13
OpenQuake implementa.ons of na.onal and regional hazard models Damiano Monelli, GEM Hazard Team

OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

Embed Size (px)

DESCRIPTION

OpenQuake implementations of national and regional hazard models, Damiano Monelli,GEM Hazard Team

Citation preview

Page 1: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

OpenQuake  implementa.ons  of  na.onal  and  regional  hazard  models  Damiano  Monelli,  GEM  Hazard  Team  

Page 2: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013
Page 3: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013
Page 4: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013
Page 5: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

130˚ 135˚ 140˚ 145˚ 150˚30˚

35˚

40˚

45˚

130˚ 135˚ 140˚ 145˚ 150˚30˚

35˚

40˚

45˚

2.0 3.2 5.0 7.8 12.0 19.0 31.0 48.0 76.0 120.0Peak ground velocity on bedrock (cm/s)

130˚ 135˚ 140˚ 145˚ 150˚30˚

35˚

40˚

45˚

130˚ 135˚ 140˚ 145˚ 150˚30˚

35˚

40˚

45˚

2.0 3.2 5.0 7.8 12.0 19.0 31.0 48.0 76.0 120.0Peak ground velocity on bedrock (cm/s)

Hazard  maps  for  10%  probability  of  exceedance  in  50  years  

Na.onal  Research  Ins.tute  for  Earth  Science  and  Disaster  Preven.on    

OPENQUAKE  

Page 6: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

Etorofuto-OkiEarthquake

Kanto Earthquakeof "1923 Taisho" type

Nemuro-OkiEarthquake

NankaiEarthquake

Shikotanto-OkiEarthquake

Large interplate earthquakesin Northern Sanriku-Oki(Repeating earthquakes)

Great East JapanEarthquake (2011 type)

Tokachi-OkiEarthquake

TonankaiEarthquake Assumed Tokai

Earthquake

Probability  of  occurrence  in  the  next  50  years    (star.ng  from  2012)  

Page 7: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

130˚140˚ 150˚

30˚

40˚

130˚140˚ 150˚

30˚

40˚ Tohoku-­‐like:  10%  

Tohoku-­‐like:  1%  

Tohoku-­‐like:  0%  

130˚140˚ 150˚

30˚

40˚

130˚140˚ 150˚

30˚

40˚

130˚ 135˚ 140˚ 145˚ 150˚

30˚

35˚

40˚

45˚

130˚ 135˚ 140˚ 145˚ 150˚

30˚

35˚

40˚

45˚

2.0 3.2 5.0 7.8 12.0 19.0 31.0 48.0 76.0 120.0

Peak ground velocity on bedrock (cm/s)

Page 8: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

Since the publication of the first ground-motion model in the form of an equation with magnitude and source-to-site distance by Esteva and Rosenblueth (1964), the number of GMPEs has increased dramatically and over a dozen new studies are published every year (Figure 1). This high publication rate has been driven by, for example: increased recording (through lower-cost digital instruments and denser networks) and availability of strong-motion data [through online open-access databases, such as the Internet Site for European Strong-motion Data (Ambraseys et al., 2004)], more journals and conferences publishing engineering seismology research, and large-scale initiatives, such as the Next Generation Attenuation (NGA) project (Powers et al., 2008). The latest compendium of published GMPEs by Douglas (2011) lists the characteristics of 289 empirical GMPEs for the prediction of PGA and 188 empirical models for the prediction of elastic response spectral ordinates. In addition, this report lists many dozens of simulation-based models to estimate these parameters.

Figure 1. Number of published GMPEs per year (histogram) and cumulatively since 1964 (blue line). This abundance of models, however, creates a difficulty. On one hand, it is feasible from a practical point of view to carefully consider only a small fraction (less than 10%) of all available GMPEs in any project but, on the other hand, predictions of the median ground motions from the available GMPEs show a large (and not noticeably narrowing) dispersion (Figure 2), which needs to be considered since it demonstrates high epistemic uncertainty in ground-motion prediction. Consequently, a set of objective selection criteria need to be applied to the list of available models to pre-select GMPEs that are the most appropriate for the aims of a given project. For ease of application, these criteria should only require examination of the original references and should not involve numerical evaluation or testing of models against data, which can only be performed for a dozen models at most. These criteria were discussed by the experts comprising the Task 2 working group (the authors of this paper) and subsequently applied by the working group to the lists of models given in Douglas (2011). The discussion process was conducted through a series of conference calls and email exchange in order to obtain a consensus view, which was also objective so it can be supported by the wider community (within the GEM Global GMPEs project and beyond). The working group benefitted from the experience gained in GMPEs pre-selection for the projects: PEGASOS (Cotton et al., 2006), SHARE (Douglas, 2009), GEM1 (Douglas et al., 2009) and PEGASOS Refinement (Bommer et al., 2010). Because a GMPE excluded during this stage could not be subsequently re-instated, care was taken to avoid applying criteria that are too strict at this step. About thirty GMPEs were finally pre-selected

hal-0

0700

233,

ver

sion

1 -

22 M

ay 2

012

Douglas  et  al.  2012,  Compila.on  and  cri.cal  review  of  GMPEs  for  the  GEM-­‐PEER  Global  GMPEs  Project,  15  WCEE,  Lisbon,  Portugal.  

Page 9: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

0.005 0.009 0.016 0.029 0.053 0.095 0.170 0.310 0.560 1.000Peak ground acceleration on bedrock (g)

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

0.005 0.009 0.016 0.029 0.053 0.095 0.170 0.310 0.560 1.000Peak ground acceleration on bedrock (g)

Youngs  et  al.  1997  Atkinson  and  Boore  2003  

 Abrahamson  and  Silva  1997  

Boore  et  al.  1997  Sadigh  et  al.  1997  

Campbell  and  Bozorgnia  2003    

Youngs  et  al.  1997  Sadigh  et  al.  1997    

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

0.005 0.009 0.016 0.029 0.053 0.095 0.170 0.310 0.560 1.000Peak ground acceleration on bedrock (g)

OPENQUAKE    

Sadight  et  al.  1997  –  Shallow  Crust  Youngs  et  al.  1997  –  Subduc.on  

Subduc.on  IntraSlab  

Shallow  Crust  

Subduc.on  Interface  

United  States  Geological  Survey  

Hazard  maps  for  10%  probability  of  exceedance  in  50  years  

Page 10: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

0.005 0.009 0.016 0.029 0.053 0.095 0.170 0.310 0.560 1.000Peak ground acceleration on bedrock (g)

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

160˚170˚ 180˚ 170˚ 160˚ 150˚ 140˚

130˚

50˚

60˚

70˚

0.005 0.009 0.016 0.029 0.053 0.095 0.170 0.310 0.560 1.000Peak ground acceleration on bedrock (g)

Youngs  et  al.  1997  Atkinson  and  Boore  2003  

 Abrahamson  and  Silva  1997  

Boore  et  al.  1997  Sadigh  et  al.  1997  

Campbell  and  Bozorgnia  2003    

Youngs  et  al.  1997  Sadigh  et  al.  1997    

Subduc.on  IntraSlab  

Shallow  Crust  

Subduc.on  Interface  

United  States  Geological  Survey   OPENQUAKE    

Chiou  &  Youngs  2008  –  Shallow  Crust  Zhao  et  al.  2006  –  Subduc.on  

Hazard  maps  for  10%  probability  of  exceedance  in  50  years  

Page 11: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

90˚ 80˚ 70˚ 60˚ 50˚ 40˚ 30˚

60˚

50˚

40˚

30˚

20˚

10˚

10˚

20˚90˚ 80˚ 70˚ 60˚ 50˚ 40˚ 30˚

60˚

50˚

40˚

30˚

20˚

10˚

10˚

20˚

0.0050

0.0098

0.0190

0.0380

0.0740

0.1400

0.2800

0.5500

1.1000

2.1000

Peak

gro

und

acce

lera

tion

on b

edro

ck (g

)

Hazard  map  for  10%  probability  of  exceedance  in  50  years  

Page 12: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013

90˚ 80˚ 70˚ 60˚ 50˚ 40˚ 30˚

60˚

50˚

40˚

30˚

20˚

10˚

10˚

20˚90˚ 80˚ 70˚ 60˚ 50˚ 40˚ 30˚

60˚

50˚

40˚

30˚

20˚

10˚

10˚

20˚

0.0050

0.0098

0.0190

0.0380

0.0740

0.1400

0.2800

0.5500

1.1000

2.1000

Peak

gro

und

acce

lera

tion

on b

edro

ck (g

)

82˚ 81˚ 80˚ 79˚ 78˚ 77˚ 76˚ 75˚ 74˚6˚

82˚ 81˚ 80˚ 79˚ 78˚ 77˚ 76˚ 75˚ 74˚6˚

0.0050

0.0068

0.0093

0.0130

0.0170

0.0240

0.0320

0.0440

0.0600

0.0820

0.1100

0.1500

0.2100

0.2800

0.3900

0.5300

0.7200

Peak

grou

nd ac

celer

ation

on be

droc

k (g)

82˚ 81˚ 80˚ 79˚ 78˚ 77˚ 76˚ 75˚ 74˚6˚

82˚ 81˚ 80˚ 79˚ 78˚ 77˚ 76˚ 75˚ 74˚6˚

0.0050

0.0068

0.0093

0.0130

0.0170

0.0240

0.0320

0.0440

0.0600

0.0820

0.1100

0.1500

0.2100

0.2800

0.3800

0.5200

0.7200

Peak

grou

nd ac

celer

ation

on be

droc

k (g)

Celine  Beauval    –  ISTerre  Grenoble  Hugo  Yepes  and    seismology  group  

 –  IG  Quito    

With  support  from  IRD  (INSTITUT  DE  RECHERCHE  POUR  LE  

DEVELOPPEMENT,  FRANCE)  

USGS  

Hazard  map  for  10%  probability  of  exceedance  in  50  years  

Page 13: OpenQuake implementations of national and regional hazard models Damiano Monelli, GEM Hazard Team, GEM REVEAL 2013