28
p = h λ = k De Broglie: 2 Ψ( x, t ) t 2 = v 2 2 Ψ( x, t ) x 2 Classical wave equa3on: E = h ν = ω Planck/Einstein: 2 x 2 Ψ = k 2 Ψ 2 2 m 2 x 2 Ψ = p 2 2 m Ψ t Ψ = i ωΨ i t Ψ = E Ψ Schrödinger Ψ( x, t ) = Ae i ( kx ω t ) x e ax = ae ax

Peer instructions questions for basic quantum mechanics

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Peer instructions questions for basic quantum mechanics

p = h

λ= k

De  Broglie:  

∂2Ψ(x,t)∂t 2

= v2 ∂2Ψ(x,t)∂x2

Classical  wave  equa3on:  

E = hν = ω

Planck/Einstein:  

∂2

∂x2Ψ = −k2Ψ ⇒ −

2

2m∂2

∂x2Ψ =

p2

2m⎛⎝⎜

⎞⎠⎟Ψ

∂∂t

Ψ = −iωΨ ⇒ i ∂∂t

Ψ = EΨ

Schrödinger  

Ψ(x,t) = Aei(kx−ω t )

∂∂xeax = aeax

Page 2: Peer instructions questions for basic quantum mechanics

i ∂∂t

Ψ = EΨ =p2

2m+V

⎛⎝⎜

⎞⎠⎟Ψ

Time  dependent  Schrödinger  equa3on  

Time  independent  Schrödinger  equa3on  (standing  wave  solu0on)  

Ψ(x,t) = Ψ(x)e− iEt /

i ∂∂t

Ψ = −2

2m∂2

∂x2+V

⎛⎝⎜

⎞⎠⎟Ψ

i ∂∂t

Ψ = HΨ

i ∂∂t

Ψ = EΨ

HΨ(x) = EΨ(x)

Page 3: Peer instructions questions for basic quantum mechanics

−2

2m∇2 +V

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

V = −1r

H  atom  

V =0 0 < x < LC x < 0 or x > L

Par3cle  in  a  box  

V = 12 kx

2

Harmonic  oscillator  (vibra0onal  spectroscopy)  

∇2 =1r2

1sinθ

∂∂θsinθ ∂

∂θ+

1sin2θ

∂2

∂φ 2⎛⎝⎜

⎞⎠⎟

V = 0

Rigid  Rotor  (rota0onal  spectroscopy)  

Page 4: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

Ψ2,0 =18π

1− r2

⎛⎝⎜

⎞⎠⎟e−r /2 2s

Ψ2,1 =1

4 2πxe−r /2 2p

P(x) = Ψ(x) 2 dxProbability    

Ψ(x) 2

Probability  density  (amplitude)    

Page 5: Peer instructions questions for basic quantum mechanics

−2

2m∇2 +V

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

V = −1r

H  atom  

V =0 0 < x < LC x < 0 or x > L

Par3cle  in  a  box  

V = 12 kx

2

Harmonic  oscillator  (vibra0onal  spectroscopy)  

Ψ(x) 2

Probability  density  (amplitude)    

Page 6: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

Ψ2,0 =18π

1− r2

⎛⎝⎜

⎞⎠⎟e−r /2 2s

Ψ2,1 =1

4 2πxe−r /2 2p

P(x) = Ψ(x) 2 dxProbability    

Ψ(x) 2Probability  density    

Page 7: Peer instructions questions for basic quantum mechanics
Page 8: Peer instructions questions for basic quantum mechanics

End  of  video  slides  

Page 9: Peer instructions questions for basic quantum mechanics

Please  start  your  Socra0ve  app  

or  go  to  m.socra3ve.com  in  your  browser  

Room  number  9076  

Page 10: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

What  is  the  most  probable  posi0on  of  an  electron  in  the  1s  orbital  of  H  atom?  

A        inside  the  nucleus  

B        outside  the  nucleus  

C        don’t  know  

Page 11: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

What  is  the  most  probable  posi0on  of  an  electron  in  the  1s  orbital  of  H  atom?  

A        inside  the  nucleus  

B        outside  the  nucleus  

C        don’t  know  

Page 12: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

What  is  the  most  probable  posi0on  of  an  electron  in  the  1s  orbital  of  H  atom?  

P(x) = Ψ(x) 2 dxProbability    

Very  small  for  nucleus  

Page 13: Peer instructions questions for basic quantum mechanics

Par0cle  in  a  box   Harmonic  oscillator  

Why  is  the  probability  density  higher  at  the  edges  than  in  the  middle  for  high  energy  solu0ons  to  the  Schrödinger  equa0on  for  the  harmonic  oscillator?  

Enter  your  answer  on  Socra0ve  

Page 14: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

Ψ2,0 =18π

1− r2

⎛⎝⎜

⎞⎠⎟e−r /2 2s

What  is  the  lowest  excita3on  energy  of  the  H  atom?  

A        13.6  eV  

B        10.2  eV  

C        6.8  eV  

D      don’t  know  

Page 15: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

Ψ2,0 =18π

1− r2

⎛⎝⎜

⎞⎠⎟e−r /2 2s

What  is  the  lowest  excita3on  energy  of  the  H  atom?  

A        13.6  eV  

B        10.2  eV  

C        6.8  eV  

D      don’t  know  

Page 16: Peer instructions questions for basic quantum mechanics

−2

2m∇2 −

1r

⎛⎝⎜

⎞⎠⎟Ψn = EnΨn

En =−me4

22 4πε0( )2 n2= −

13.6 eVn2 n = 1,2,3,...

Ψ1 =1πe−r 1s

Ψ2,0 =18π

1− r2

⎛⎝⎜

⎞⎠⎟e−r /2 2s

What  is  the  lowest  excita3on  energy  of  the  H  atom?  

A        13.6  eV  

B        10.2  eV  

C        6.8  eV  

D      don’t  know  

ΔE = E2 − E1

=−13.6

4−−13.6

1= 10.2 eV

Page 17: Peer instructions questions for basic quantum mechanics

-­‐4.5  eV  

+4.2  eV  

Page 18: Peer instructions questions for basic quantum mechanics

-­‐4.5  eV  

+4.2  eV  

L  =  2.94  nm  

−2m

∇2 +V⎛⎝⎜

⎞⎠⎟Ψn = EnΨn V =

0 0 < x < LC x < 0 or x > L

Par3cle  in  a  box  

En =h2n2

8mL2n = 1,2,3...

E12 − E11 = (122 −112 ) h2

8mL2 = 1.60 ×10−19 J (1.0 eV)

Experiment  =  2.5  eV    (497  nm  /  blue  green)    

Page 19: Peer instructions questions for basic quantum mechanics

Ψ(x) = 2L

⎛⎝⎜

⎞⎠⎟1/2

sin 2π xL

⎛⎝⎜

⎞⎠⎟

Page 20: Peer instructions questions for basic quantum mechanics

Par3cle  in  a  box:    some  useful  predic3ons  for  nano  sized  systems  

ΔE = En+1 − En = (2n +1)h2

8mL2

Excita0on  energy  (band  gap)    Increases  with  n  

Decreases  faster  with  L  

ΔE  decreases  with  molecular  size  

Absorp0on  wave  length  (λ)  increases  with  molecular  size  

λ =hcΔE

λ =8mch

L2

(2n +1)

= 3.30 ×1012 m−1( ) L2

(2n +1)

= 3.30 ×1012 m−1 ×1 m

109 nm⎛⎝⎜

⎞⎠⎟

L2

(2n +1)

= 3300 nm−1( ) L2

(2n +1)

Page 21: Peer instructions questions for basic quantum mechanics

Where  does  1,3,5-­‐hexatriene  absorb  light?  (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)  

λ = 3300 nm−1( ) L2

(2n +1)

Based  on  

A        ca  50  nm  

B        ca  100  nm  

C        ca  300  nm  

D        don’t  know  

Page 22: Peer instructions questions for basic quantum mechanics

Where  does  1,3,5-­‐hexatriene  absorb  light?  (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)  

λ = 3300 nm−1( ) L2

(2n +1)

Based  on  

A        ca  50  nm  

B        ca  100  nm  

C        ca  300  nm  

D        don’t  know  

λ = 3300 nm−1( ) L2

(2n +1)

= 3300 nm−1( ) 0.82

7= 3300 nm−1( ) 0.09( )= 302 nm

Page 23: Peer instructions questions for basic quantum mechanics

Where  does  1,3,5-­‐hexatriene  absorb  light?  (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)  

λ = 3300 nm−1( ) L2

(2n +1)

Based  on  

λ = 3300 nm−1( ) L2

(2n +1)

= 3300 nm−1( ) 0.82

7= 3300 nm−1( ) 0.09( )= 302 nm

Experiment:  258  nm  

Page 24: Peer instructions questions for basic quantum mechanics

Where  does  1,3,5-­‐hexatriene  absorb  light?  (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  compute  orbital  energies)  

Based  on  

Orbital  theory  

A        ca  50  nm  

B        ca  100  nm  

C        ca  300  nm  

D        don’t  know  

Page 25: Peer instructions questions for basic quantum mechanics

Where  does  1,3,5-­‐hexatriene  absorb  light?  (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  compute  orbital  energies)  

Based  on  

Orbital  theory  

A        ca  50  nm  

B        ca  100  nm  

C        ca  300  nm  

D        don’t  know  

λ =hcΔE

=1240 eV nm

(5.72 − (−6.28)) eV= 103 nm

Experiment:  258  nm  

Page 26: Peer instructions questions for basic quantum mechanics

m  

As  the  length  is  increased  for  what  value  of  m  does    trans-­‐polyacetylene  stop  absorbing  visible  light?  

(you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)  

λ = 3300 nm−1( ) L2

(2n +1)

Based  on  

Page 27: Peer instructions questions for basic quantum mechanics

m  

As  the  length  is  increased  for  what  value  of  m  does    trans-­‐polyacetylene  stop  absorbing  visible  light?  

(you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)  

λ = 401 nm−1( ) L2

(2n +1)

Based  on  

1.044

= 0.260 nm/n

0.83

= 0.267 nm/n

L = 0.264n

λ = 3300 nm−1( ) 0.0697n2

(2n +1)

= 230 nm−1( ) n2

(2n +1)

Page 28: Peer instructions questions for basic quantum mechanics

m  

Visible  light  stops  at  about  800  nm  

800 = 230 nm−1( ) n2

(2n +1)⇒ n ≈ 7 or 8

m ≈ 5 or 6

λ = 230 nm−1( ) n2

(2n +1)

λ  

n  

As  the  length  is  increased  for  what  value  of  m  does    trans-­‐polyacetylene  stop  absorbing  visible  light?  

(you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)  

λ = 401 nm−1( ) L2

(2n +1)

Based  on