme to prescribed initial values and boundary conditions

- errors: modeling, truncation, round-off

FDM steps

- dividing solution region into a grid of nodes

- PDE finite difference equivalent (numerical stability!!)

Page 21: Ph ddefence

2121

D e r i v a t i v e F i n i t e d i f f e r e n c e a p p r o x i m a t i o n T y p e E r r o r

1i i

t

F D O ( t )

1i i

t

B D O ( t )

1 1

2i i

t

C D O ( t 2 )

2 14 3

2i i i

t

F D O ( t 2 )

1 23 4

2i i i

t

B D O ( t 2 )

t

2 1 1 28 8

1 2i i i i

t

C D O ( t 4 )

2 1

2

2i i i

t

F D O ( t 2 )

1 2

2

2i i i

t

B D O ( t 2 )

2 1

2

2i i i

t

C D O ( t 2 )

t t

2 1 1 2

2

1 6 3 0 1 6i i i i i

t

C D O ( t 4 )

Accuracy

Page 22: Ph ddefence

2222

2

2.

A Aconst

z t

First order (Euler)

1 1

1

2

2. i i

n n nn nii i const

z t

- one step, explicit, unstable

11 1 11 1

1 1 11

2 2

2 2.

2i i i i

n n n n n nn ni ii i const

z t t

Crank-Nicholson

- one step, implicit, accurate (1 in z, 2 in t), uncond. stable

1 1

1 1

2

2.

2i i

n n nn nii i const

z t

Leapfrog

- two step, explicit, accurate (2 in z, 2 in t), always unstable

Dufort-Frankel

1 1

1 11 1

2.

2i i

n n n nn ni ii i const

z t

- two step, explicit, accurate (2 in z, 2 in t), uncond. stable

Various FDM schemes for eq.

Page 23: Ph ddefence

2323

Accuracy

1. comparison with analytic solutions for simple problems2. Comparison with simulations obtained by OptiSystem 2.0

1

1 1

NMNM exi i

i

NM NMNM NM ex exi i i i

i i

AKC a jb

1

1 NMAXex ZMAXi i

i

ERNMAX

2

1

1 NMex NMi i

i

SERNM

Mean error Mean square error

Correlation coefficient

2 2

arg

AKC a b

bAKC arctg

a

Measure of accuracy:

Page 24: Ph ddefence

2424

M EAN TIM E ER R O R = 2.718702574396359E-005 SQ U AR E M TE = 3.188251689591302E-009 AU TO C O R R ELATIO N = 0.999997613973628 - j 1 .334916945068728E-005| AKC | = 0.999997614062729 arg(AKC ) = -7.648528944430967E-004

Gaussian pulse

2

202

0 0,T

TA T A e

2

0

20 220

0 20 2

,

T

T j zTA z T A e

T j z

Analytic solution:

Input pulse:

FDM:ER = 1.77E-004SER = 1.36E-0071-|AKC| = 3.8E-005arg (AKC)= 7E-004

SSFM:ER = 1.88E-004SER = 1.56E-0071-|AKC| = 4.4E-005arg (AKC)= 2.75E-003

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 26 51 76 101

126

151

176

201

226

251

276

301

326

351

376

401

426

451

476

501

number of points in time window

pu

lse

po

wer

[W

]

analytic solutionOptiSystemFiberProp

Inputpulse

fiber

A0 = 0.01 W1/2 = 0

T0 = 40 ps D = 16 ps/kmnm

0 = 1550 nm = 0

Page 25: Ph ddefence

2525

Hyperbolic secant pulse:2

2

2 22 2

A j AA j A A

z T

22 0 0

0 20

, , , D

D NL

P TLA z TU N

L T LP

222

2 2sgn

2

U j UjN U U

0, sechu N 2, sechj

u e

input pulse analytic solutioninput pulse fiberP0 = 22.6 mW = 0T0 = 2.7 ps

2 = -0.243 ps2/km

0 = 1552 nm = 1.475 W-1km-1

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0 100 200 300 400 500

number of points in time window

anal

ytic

val

ue

- co

mp

ute

r si

mu

l.

FiberPropOptiSystem

normalization:

Page 26: Ph ddefence

2626

-3.00E-03

-2.00E-03

-1.00E-03

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

0 100 200 300 400 500 600

number of points in time window

an

aly

tic

so

luti

on

- p

rog

r.s

imu

lati

on

OptiSystem

FiberProp

Second order soliton pulse: input pulse

analytic solution

0, sechu N

4

22cosh 3 6cosh

, 2cosh 4 4cosh 2 3cos 4

jj T T e

U T eT T

input pulse fiberP0 = 90.4 mW = 0T0 = 2.7 ps

2 = -0.243 ps2/km

0 = 1552 nm = 1.475 W-1km-1

20

022 2D

Tz L

L = 2z0 = 94.25 km

Page 27: Ph ddefence

2727

-8.00E-03

-6.00E-03

-4.00E-03

-2.00E-03

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

0 100 200 300 400 500

number of points in time window

an

aly

tic

al s

olu

tio

n -

pro

gr.

sim

ula

tio

n

OptiSystem

FiberProp

Third order soliton pulse: input pulse

analyticsolution

0, sechu N

L = 5z0 = 235.67 km

4

2

12 8 8 16

2cosh 8 32cosh 2 36cosh 4 16cosh 6, 3

cosh 9 9cosh 7 64cosh 3 36cosh

20cosh 4 80cosh 2 5 45 20

36cosh 5 cos 4 20cosh 3 cos 12 90cosh cos 8

jj

j j j j

T T T T eU T e

T T T T

T T e e e e

T T T

N = 3P0 = 203.4 mW

Page 28: Ph ddefence

2828

4th order soliton pulse - NO analytic solution:

N = 4P0 = 361.56 mWL = 2z0 = 94.25 km

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

number of points in time window

pu

lse

po

we

r [W

]

FiberProp

OptiSystem

Page 29: Ph ddefence

2929

EDFA model

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1 26 51 76 101

126

151

176

201

226

251

276

301

326

351

376

401

426

451

476

501

number of points in time window

op

tica

l po

wer

[W

]

FiberPropOptiSystem

FIBER: = 0.1 dB/km2 = -0.243 ps2/km = 1.475 1/Wkm

INPUT PULSE:N = 1P0 = 32.54 mWT0 = 2.7 ps0 = 1552 nm

EDFA: = 30 nm 0 = 1552 nm G = 4.98 dB nsp = 1.23

Page 30: Ph ddefence

3030

Filter model

2

0

1 21

2f f

B

0

11 cos

2f f

B

2

0

2exp ln 2 f f

B

2

0

1

21 f f

B

Parabolic – shape characteristic

Cosine – shape characteristic

Lorentzian – shape characteristic

Gaussian – shape characteristic

Fabry-Perotfilter !!!

Page 31: Ph ddefence

3131

B

B S

freq u e n cy

filte r tran sfe r fu n c tio n

so lito n sp e c tru m

Why are filters used in nonlinear optical links?

compensation of Gordon-Haus effect

filtering at the receivers end

Filter model (cont.)

Page 32: Ph ddefence

3232

4. Selected simulation results

FiberProp and its abilities

High bit rates soliton systems

Gordon-Haus effect and its compensation

Dispersion-compensated and

dispersion-managed systems

Polarization dispersion

Dispersion compensated system

Page 33: Ph ddefence

3333

Simple FiberProp scheme:

Page 34: Ph ddefence

3434

fiber param. EDFA param. input pulse = 0.1 dB/km = 30 nm P0 = 31.48 mW

2 = -0.243 ps2/km G = 2.497 dB T0 = 1.543 ps = 3.28 W-1km-1 nsp = 1.5

0 = 1550 nm

40 Gb/s soliton transmission

PRBS01111010

La = 25 kmL = 500 km

Page 35: Ph ddefence

3535

80 Gb/s soliton transmission

fiber param. EDFA param. input pulse = 0 = 30 nm P0 = 38 mW

2 = -0.243 ps2/km G = 2.497 dB T0 = 1.543 ps = 3.28 W-1km-1 nsp = 1.5

0 = 1550 nm

PRBS0011110011100110

La = 25 kmL = 350 km

Page 36: Ph ddefence

3636

0

0.005

0.01

0.015

0.02

0.025

0.03

1 20

39

58

77

96

115

13

4

15

3

17

2

19

1

21

0

22

9

24

8

26

7

28

6

30

5

32

4

34

3

36

2

38

1

40

0

41

9

43

8

45

7

47

6

49

5

number of grid points

po

wer

[W

]

fiber param. EDFA param. input pulse = 0.1 dB/km = 30 nm P0 = 14.83 mW

2 = -0.243 ps2/km 0 = 1550 nm T0 = 5 ps

= 1.475 W-1km-1 G = 5 dB N = 1.5La = 50 km nsp = 2.2

0 = 1552 nm

L = 2500 km

tW = 1.5 T0

max 2972.59 kmTL

Gordon-Haus transmission distance limitation:

1 a

aL

LQ

e

22

2 cD

Page 37: Ph ddefence

3737

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 20

39

58

77

96

115

13

4

15

3

17

2

19

1

21

0

22

9

24

8

26

7

28

6

30

5

32

4

34

3

36

2

38

1

40

0

41

9

43

8

45

7

47

6

49

5

number of grid points

po

wer

[W

]

Inserted Fabry-Perot filterbefore receiver:

2

0

1

21 f f

B

f0 = 193.414 THz (0 = 1550 nm)B = 100 GHz

Gordon-Haus transmission distance limitation (cont.):

Page 38: Ph ddefence

3838

0

0.005

0.01

0.015

0.02

0.025

0.03

1 23 45 67 89 111

133

155

177

199

221

243

265

287

309

331

353

375

397

419

441

463

485

507

number of grid points

pow

er [W

]

L = 4000 km

tW = 3 T0 Ltmax = 4718.7 km 2

3max

2

0,13721

FWHM w eff aT

sp

T t A L QL

n n Dh G

Gordon-Haus transmission distance limitation (cont.):

Page 39: Ph ddefence

39390

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 20

39

58

77

96

115

13

4

15

3

17

2

19

1

21

0

22

9

24

8

26

7

28

6

30

5

32

4

34

3

36

2

38

1

40

0

41

9

43

8

45

7

47

6

49

5

number of grid points

pow

er [W

]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 20

39

58

77

96

115

13

4

15

3

17

2

19

1

21

0

22

9

24

8

26

7

28

6

30

5

32

4

34

3

36

2

38

1

40

0

41

9

43

8

45

7

47

6

49

5

number of grid points

po

wer

[W

]

Fabry - Perot filter after each EDFA:

f0 = 193.414 THzB = 100 GHz

f0 = 193.414 THzB = 360 GHz

EDFA: G = 5.1081 dB

Inserted Fabry-Perot filter before receiver:

Page 40: Ph ddefence

4040

Fiber parametersTwo level disp. map Four level disp.map

[dB/km] 0.078 0.15

1 [ps2/km] 0.396 0.1275

2 [ps2/km] -0.294 0.051

3 [ps2/km] - -0.0765

4 [ps2/km] - -0.306

ave [ps2/km] -0.064 -0.051

L1 [km] 30.00 12.5L2 [km] 60.00 12.5L3 [km] - 12.5L4 [km - 12.5 [W-1km-1] 2.65 2.65

Input pulse shapesech sech

T0 [ps] 8.56 2.7N 1.4 1.4q0 2.92 4.63

Amplifier parametersLa [km] 90 50G [dB] 7 7.383

0 [nm] 1550 1550 [nm] 30 30nsp 1 1

DM soliton system:

20 Gb/s

40 Gb/s PRBS01101110

LL

L2L1

Page 41: Ph ddefence

4141

Polarization mode dispersion:

0.E+00

5.E-03

1.E-02

2.E-02

2.E-02

3.E-02

3.E-02

4.E-02

4.E-02

1

22

43

64

85

10

6

12

7

14

8

16

9

19

0

21

1

23

2

25

3

27

4

29

5

31

6

33

7

35

8

37

9

40

0

42

1

44

2

46

3

48

4

50

5

number of grid points

po

wer

[W

]

Fiber param.:, , , = 0n = 4.210-5

h = 4.16 mL = 64h = 266.24 m

input pulse: GaussT0 = 3 psP0 = 40 mW0 = 1550 nm

Page 42: Ph ddefence

4242

N=0.9

N=1.0

N=1.1

N=1.2-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

soliton periods z/z0

disl

ocat

ion

of p

ulse

s t/T

0

Fiber parameters: = 0 = -20 ps2/km = 1.475 1/Wkmn = 4.210-5

input pulse:lin. pol. at45 at fiber axesT0 = 5 ps0 = 1550 nm

Polarization mode dispersion:

soliton prop. in birefringent fiber:

20

02

7 7 72 2D

TL z L

Page 43: Ph ddefence

43430 5 10 15 20 25 30 35 400

5

10

15

20

25

30

35

40

45

50

Polarization mode dispersion -interaction compensation:

0.00 10.00 20.00 30.00 40.00

tim e [ps]

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

dist

ance

[km

]

L = 85.76 km

Fiber: = 02 = -20 ps2/km = 1.3 1/Wkm

Input pulse:N = 1P0 = 32.54 mWT0 = 2 ps0 = 1552 nmq 0 = 4

L = 51.46 km

Page 44: Ph ddefence

4444

Dispersion comp. system:

0.00 200.00 400.00 600.000.00

500.00

1000.00

1500.00

2000.00

2

0

1

20 0,

mT

TA T A e

Super Gauss (m=3)

T0 = 50 psP0 = 0.66 mW0 = 1557.6 nm

FIBER PARAMETERS:L1 = 89.8 km L2 = 16.2 kmL1 = 23(L1 + L2) = 2438 km1 = 0.05231 1/km 2 = 0.13 1/km21 = -22.23 ps/km 22 = 119.48 ps/km1 = 2 = 1.35 1/Wkm

EDFA: = 10 nm0 = 1557.6 nmG = 9.8 dBnsp = 2.78

FABRY-PEROT FILTER:f0 = 192.6 THzB = 370 GHz

Page 45: Ph ddefence

4545

Conclusions:

The derivation of optical pulse propagation equation is given in details. All important effects influencing pulse propagation in optical fiber are analyzed: fiber loss, cromatic dispersion, polarization mode dispersion, nonlinear effects (especially self-phase modulation)

Several numerical models are analyzed and the most accurate one chosen for propagation equation modeling. The accuracy is tested on simple canonical problems and later on compared with commercially available software.

EDFA model strictly in time domain is developed, with special attention given to ASE noise model. EDFA model and optical filter model are included in computer program FiberProp

Page 46: Ph ddefence

4646

The new approach to Gordon-Haus limitation derivation is given. Timing jitter due to Gordon-Haus effect and its suppression was analyzed with the FiberProp computer program.

Numerous examples of soliton and dispersion-managed soliton transmission systems are analyzed and guidelines for their design are given.

Conclusions (cont.):