297
1 CS144 An Introduc/on to Computer Networks What the Internet is 4 Layer Model Nick McKeown Professor of Electrical Engineering and Computer Science, Stanford University CS144, Stanford University

Networking essentials

Embed Size (px)

Citation preview

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

4 Layer Model 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

CS144, Stanford University 

The 4 Layer Internet Model 

Network 

Link 

Transport 

Applica/on 

CS144, Stanford University 

Peer layers communicate 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Network 

Link 

CS144, Stanford University 

B A 

Encapsula/on 

CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Peer layers communicate 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

CS144, Stanford University 

A few last words… 

6 CS144, Stanford University 

Where do the different layers run? 

7 CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Why is the Network Layer oPen 

called “Layer 3”? 

CS144, Stanford University 

Applica/on 

Presenta/on 

Session 

Transport 

Network 

Link 

Physical 

The 7‐layer OSI Model 

Network 

Link 

Transport 

The 4‐layer Internet model 

Applica/on h-p 

ASCII 

IP 

TCP 

Ethernet 

<The End> 

9 CS144, Stanford University 

1 1 1 

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

A very brief history of networking  and the Internet 

CS144, Stanford University 

Nick McKeown 

Professor of Electrical Engineering  and Computer Science, Stanford University 

2 2 2 

Outline 

Brief history of networking 

Brief history of the Internet 

CS144, Stanford University 

3 3 3 CS144, Stanford University 

1,000 BC 

Fire Beacons 

Carrier Pigeons 

Human Messengers 

Horse Relays … 

Flags 

Heliographs: sun’s  

rays & reflector 

Telescopes 

0  1800 AD  Today 

Semaphore telegraphs 

  Chappe (France) 

  Edelcrantz (Sweden) 

Telephone 

Internet 

4 4 4 

The Telegraph 

CS144, Stanford University 

5 5 5 

Four steps of inven/on 

(2,000 BC) Systems to signal a small set of pre‐defined 

messages, e.g. beacons. 

(1600s) Systems to transmit arbitrary messages, e.g. by 

encoding the alphabet. 

(1700s) Numeric codes for common words and phrases. 

“Compression”. 

(1700s) Codes for control signals. “Protocols”. 

CS144, Stanford University 

6 6 6 

Protocol Signals by 1800 

1.  Ini/aliza/on 

2.  Error control: erase, resend. 

3.  Rate control: “faster/slower”. 

4.  Flow control: stop/wait, selec/ve‐repeat.  

CS144, Stanford University 

7 7 7 

Telephone networks in 1900 

1.  (1897) Alexander Graeme Bell made the first 

telephone call 

CS144, Stanford University 

8 8 8 

Outline 

Brief history of Networking 

Brief history of the Internet 

CS144, Stanford University 

9 9 9 

Parallel beginnings 

CS144, Stanford University 

1960 

RAND (Paul Baran) 

Packet switching for 

survivable networks. 

MIT (Kleinrock) First 

paper on packet 

switching theory. 

DARPA (Roberts) 

plans for 

“ARPANET”. 

NPL, UK (Davies)  

Packet network. 

1965  1966 

WAN connects two /me‐

sharing computers 

1968 

First “IMPs” (BBN). 

J.C.R. Licklider describes an 

Intergalac/c Network connec/ng 

everyone on the globe.  

Four nodes 

interconnected 

(UCLA, SRI, UCSB, 

Utah) 

10 10 10 CS144, Stanford University 

1970  1980  1990 

1st Web browser 

New networks appear: 

IBM SNA, ALOHAnet, 

Cyclades (France). 

“Internehng” and TCP 

born (DARPA), led by 

Vint Cerf and Bob Kahn. 

200 hosts on 

ARPAnet 

100,000 hosts 

on Internet 

TCP/IP 

deployed 

NSFNET, etc. 

Cisco and IETF 

started 

11 11 11 

Useful References 

1.  The Early History of Data Networks G. J. Holzmann, B. Pehrson, IEEE Press 1994. 

2.  The Design Philosophy of the  

DARPA Internet Protocols. 

D. Clark, ACM Sigcomm 1988 

3.  Brief History of the Internet B. M. Leiner, V. Cerf, D. D. Clark et al. hjp://www.internetsociety.org/internet/internet‐51/history‐internet/brief‐history‐internet 

CS144, Stanford University 

12 12 12 

<The End> 

CS144, Stanford University 

CS144, Stanford University

Principle: Layering

1

CS144, Stanford University

File Transfer

2

• Data format

• Packetization

• Reliability, error checking

• Congestion and flow control

• Packet delivery and routing

• Link delivery

• Signal modulation and framing

CS144, Stanford University

Layering

• Decompose communication into a set of smaller, well-defined components

• Components build on top of one another: they layer

• Each layer has a well-defined interface and clear responsibilities▶ Routing layer does not worry about application

▶ Application layer does not worry about how signals represented

• Each layer can evolve independently

3

CS144, Stanford University

Layering

4

Transport

Link

Network

CS144, Stanford University

bits/bytes

frames

packets

segments

OSI Model

5

Physical

Link

Network

Transport

Session

Presentation

Application

1.

2.

3.

4.

5.

6.

7.

CS144, Stanford University

Layering Principle

• Decompose communication into layers of abstraction

• Separation of concerns

• Each layer can evolve independently

6

Principle: Encapsulation

Layering

• Separation of concerns and responsibilities

• Allows each service to evolve independently

• Examples:▶ Transport: inter-application communication

▶ Link: inter-host communication on a shared link

Physical

Link

Network

Transport

Session

Presentation

Application

Encapsulation

• How layering manifests in data representation

• Layer N data is payload to layer N-1

• Example:▶ HTTP (web) application payload in

▶ a TCP transport segment in

▶ an IP network packet in

▶ an Ethernet link frame.Physical

Link

Network

Transport

Session

Presentation

Application

LinkNetworkTransportapplication data

Encapsulation Flexibility

• Encapsulation allows you to layer recursively

• Example: Virtual Private Network (VPN):▶ HTTP (web) application payload in

▶ a TCP transport segment in

▶ an IP network packet in

▶ a secured TLS presentation message in

▶ a TCP transport segment in

▶ an IP network packet in

▶ an Ethernet link frame.

Encapsulation

• How layering manifests in data representation

• Encapsulated payloads▶ Help separation of concerns

▶ Help enforce boundaries/layering

▶ Simplify layer implementations

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

An#Introduc+on#to#Computer#Networks#

Principle:*Packet*Switching*

What#is#packet#switching?#

Packet:#A#self=contained#unit#of#data#that#carries#

informa+on#necessary#for#it#to#reach#its#des+na+on.#

CS144,#Stanford#University#

Two#consequences#

1.  No#per=flow#state#required.#

2.  Efficient#sharing#of#links.#

CS144,#Stanford#University#

No#per=flow#state#required#

Packet#switches#don’t#need#state#for#each#flow#–#each#packet#is#self=contained.#

No#per=flow#state#to#be#added/removed.#

No#per=flow#state#to#be#stored.#

No#per=flow#state#to#be#changed#upon#failure.#

CS144,#Stanford#University#

Efficient#sharing#of#links#

Data#traffic#is#bursty#

–  If#we#reserved#a#frac+on#of#the#links#for#each#flow,#the#

links#would#be#used#inefficiently.#

–  Packet#switching#allows#flows#to#use#all#available#link#

capacity.#

This#is#called#Sta$s$cal(Mul$plexing.#

CS144,#Stanford#University#

CS144, Stanford University

Principle: Names and Addresses

1

CS144, Stanford University

Name vs. Address

• Name: specifies what something is▶ Office: Philip Levis’ office

▶ Host name: market.scs.stanford.edu

▶ Memory: list_ptr

• Address: specifies where something is▶ Office: 412 Gates Hall, 353 Serra Mall, Stanford, CA 94305-9040 USA

▶ IP: 171.66.3.9

▶ Memory: 0x0040005080

• Telephone numbers: names or addresses?

• This is not a hard classification, just a conceptual model

2

CS144, Stanford University

Names

• Structure of names affects what you can reference (easily)

• Flat names▶ Stock tickers (GOOG, MSFT), airport codes (NRT, YYZ)

▶ Services: http, ftp, https

▶ Skype IDs

• Tuple pairs▶ Gender: Female; Name: Jennifer Widom; Position: Department Chair

• Hierarchical names▶ maps.google.com

▶ Nick McKeown, Professor of Electrical Engineering and Computer Science, Stanford University

3

CS144, Stanford University

Addresses

• Structure of addresses affects what you can reference (easily)

• Flat addresses▶ Memory (0x040004400)

▶ Port numbers (80, 21, 443)

• Tuple pairs▶ x=32, y=100, z=88

▶ latitude=45.211W, longitude=48.111N

• Hierarchical addresses▶ Memory segments (0x1000 in segment 0)

▶ 412 Gates Hall, 353 Serra Mall, Stanford, CA, 94131 USA

4

CS144, Stanford University

Downloading a File

• How does one refer to the file?

• Address: http://csl.stanford.edu/~pal/pubs.html▶ Refers to what host the file is on

▶ Refers to where on the host’s file system the file is

• Name: take a hash of pubs.html: 0x27de2b6939d7fb4b0573dbd6dbe2c740▶ Request the file (using a different protocol than http) with hash

▶ If file changes, hash changes

▶ Says nothing about where the file is

5

CS144, Stanford University

Internet Names and Addresses

• Internet addresses: 32-bit IPv4, 128-bit IPv6 addresses

• Internet names: domain name system (DNS), www.stanford.edu

• Many more names and addresses at higher layers▶ Service names (http) and ports (80)

▶ SIP identifiers ([email protected]) and email addresses ([email protected])

• Internet Corporation for Assigned Names and Numbers (ICANN)▶ Internet Assigned Numbers Authority (IANA)

6

CS144, Stanford University

Two Examples

• http://csl.stanford.edu/~pal vs. http://171.64.73.43/~pal

• A user moving between networks

7

CS144, Stanford University

Principle

• Whether you name or address something has deep implications to how your network and or protocol can be used.

• The structure and design of those names and addresses also have deep implications.

8

CS144, Stanford University

The End-to-End Principle

1

CS144, Stanford University

Application View of the World

2

CS144, Stanford University

Why Doesn’t the Network Help?

• Compress data?

• Reformat/translate/improve requests?

• Serve cached data?

• Add security?

• Migrate connections across the network?

• Or one of any of a huge number of other things?

3

CS144, Stanford University

The End-To-End Principle

4

The function in question can completely and correctlybe implemented only with the knowledge and help ofthe application standing at the end points of thecommunication system. Therefore, providing thatquestioned function as a feature of the communicationsystem itself is not possible. (Sometimes an incompleteversion of the function provided by the communicationsystem may be useful as a performance enhancement.)We call this line of reasoning. . . “the end-to-endargument.”

- Saltzer, Reed, and Clark, End-to-end Arguments in System Design, 1984

CS144, Stanford University

Example: File Transfer

5

CS144, Stanford University

Example: Link Reliability

6

CS144, Stanford University

“Strong” End to End

7

The network’s job is to transmit datagrams asefficiently and flexibly as possible. Everythingelse should be done at the fringes. . .

– [RFC 1958]

CS144, Stanford University

Net Neutrality

8

“Allowing broadband carriers to control what people see and do online would fundamentally undermine the principles that have made the Internet such a success.”

- Vinton Cerf in testimony before Congress February 7, 2006

"I am totally opposed to mandating that nothing interesting can happen inside the net."

- Bob Kahn, speaking at the Computer History Museum, January 9, 2007

CS144, Stanford University

Finite State MachinesProtocol Specification

1

CS144, Stanford University

Finite State Machines

2

State 1

State 2

State 3

CS144, Stanford University

Finite State Machines

3

State 1

State 2

event causing state transitionactions taken on state transition

State 3

CS144, Stanford University

Finite State Machines

4

State 1

State 2

event causing state transitionactions taken on state transition

eventaction

State 3

CS144, Stanford University

FSM Example: HTTP Request

5

CS144, Stanford University

FSM Example: TCP Connection

6 http://upload.wikimedia.org/wikipedia/commons/thumb/a/a2/Tcp_state_diagram_fixed.svg/

CS144, Stanford University

The Internet(why you should take this course)

1

CS144, Stanford University

Societal Change

• Economics: Black Friday, Cyber Monday, E-Fairness legislation

• Dating: okcupid, match.com

• Knowledge: Google books, eBooks, wikipedia

• Communication: IM, VoIP, video telephony

2

CS144, Stanford University

Political Change

• Arab spring: SMS, Twitter, U.S. State Department

• Diplomacy: Wikileaks

• Occupy movement: Twitter, Facebook

• By force: Stuxnet worm

3

CS144, Stanford University

Economic Change

• #24: Sergey Brin and Larry Page (tied)

• #26: Jeff Bezos

• #35: Mark Zuckerberg

(data from Forbes top billionaires list, April 16 2012)4

CS144, Stanford University

Second Industrial Revolution

http://csl.stanford.edu/~pal/ed

Degrees conferred in 2008 and projected job openings/year 2008-2018

5

CS144, Stanford University

Roles in the Revolution

6

CS144, Stanford University

This Course

• How computer networks work: principles, design, and implementation

• Use these principles to understand the current Internet

• How to apply these principles to help build the future Internet

• How forces shape the Internet: technological, economic, social, political

7

CS144 

An Introduc/on to Computer Networks 

Conges'on 

AIMD with a single flow 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

AIMD Addi/ve Increase, Mul/plica/ve Decrease 

CS144, Stanford University 

t

cwnd

halved 

Drops 

If packet received OK: W←W +1

W

If a packet is dropped: W←W

2

Animation

Animation at: http://guido.appenzeller.net/anims/

CS144, Stanford University 

4

Single Flow Dynamics

CS144, Stanford University 

Sending rate for a single flow 

ACK 

Window Size 

Round‐trip /me 

(1) R x RTT > Window size, W 

ACK 

Window Size 

Round‐trip /me 

(2) R x RTT = Window size, W 

ACK 

Window Size 

ACK  ACK 

CS144, Stanford University 

Sending rate for single flow

t

Window size RTT

A  B 

Router buffer 

Link rate = C Link rate > C 

CS144, Stanford University 

How big should the buffer be? Buffer size, B = RTT ×C Buffer size, B < RTT ×C

CS144, Stanford University 

Observa/ons for single flow 

1. Window expands/contracts according to AIMD.

2. …to probe how many bytes the pipe can hold.

3. The sawtooth is the stable operating point.

4. The sending rate is constant.

5. …if we have sufficient buffers (RTT x C).

CS144, Stanford University 

<end> 

CS144, Stanford University 

CS144 

An Introduc/on to Computer Networks 

Conges'on 

AIMD with mul-ple flows 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

2 CS144, Stanford University 

A  B 

Router buffer 

Link rate = C Link rate > C 

t

Window size Buffer occupancy

and RTT

One flow vs mul/ple flows 

CS144, Stanford University 

Buffer occupancy

and RTT

t

(Zoom in) 

cwnd

One of the flows

One flow 

t

Buffer 

Occupancy 

Mul'ple flows 

R =W(t)

RTT(t)= constant

R =W(t)

RTT∝W(t)

A

Simple geometric intuition

Drops

t

cwnd

1

RTT

Packet drop rate, p =1/ A, where A =3

8Wmax

2

Throughput, R =A

Wmax

2

!

"#

$

%&RTT

=3

2

1

RTT p

Interpre/ng the rate equa/on 

CS144, Stanford University 

R =3

2

1

RTT p

1. RTT→ 0 ⇒ R→∞ ?

2. p→ 0 ⇒ R→∞ ?

Observa/ons for mul/ple flows 

1. Window expands/contracts according to AIMD.

2. …to probe how many bytes the pipe can hold.

3. Bottleneck will contain packets from many flows.

4. The sending rate varies with window size.

5. AIMD is very sensitive to loss rate.

6. AIMD penalizes flows with long RTTs.

CS144, Stanford University 

<end> 

CS144, Stanford University 

CS144, Stanford University

Congestion Control IIRTT Estimation, self-clocking

1

CS144, Stanford University

Three Improvements

• Congestion window

• Timeout estimation

• Self-clocking

2

CS144, Stanford University

Timeouts

• Round trip time estimation is critical for timeouts▶ Too short: waste capacity with restransmissions, trigger slow start

▶ Too long: waste capacity with idle time

• Challenge: RTT is highly dynamic

• Challenge: RTT can vary significantly with load

3

CS144, Stanford University

Pre-Tahoe Timeouts

• r is RTT estimate, initialize to something reasonable

• m, RTT measurement from most recently acked data packet

• Exponentially weighted moving average: r = αr + (1-α)m

• Timeout = βr, β=2

• What’s the problem?

4

CS144, Stanford University

TCP Tahoe Timeouts

5

• r is RTT estimate, initialize to something reasonable

• g is the EWMA gain (e.g., 0.25)

• m is the RTT measurement from most recently acked data packet

• Error in the estimate e = m-r

• r = r + g⋅e

• Measure variance v = v + g(|e| - v)

• Timeout = r + βv (β=4)

• Exponentially increase timeout in case of tremendous congestion

CS144, Stanford University

RTT Estimation Improvement

6

Pre-Tahoe Tahoe

CS144, Stanford University

Three Improvements

• Congestion window

• Timeout estimation

• Self-clocking

7

CS144, Stanford University

• In case of a bottleneck link, sender receives acks properly spaced in time

Self-Clocking

8

sender receiver

CS144, Stanford University

Self-Clocking Principle

• Only put data in when data has left▶ Want to prevent congestion -- too much data in network

• Send new data in response to acknowledgments

• Send acknowledgments aggressively -- important signal

9

CS144, Stanford University

TCP Tahoe

• 1987-8: Van Jacobson fixes TCP, publishes seminal TCP paper (Tahoe)▶ Congestion window, slow start

▶ Timeout considers variance

▶ Self-clocking

• TCP Tahoe solved TCP’s congestion control problem▶ Spawned a huge area of research in TCP variants

▶ Next lecture will talk about Reno and NewReno

▶ Reading: “Congestion Avoidance and Control,” Van Jacobson and Karels.

10

CS144, Stanford University

Congestion Control IIIPerformance improvements: TCP Reno, TCP NewReno

1

CS144, Stanford University

TCP Tahoe

• On timeout or triple duplicate ack (implies lost packet)▶ Set threshold to congestion window/2

▶ Set congestion window to 1

▶ Enter slow start state

2

CS144, Stanford University

TCP Tahoe Review

3

time

windowsize

CS144, Stanford University

TCP Reno

• Same as Tahoe on timeout

• On triple duplicate ack▶ Set threshold to congestion window/2

▶ Set congestion window to congestion window/2 (fast recovery)

▶ Retransmit missing segment (fast retransmit)

▶ Stay in congestion avoidance state

4

CS144, Stanford University

TCP Reno

5

time

windowsize

CS144, Stanford University

TCP Reno Example

6

Timesender

receiver

CS144, Stanford University

TCP NewReno

• Same as Tahoe/Reno on timeout

• During fast recovery▶ Keep track of last unacknowledged packet when entering fast recovery

▶ On every duplicate ack, inflate congestion window by maximum segment size

▶ When last packet acknowledged, return to congestion avoidance state, set cwnd back to value set when entering fast recovery

▶ Start sending out new packets while fast retransmit is in flight

7

CS144, Stanford University

TCP NewReno Behavior

8

Time

CS144, Stanford University

Congestion Control

• One of the hardest problems in robust networked systems

• Basic approach: additive increase, multiplicative decrease

• Tricks to keep pipe full, improve throughput▶ Fast retransmit (don’t wait for timeout to send lost data)

▶ Congestion window inflation (don’t wait an RTT before sending more data)

9

CS144, Stanford University

Congestion Control IVWhy AIMD

1

CS144, Stanford University

Congestion Control

• Service Provider: maximize link utilization

• User: I get my fair share

• Want network to converge to a state where everyone gets 1/N

• Avoid congestion collapse

2

CS144, Stanford University

Congestion Window Size

3

San Francisco Boston

Optimal congestion window size is the bandwidth-delay product

CS144, Stanford University

Chiu Jain Plot

4

Flow A rate (bps)

Flo

w B

rate

(bps)

CS144, Stanford University

Chiu Jain Plot

5

Flow A rate (bps)

Flo

w B

rate

(bps)

Fair

A=B

CS144, Stanford University

Chiu Jain Plot

6

Flow A rate (bps)

Flo

w B

rate

(bps)

Fair

A=B

Efficient

A+B=C

CS144, Stanford University

Chiu Jain Plot

7

Flow A rate (bps)

Flo

w B

rate

(bps)

Fair

A=B

Efficient

A+B=C

overload

underload

CS144, Stanford University

Chiu Jain Plot

8

Flow A rate (bps)

Flo

w B

rate

(bps)

Fair

A=B

Efficient

A+B=C

overload

underload

CS144, Stanford University

Chiu Jain Plot

9

Flow A rate (bps)

Flo

w B

rate

(bps)

Fair

A=B

Efficient

A+B=C

overload

underload

t1

t2

t3

t4

t5

t6

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

4 Layer Model 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

CS144, Stanford University 

The 4 Layer Internet Model 

Network 

Link 

Transport 

Applica/on 

CS144, Stanford University 

Peer layers communicate 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Network 

Link 

CS144, Stanford University 

B A 

Encapsula/on 

CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Peer layers communicate 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

CS144, Stanford University 

A few last words… 

6 CS144, Stanford University 

Where do the different layers run? 

7 CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Why is the Network Layer oPen 

called “Layer 3”? 

CS144, Stanford University 

Applica/on 

Presenta/on 

Session 

Transport 

Network 

Link 

Physical 

The 7‐layer OSI Model 

Network 

Link 

Transport 

The 4‐layer Internet model 

Applica/on h-p 

ASCII 

IP 

TCP 

Ethernet 

<The End> 

9 CS144, Stanford University 

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

The IP Service 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

CS144, Stanford University 

CS144, Stanford University  2 

The Internet Protocol (IP) 

TCP 

IP 

Data  Hdr 

Data  Hdr 

TCP Segment 

IP Datagram Network 

Link 

Transport 

Applica/on 

The IP Service Model 

3 CS144, Stanford University 

Property  Behavior 

Datagram  Individually routed packets. 

Hop‐by‐hop rou/ng. 

Unreliable  Packets might be dropped. 

Best effort  …but only if necessary. 

Connec4onless  No per‐flow state. 

Packets might be mis‐sequenced. 

The IP Service Model (Details) 

•  Tries to prevent packets looping forever. 

•  Will fragment packets if they are too long. 

•  Uses a checksum to reduce chances of delivering 

to wrong des/na/on. 

•  Allows for new versions of IP –  Currently IPv4 with 32 bit addresses 

–  And IPv6 with 128 bit addresses 

•  Allows for new op/ons to be added to header. 

4 CS144, Stanford University 

IPv4 Datagram 

5 CS144, Stanford University 

Flags 

Version 

Time to Live 

“TTL” 

Type of 

Service 

Checksum 

Header 

Length Total Packet Length 

Packet ID  Fragment Offset 

Protocol ID 

Source IP Address 

Des/na/on IP Address 

(OPTIONS)  (PAD) 

Bit 0 

Data 

Bit 31 

The Hourglass Model of IP 

CS144, Stanford University  6 

IP 

TCP  UDP  … 

h`p  smtp  ssh  … 

Ethernet  WiFi  DSL  … 

Summary 

We use IP every /me we send and receive 

Internet packets. 

It provides a deliberately simple service: 

–  Datagram 

–  Unreliable 

–  Best‐effort 

–  Connec/onless 

CS144, Stanford University  7 

<The End> 

8 CS144, Stanford University 

CS144 

An Introduc/on to Computer Networks 

Rou$ng 

Mul$cast Rou$ng 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

CS144, Stanford University 

Mul/cast 

R7

R6 R4 R2 R1

R8

R5

R3

B  C  D 

Mul/cast 

R7

R6 R4 R2 R1

R8

R5

R3

B  C  D 

Mul/cast 

Techniques and Principles 

- Reverse Path Broadcast (RPB) and Pruning 

- One versus mul/ple trees 

Prac/ce 

-  IGMP – group management 

- DVMRP – the first mul/cast rou/ng protocol 

- PIM – protocol independent mul/cast 

CS144, Stanford University 

Flooding 

CS144, Stanford University 

Reverse Path Broadcast (RPB) aka Reverse Path Forwarding (RPF) 

CS144, Stanford University 

R7

R6 R4 R2 R1

R8

R5

R3

B  C  D 

RPB + Pruning 

1.  Packets delivered loop‐free to every end host. 

2.  Routers with no interested hosts send prune 

messages towards source. 

3.  Resul/ng tree is the minimum cost spanning tree 

from source to the set of interested hosts. 

CS144, Stanford University 

One tree versus several trees? 

R7 

R6 R4 R2 R1 

R8 

R5 

R3 

B  C  D 

Mul/cast 

Techniques and Principles 

- Reverse Path Broadcast (RPB) and Pruning 

- One versus mul/ple trees 

Prac/ce 

- Mul/cast addresses 

-  IGMP – group management 

- DVMRP – the first mul/cast rou/ng protocol 

- PIM – protocol independent mul/cast 

CS144, Stanford University 

10 

Addresses and joining a group 

IPv4: Class D addresses are set aside for mul/cast. 

IGMP* (Internet group management protocol) 

-  Between host and directly aaached router. 

-  Hosts ask to receive packets belonging to a par/cular 

mul/cast group. 

-  Routers periodically poll hosts to ask which groups 

they want. 

-  If no reply, membership /mes out (sod‐state). 

CS144, Stanford University *RFC 3376 

11 

Mul/cast rou/ng in the Internet 

DVMRP 

-  Distance Vector Mul/cast Rou/ng Protocol (RFC 1075) 

-  First Internet rou/ng protocol 

-  Uses RPB + Prune 

PIM 

-  Protocol Independent Mul/cast 

-  Two modes: dense mode, sparse mode 

-  Dense mode (RFC 3973): Similar to DVMRP 

-  Sparse mode (RFC 4601): Builds rendezvous points 

through which packets join small set of spanning trees. 

12 

Mul/cast in prac/ce 

Mul/cast used less than originally expected 

- Most communica/on is individualized  

(e.g. /me shiding) 

-  Early implementa/ons were inefficient 

-  Today, used for some IP TV and fast dissemina/on 

-  Some applica/on‐layer mul/cast rou/ng used 

Some interes/ng ques/ons 

-  How to make mul/cast reliable? 

-  How to implement flow‐control? 

-  How to support different rates for different end users? 

-  How to secure a mul/cast conversa/on? 

CS144 

An Introduc/on to Computer Networks 

Rou$ng 

Spanning Tree Protocol 

Nick McKeown 

Professor of Electrical Engineering  and Computer Science, Stanford University 

CS144, Stanford University 

Outline   

Ethernet “routes” packets too. 

We know how addresses are learned, but how are 

loops prevented? 

Ethernet switches build a spanning tree over which 

packets are forwarded. 

Ethernet Switch 

1.  Examine the header of each arriving frame. 

2.  If the Ethernet DA is in the forwarding table, forward the 

frame to the correct output port(s). 

3.  If the Ethernet DA is not in the table, broadcast the 

frame to all ports (except the one through which the 

frame arrived). 

4.  Entries in the table are learned by examining the 

Ethernet SA of arriving packets. 

Learning could lead to loops 

CS144, Stanford University 

Preven/ng loops Spanning Tree Protocol 

The topology of switches is a graph. 

The Spanning Tree Protocol finds a a subgraph that 

spans all the ver/ces without loops. -  Spanning: all switches are included. 

-  Tree: no loops. 

The distributed protocol decides: 1.  Which switch is the Root of the tree, and 

2.  Which ports are allowed to forward packets along the tree.  

Example Spanning Tree 

S3 

S7 S2 

S1 

S6  S4 

1: Pick a single root. 

2: Only forward packets on ports on the shortest hop‐count to root. 

S9 

S5 

S8 

Resul/ng Spanning Tree 

S4  S6 

S8 

S1 

S9 

S7 S2  S5 

S3 

How it works 1.  Periodically, all switches broadcast a “Bridge Protocol Data Unit” (BPDU) 

 (ID of sender, ID of root, distance from sender to root). 

2.  Ini/ally, every switch claims to be Root: sets distance field to 0. 

3.  Every switch broadcasts un/l it hears a 曨be^er杇 message: -  A root with a smaller ID 

-  A root with equal ID, but with shorter distance 

-  Ties broken by smaller ID of sender. 

4.  If a switch hears a be^er message, retransmit message (add 1 to distance). 

Root port: The port on a switch that is closest to the Root. 

Designated port: The port neighbors agree to use to reach the Root.  

All other ports are blocked from forwarding (but s/ll send/receive BPDUs). 

Eventually: -  Only the root originates configura/on messages (others retransmit them). -  Locally, switch only forwards on ports. 

A brief history 

1985: STP proposed; IEEE standard in 1990.  

S/ll very widely used 

2004: STP replaced by RSTP which converges faster.  

S/ll, RSTP uses the network inefficiently. 

2012: A new standard for Ethernet switches was 

introduced Shortest‐Path Bridging (SPB,  or 

802.1aq). It is a link‐state protocol like OSPF. 

CS144, Stanford University 

CS144, Stanford University

Reading an RFC

1

CS144, Stanford University

History (RFC 2555)

• RFC 1: “Host Software”▶ “Mindful that our group was informal, junior and unchartered, I wanted to

emphasize these notes were the beginning of a dialog and not an assertion of control.”

• Standardization of format▶ Structure, intellectual property rights, terminology (RFC 2119)

▶ Security, IANA

• Kinds of RFCs: proposed standard, standards-track, informational, experimental, best current practice (BCP)

2

CS144, Stanford University

RFC Process (simplified)

• Start with a draft: draft-levis-roll-trickle-00

• Revisions: draft-levis-roll-trickle-XX

• Accepted by working group: draft-ietf-roll-trickle-00

• Revisions: draft-ietf-roll-trickle-XX

• Accepted by working group chair for publication

• Working group, IETF last call

• IESG review

• Approved as an RFC

3

CS144, Stanford University

Terminology

• MUST, REQUIRED, SHALL: absolute requirement.

• SHOULD, RECOMMENDED: “mean that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.”

• MAY, OPTIONAL: “mean that an item is truly optional.”

4

CS144, Stanford University

Example: RFC5681

5

CS144 

An Introduc/on to Computer Networks 

Physical Links 

CSMA/CD and Ethernet 

Nick McKeown 

Professor of Electrical Engineering  and Computer Science, Stanford University 

The Link Layer 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Network 

Link 

B A 

Why is Ethernet oIen 

referred to as “Layer 2”? 

CS144, Stanford University 

Applica/on 

Presenta/on 

Session 

Transport 

Network 

Link 

Physical 

The 7‐layer OSI Model 

Network 

Link 

Transport 

The 4‐layer Internet model 

Applica/on h0p 

ASCII 

IP 

TCP 

Ethernet 

The origins of Ethernet 

CS144, Stanford University 

Sharing a “medium” 

-  Ethernet is an example of mul/ple hosts sharing 

a common cable (“medium”). 

-  To share the medium, we need to decide who 

gets to send, and when. 

-  There is a general class of “Medium Access 

Control Protocols”, or MAC Protocols. 

-  We will take a look at some examples. 

CS144, Stanford University 

Examples of MAC Protocols 

Packet‐Switched Radio Network 

Aloha 

Carrier Sense Mul/ple Access/Collision Detec/on 

Ethernet (IEEE 802.3) 

Token Passing 

Token Ring (IEEE 802.5) 

Sim

ple 

Random 

Complex  

Determ

inisFc 

CS144, Stanford University 

Goals of MAC Protocols 

Medium Access Control protocols arbitrate access to a 

common shared channel among a popula/on of users 

1.  High u/liza/on of the shared channel 

2.  Fair among end hosts 

3.  Simple and low cost to implement 

4.  Robust to errors; fault tolerant 

CS144, Stanford University 

Aloha Network (1968) 

CS144, Stanford University 

Hawaii 

Oahu 

Kauai 

Maui 

Molokai 

Aloha 

Frequency 0  Frequency 1 

Original Aloha MAC protocol 1.  If you have data to send, transmit it. 

2.  If your transmission “collides” with another, retry later. 

CS144, Stanford University 

10 

Aloha Protocol 

-  Aloha protocol is very simple 

-  (Quite) robust against failure of a host. 

-  The protocol is distributed among the hosts. 

-  Under low‐load, we can expect the delay to be small. 

-  Under high‐load, a lot of /me “wasted” sending packets that collide. 

Improving performance: 1. Listen for ac/vity (“carrier sense”) before sending a packet. 2. Detect collisions quickly and stop transmigng. 3. AIer collision, pick random wai/ng /me based on the load. 

CS144, Stanford University 

11 

CSMA/CD Protocol 

All hosts transmit & receive on one channel 

Packets are of variable size. 

When a host has a packet to transmit: 1.  Carrier Sense:  Check the line is quiet before transmigng. 

2.  Collision Detec/on:  Detect collision as soon as possible. If a collision is 

detected, stop transmigng; wait a random /me, then return to step 1. 

binary exponen7al backoff 

CS144, Stanford University 

12 

CSMA/CD opera/on 

CS144, Stanford University 

A  B  C  D 

13 

CSMA/CD Packet size requirement 

CS144, Stanford University 

A  B  C  D 

L/c 

14 

<end> 

CS144, Stanford University 

CS144, Stanford University

Wireless Networking

1

CS144, Stanford University

Access Point Networks

2

CS1

44, Stan

ford

University

U.S

. DEPA

RTM

EN

T O

F C

OM

MER

CE

NATIONAL TELECOM

M

UN

ICA

TIO

NS &

INF

OR

MA

TION A D M IN ISTRATI O

N

MOBILE (AERONAUTICAL TELEMETERING)

S)

5.685.735.90

5.95

6.2

6.525

6.6856.765

7.0

7.1

7.37.35

8.18.195

8.815

8.9659.040

9.4

9.5

9.99.99510.00310.00510.110.15

11.17511.27511.411.611.65

12.05

12.10

12.23

13.213.2613.3613.4113.5713.613.813.8714.014.2514.35

14.99015.00515.01015.10

15.615.8

16.36

17.4117.4817.55

17.917.9718.0318.06818.16818.7818.919.02

19.6819.8019.99019.99520.00520.010

21.0

21.4521.8521.92422.0

22.85523.023.223.35

24.8924.9925.005

25.0125.0725.2125.3325.5525.6726.126.17526.4826.9526.9627.2327.4127.5428.0

29.729.829.8929.9130.0

UN

ITE

D

STA

TE

S

TH

E R

AD

IO S

PE

CT

RU

M

NON-GOVERNMENT EXCLUSIVE

GOVERNMENT/NON-GOVERNMENT SHAREDGOVERNMENT EXCLUSIVE

RA

DIO

SE

RV

ICE

S C

OLO

R LE

GE

ND

AC

TIVITY

CO

DE

NO

T ALLO

CA

TED

RA

DIO

NA

VIG

ATIO

NFIX

ED

MA

RITIM

E M

OB

ILEFIX

ED

MA

RITIM

E M

OB

ILE

FIXE

D

MA

RITIM

E M

OB

ILE

Radiolocation

RADIONAVIG

ATION

FIXE

D

MA

RITIM

EM

OB

ILE

Radiolocation

FIXE

D

MA

RITIM

EM

OB

ILEFIX

ED

MA

RITIM

EM

OB

ILE

AE

RO

NA

UTIC

AL

RA

DIO

NA

VIG

ATIO

N

AERONAUTICALRADIONAVIGATION

AeronauticalMobile

MaritimeRadionavigation(Radio Beacons)

MARITIMERADIONAVIGATION(RADIO BEACONS)

AeronauticalRadionavigation(Radio Beacons)

3

9

14

19.95

20.05

30

30

59

61

70

90

110

130

160

190

200

275

285

300

3 k

Hz

300 k

Hz

300 k

Hz

3 M

Hz

3 M

Hz

30 M

Hz

30 M

Hz

300 M

Hz

3 G

Hz

300 G

Hz

300 M

Hz

3 G

Hz

30 G

Hz

AeronauticalRadionavigation(Radio Beacons)

MARITIM

ERADIO

NAVIGATIO

N(RADIO

BEACONS)

AeronauticalMobile

MaritimeRadionavigation(Radio Beacons)

AERONAUTICALRADIONAVIGATION(RADIO BEACONS)

AERONAUTICAL

RADIONAVIG

ATION

(RADIO BEACO

NS)

AeronauticalM

obile

Aeronautical Mobile RADIONAVIGATION

AERONAUTICALRADIONAVIGATION

MARITIMEMOBILE

AeronauticalRadionavigation

MOBILE (DISTRESS AND CALLING)

MARITIME MOBILE

MARITIMEMOBILE

(SHIPS ONLY)

MOBILE

AERONAUTICALRADIONAVIGATION(RADIO BEACONS)

AERONAUTICALRADIONAVIGATION(RADIO BEACONS)

BROADCASTING

(AM RADIO

)

MARITIME MOBILE (TELEPHONY)

MARITIME MOBILE (TELEPHONY) MOBILE (DISTRESS AND CALLING)

MARITIM

EM

OBILE

LAND MO

BILE

MO

BILE

FIXED

STANDARD FREQ. AND TIME SIGNAL (2500kHz)

STANDARD FREQ. AND TIME SIGNAL

Space Research

MARITIM

EM

OBILE

LAND MO

BILE

MO

BILE

FIXED

AERONAUTICALMOBILE (R)

STANDARD FREQ.

AERONAUTICAL MOBILE (R)

AERONAUTICALMOBILE (OR)

AERONAUTICALMOBILE (R)

FIXED

MO

BILE**

Radio-location

FIXEDMOBILE*

AMATEUR

FIXED

FIXED

FIXED

FIXED

FIXED

MARITIM

EM

OBILE

MOBILE*

MOBILE*

MOBILE

STANDARD FREQ. AND TIME SIGNAL (5000 KHZ)

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)

STANDARD FREQ. Space Research

MO

BILE**

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)FIXEDMOBILE*

BROADCASTING

MARITIME MOBILE

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)

FIXEDMobile

AMATEUR SATELLITEAMATEUR

AMATEUR

FIXED

Mobile

MARITIME MOBILE

MARITIM

EM

OBILE

AERONAUTICAL MOBILE (R)AERONAUTICAL MOBILE (OR)

FIXED

BROADCASTING

FIXEDSTANDARD FREQ. AND TIME SIGNAL (10,000 kHz)STANDARD FREQ. Space Research

AERONAUTICAL MOBILE (R)AMATEUR

FIXED

Mobile*

AERONAUTICAL MOBILE (R)AERONAUTICAL MOBILE (OR)

FIXED

FIXED

BROADCASTING

MARITIMEMOBILE

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)

RADIO ASTRONOMY

Mobile*

AMATEUR

BROADCASTING

AMATEUR AMATEUR SATELLITE

Mobile*FIXED

BROADCASTING

STANDARD FREQ. AND TIME SIGNAL (15,000 kHz)STANDARD FREQ. Space Research

FIXED

AERONAUTICAL MOBILE (OR)

MARITIMEMOBILE

AERONAUTICAL MOBILE (OR)AERONAUTICAL MOBILE (R)

FIXED

FIXED

BROADCASTING

STANDARD FREQ. Space Research

FIXED

MARITIME MOBILE

MobileFIXED

AMATEUR AMATEUR SATELLITE

BROADCASTINGFIXED

AERONAUTICAL MOBILE (R)

MARITIME MOBILE

FIXEDFIXED

FIXED

Mobile*

MOBILE**

FIXED

STANDARD FREQ. AND TIME SIGNAL (25,000 kHz)

STANDARD FREQ. Space Research

LAND MOBILEMARITIME MOBILE

LAND MOBILE MOBILE**

RADIO ASTRONOMYBROADCASTING

MARITIME MOBILE LAND MOBILE

FIXED MOBILE**FIXED

MOBILE**

MOBILE

FIXED

FIXED

FIXEDFIXED

FIXED

LAND MOBILE

MOBILE**

AMATEUR AMATEUR SATELLITE

MOBILE

LAND MOBILE

MOBILE

MOBILE

FIXED

FIXED

MOBILE

MOBILE

FIXED

FIXED

LANDMOBILE

LANDMOBILE

LANDMOBILE

LAND MOBILERadio Astronomy

RADIO ASTRONOMYLAND MOBILE

FIXEDFIXED

MOBILEMOBILE

MO

BILE

LAND MOBILE

FIXED

LANDMOBILE

FIXED

FIXED

MOBILE

MOBILE

LANDM

OBILE

AMATEUR

BROADCASTING

(TV CHANNELS 2-4)

FIXED MOBILE

FIXED MOBILE

FIXED MOBILEFIXED MOBILE

AERONAUTICAL RADIONAVIGATION

BROADCASTING

(TV CHANNELS 5-6)BRO

ADCASTING(FM

RADIO)

AERONAUTICAL

RADIONAVIG

ATION

AERONAUTICALMOBILE (R)

AERONAUTICAL MOBILEAERONAUTICAL MOBILE

AERONAUTICALMOBILE (R)

AERONAUTICALMOBILE (R)

AERONAUTICAL MOBILE (R)

MOBILEFIXEDAMATEUR

BROADCASTING

(TV CHANNELS 7-13)

MO

BILE

FIXED

MO

BILE

FIXED

MO

BILE SATELLITE

FIXED

MO

BILESATELLITE

MO

BILE

FIXED

MO

BILESATELLITE

MO

BILE

FIXED MOBILE

AERONAUTICAL RADIONAVIGATION

STD. FREQ. & TIME SIGNAL SAT. (400.1 MHz)MET. SAT.

(S-E)SPACE RES.

(S-E)

Earth Expl.Satellite (E-S)

MOBILE SATELLITE (E-S)

FIXED MOBILERADIOASTRONOMY

RADIOLOCATION Amateur

LAND MOBILE

Meteorological

Satellite (S-E)

LAND MOBILEBROADCASTING

(TV CHANNELS 14 - 20)

BROADCASTING

(TV CHANNELS 21-36)TV BRO

ADCASTING

RADIO ASTRONOMY

RADIOLOCATION

FIXED

Amateur

AERONAUTICAL

RADIONAVIG

ATION

MOBILE**FIXED

AERONAUTICALRADIONAVIGATION

Radiolocation

RadiolocationMARITIMERADIONAVIGATION

MARITIMERADIONAVIGATION

Radiolocation

Radiolocation

Radiolocation

RADIO-

LOCATIO

NRADIO

-LO

CATION

Amateur

AERONAUTICALRADIONAVIGATION

(Ground)

RADIO-LOCATION

Radio-location

AERO. RADIO-NAV.(Ground)

FIXED SAT. (S-E)

RADIO-LOCATION

Radio-location

FIXED

FIXEDSATELLITE

(S-E)

FIXED

AERONAUTICAL RADIONAVIGATION

MOBILE

FIXED MOBILE

RADIO ASTRONOMY Space Research (Passive)

AERONAUTICAL RADIONAVIGATION

RADIO-LOCATION

Radio-location

RADIONAVIGATION

Radiolocation

RADIOLOCATION Radiolocation

Radiolocation

Radiolocation

RADIOLOCATIONRADIO-

LOCATION

MARITIMERADIONAVIGATION

MARITIMERADIONAVIGATION

METEOROLOGICALAIDS

Amateur

Amateur

FIXED

FIXEDSATELLITE (E-S) MOBILE

FIXEDSATELLITE (E-S)

FIXEDSATELLITE (E-S)MOBILE

FIXED

FIXED

FIXED

FIXED

MOBILE

FIXED SPACE RESEARCH (E-S)FIXED

FixedMOBILESATELLITE (S-E)FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E)

FIXEDSATELLITE (S-E)

FIXEDSATELLITE (S-E)

FIXEDSATELLITE (E-S)

FIXEDSATELLITE (E-S)

FIXEDSATELLITE

(E-S)FIXED

SATELLITE(E-S)

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

MET.SATELLITE (S-E)

MobileSatellite (S-E)Mobile

Satellite (S-E)

MobileSatellite (E-S)(no airborne)

Mobile Satellite(E-S)(no airborne)

Mobile Satellite (S-E)

MobileSatellite (E-S)

MOBILESATELLITE (E-S)

EARTH EXPL.SATELLITE(S-E)

EARTH EXPL.SAT. (S-E)

EARTH EXPL.SATELLITE (S-E)

MET.SATELLITE

(E-S)

FIXED

FIXED

SPACE RESEARCH (S-E)(deep space only)

SPACE RESEARCH (S-E)

AERONAUTICALRADIONAVIGATION

RADIOLOCATION Radiolocation

Radiolocation

Radiolocation

Radiolocation

MARITIMERADIONAVIGATION

MeteorologicalAidsRADIONAVIGATION

RADIOLOCATION Radiolocation

RADIO-LOCATION

Radiolocation

Radiolocation Amateur

Amateur AmateurSatellite

RADIOLOCATIONFIXED

FIXED

FIXED

F IXED

FIXEDSATELLITE

(S-E)

FIXEDSATELLITE

(S-E)

Mobile **

SPACE RESEARCH(Passive)

EARTH EXPL.SAT. (Passive)

RADIOASTRONOMY

SPACERESEARCH (Passive)

EARTH EXPL.SATELLITE (Passive)

RADIOASTRONOMY

BROADCASTINGSATELLITE

AERONAUTICAL RADIONAV. Space Research (E-S)

SpaceResearch

Land MobileSatellite (E-S)

Radio-location

RADIO-LOCATION

RADIONAVIGATION

F IXEDSATELLITE (E-S)

Land MobileSatellite (E-S)

Land MobileSatellite (E-S)Fixed Mobile FIXED

SAT. (E-S)

FixedMobileFIXED

MobileFIXED

MOBILESpace Research

Space Research

Space Research

SPACE RESEARCH(Passive)RADIO ASTRONOMY EARTH EXPL. SAT.

(Passive)

RadiolocationRADIOLOCATION Radiolocation

FX SAT (E-S)FIXED SATELLITE (E-S) F IXED

FIXED

F IXED MOBILE

EARTH EXPL.SAT. (Passive)

MOBILE

Earth Expl.Satellite (Active)

StandardFrequency and

Time SignalSatellite (E-S)

EarthExploration

Satellite(S-S)

MOBILEFIXED

MOBILE

F IXEDEarth

ExplorationSatellite (S-S)

F IXED MOBILE F IXEDSAT (E-S)

FIXED SATELLITE (E-S) MOBILE SATELLITE (E-S)

FIXEDSATELLITE

(E-S)

MOBILESATELLITE

(E-S)

StandardFrequency and

Time SignalSatellite (S-E)

Stand. Frequencyand Time SignalSatellite (S-E)

FIXED MOBILE

RADIOASTRONOMY

SPACERESEARCH

(Passive)

EARTHEXPLORATIONSAT. (Passive)

RADIONAVIGATION

RADIONAVIGATION INTER-SATELLITE

RADIONAVIGATION

RADIOLOCATION Radiolocation

SPACE RE..(Passive)

EARTH EXPL.SAT. (Passive)F IXED MOBILE

F IXED MOBILE

F IXED MOBILE

MobileFixed

FIXEDSATELLITE (S-E)

BROAD-CASTING

B C S TSAT.

FIXED MOBILE

F XSAT(E-S)MOBILEF IXED

EARTHEXPLORATION

SATELLITEFI XED

SATELLITE (E-S)MOBILE

SATELLITE (E-S)

M O B I L EF IXED

SPACERESEARCH

(Passive)

EARTHEXPLORATION

SATELLITE(Passive)

EARTHEXPLORATIONSAT. (Passive)

SPACERESEARCH

(Passive)

INTER-SATELLITE

RADIO-LOCATION

SPACERESEARCH F IXED

MO

BILE

FIXE

D

MO

BILE

SATELLITE(E-S)

MOBILESATELLITE

RADIONAVIGATION

RADIO-NAVIGATIONSATELLITE

EARTHEXPLORATION

SATELLITE

FIXE

DSATELLITE

(E-S)

MOBILEFIXEDFIXEDSATELLITE (E-S)

AMATEUR AMATEUR SATELLITE

AMATEUR AMATEUR SATELLITE

AmateurSatelliteAmateur

RADIO-LOCATION

MOBILEFIXEDMOBILE

SATELLITE(S-E)

FIXEDSATELLITE

(S-E)

MOBILEFIXEDBROAD-CASTING

SATELLITE

BROAD-CASTING

SPACERESEARCH

(Passive)

RADIOASTRONOM

Y

EARTHEXPLORATION

SATELLITE(Passive)

MOBILE

F IXED

MOBILEFIXED RADIO-LOCATION

FIXEDSATELLITE

(E-S)

MOBILE

SATELLITE

RADIO-NAVIGATIONSATELLITE

RADIO-NAVIGATION

Radio-location

EARTH EXPL.SATELLITE (Passive)

SPACE RESEARCH(Passive)

F IXEDF IXED

SATELLITE(S-E)

SPACERESEARCH

(Passive)

RADIOASTRONOM

Y

EARTHEXPLORATION

SATELLITE(Passive)

FIXED

MOBILE

MOBILEINTER-

SATELLITE

RADIO-LOCATION

INTER-SATELLITE

Radio-location

MOBILE

MOBILE

SATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

AMATEUR AMATEUR SATELLITE

Amateur Amateur SatelliteRADIO-LOCATION

MOBILEFIXED FIXEDSATELLITE (S-E)

MOBILEFIXEDFIXED

SATELLITE(S-E)

EARTHEXPLORATION

SATELLITE (Passive)SPACE RES.

(Passive)

SPACE RES.(Passive)

RADIOASTRONOMY

FIXEDSATELLITE

(S-E)

FIXED

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

SPACE RESEARCH(Passive)

RADIOASTRONOMY

EARTHEXPLORATION

SATELLITE (Passive)

EARTHEXPLORATIONSAT. (Passive)

SPACERESEARCH

(Passive)INTER-

SATELLITE

INTER-SATELLITE

INTER-SATELLITE

INTER-SATELLITE

MOBILE

MOBILE

MOBILE

MOBILE

SATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

FIXEDSATELLITE

(E-S)

FIXED

FIXEDEARTH

EXPLORATION SAT.(Passive)

SPACE RES.(Passive)

SPACERESEARCH

(Passive)

RADIOASTRONOM

Y

EARTHEXPLORATION

SATELLITE(Passive)

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

FIXEDSATELLITE (S-E)

FIXEDSATELLITE(S-E)

FIXEDSATELLITE (S-E)

EARTH EXPL.SAT. (Passive)

SPACE RES.(Passive)

Radio-location

Radio-location

RADIO-LOCATION

AMATEURAMATEUR SATELLITE

AmateurAmateur Satellite

EARTH EXPLORATIONSATELLITE (Passive)SPACE RES. (Passive)

MOBILE

MOBILE

SATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

MOBILE

MOBILE

FIXED

RADIO-ASTRONOMY

FIXEDSATELLITE

(E-S)

FIXED

3.03.025

3.155

3.230

3.4

3.5

4.0

4.063

4.438

4.654.7

4.75

4.85

4.9955.0035.0055.060

5.45

MARITIM

EM

OBILE

AMATEURAMATEUR SATELLITEFIXEDMobile

MARITIME MOBILE

STANDARD FREQUENCY & TIME SIGNAL (20,000 KHZ)Space Research

AERONAUTICAL MOBILE (OR)

AMATEUR SATELLITE AMATEUR

MET. SAT. (S-E)MOB. SAT. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)MET. SAT. (S-E)Mob. Sat. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)MET. SAT. (S-E)MOB. SAT. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)MET. SAT. (S-E)Mob. Sat. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)

MO

BILE

FIXED

FIXED Land Mobile

FIXED MOBILE

LAND MOBILE

LAND MOBILE

MARITIME MOBILE MARITIME MOBILE

MARITIME MOBILE

MARITIME MOBILE

LAND MOBILE

FIXED MOBILEMOBILE SATELLITE (E-S)

RadiolocationRadiolocation

LAND MOBILEAMATEUR

MOBILE SATELLITE (E-S) RADIONAVIGATION SATELLITE

MET. AIDS(Radiosonde)

METEOROLOGICAL AIDS (RADIOSONDE)

SPACE RESEARCH (S-S)FIXED MOBILE

LAND MOBILEFIXED

LAND MOBILE

FIXEDFIXED

RADIO ASTRONOMY

RADIO ASTRONOMY METEOROLOGICALAIDS (RADIOSONDE)

METEOROLOGICALAIDS (Radiosonde)

METEOROLOGICALSATELLITE (s-E)

Fixed

FIXED

MET. SAT.(s-E)

FIXED

FIXED

AERONAUTICAL MOBILE SATELLITE (R) (space to Earth)

AERONAUTICAL RADIONAVIGATION RADIONAV. SATELLITE (Space to Earth)

AERONAUTICAL MOBILE SATELLITE (R)(space to Earth) Mobile Satellite (S- E)

RADIO DET. SAT. (E-S) M O B I L E S A T ( E - S )AERO. RADIONAVIGATIONAERO. RADIONAV.AERO. RADIONAV.

RADIO DET. SAT. (E-S)

RADIO DET. SAT. (E-S)MOBILE SAT. (E-S)MOBILE SAT. (E-S) Mobile Sat. (S-E)

RADIO ASTRONOMY

RADIO ASTRONOMY MOBILE SAT. (E-S)

FIXED MOBILE

FIXED

FIXED(LOS) MOBILE

(LOS)SPACE

RESEARCH(s-E)(s-s)

SPACEOPERATION

(s-E)(s-s)EARTH

EXPLORATIONSAT. (s-E)(s-s)

Amateur

MOBILE FixedRADIOLOCATION

AMATEUR

RADIO ASTRON. SPACE RESEARCH EARTH EXPL SAT

FIXED SAT. (S-E)

FIXED

MO

BILE

FIXEDSATELLITE (S-E)

FIXEDMOBILEFIXED

SATELLITE (E-S)

FIXEDSATELLITE

(E-S)MOBILE FIXED

SPACERESEARCH (S-E)

(Deep Space)

AERONAUTICAL RADIONAVIGATION

EARTHEXPL. SAT.(Passive)

300

325

335

405

415

435

495

505510

525

535

16051615

1705

1800

1900

2000

2065

2107

21702173.52190.52194

2495

2501

25022505

2850

3000

RADIO-

LOCATIO

N

BROADCASTING

FIXED

MO

BILE

AMATEUR

RADIOLOCATION

MOBILE FIXED MARITIMEMOBILE

MARITIME MOBILE (TELEPHONY)

MARITIMEMOBILE

LANDMOBILEMOBILEFIXED

30.0

30.56

32.0

33.0

34.0

35.0

36.0

37.037.538.038.25

39.0

40.0

42.0

43.69

46.647.0

49.6

50.0

54.0

72.0

73.0

74.674.875.275.476.0

88.0

108.0

117.975

121.9375123.0875123.5875

128.8125

132.0125

136.0

137.0137.025137.175137.825138.0

144.0146.0148.0149.9150.05

150.8152.855

154.0

156.2475157.0375157.1875157.45161.575161.625161.775162.0125

173.2173.4174.0

216.0

220.0222.0225.0

235.0

300

ISM – 6.78 ± .015 M

HzISM

– 13.560 ± .007 MHz

ISM – 27.12 ± .163 M

Hz

ISM – 40.68 ± .02 M

Hz

ISM – 24.125 ± 0.125 G

Hz30 G

Hz

ISM – 245.0 ± 1G

HzISM

– 122.5 ± .500 GHz

ISM – 61.25 ± .250 G

Hz

300.0

322.0

328.6

335.4

399.9

400.05400.15

401.0

402.0

403.0406.0406.1

410.0

420.0

450.0454.0455.0456.0

460.0462.5375462.7375467.5375467.7375470.0

512.0

608.0614.0

698

746

764

776

794

806

821824849851866869894896901901902

928929930931932935940941944960

1215

1240

1300

1350

139013921395

2000

2020

2025

2110

2155

21602180

2200

22902300230523102320

2345

2360

238523902400

24172450

2483.52500265526902700

2900

3000

140014271429.5

1430143214351525

1530

1535

1544

1545

1549.5

1558.5155916101610.61613.81626.5

16601660.51668.4

1670

1675

1700

1710

1755

1850

MARITIME MOBILE SATELLITE(space to Earth) MOBILE SATELLITE (S-E)

RADIOLOCATIONRADIONAVIGATION

SATELLITE (S-E)

RADIOLOCATION Amateur

RadiolocationAERONAUTICAL

RADIONAVIGATION

SPA CE RESEARCH ( Passive)EARTH EXPL SAT (Passive)RADIO ASTRONOMY

MOBILEMOBILE ** FIXED-SAT (E-S)FIXED

FIXED

FIXED**

LAND MOBILE (TLM)

MOBILE SAT.(Space to Earth)

MARITIME MOBILE SAT.(Space to Earth)

Mobile(Aero. TLM)

MOBILE SATELLITE (S-E)

MOBILE SATELLITE(Space to Earth)

AERONAUTICAL MOBILE SATELLITE (R)(space to Earth)

3.0

3.1

3.3

3.5

3.6

3.65

3.7

4.2

4.4

4.5

4.8

4.94

4.99

5.0

5.155.25

5.35

5.465.47

5.6

5.65

5.83

5.855.925

6.425

6.525

6.706.875

7.0257.075

7.125

7.197.2357.25

7.30

7.45

7.55

7.75

7.90

8.025

8.175

8.215

8.4

8.45

8.5

9.0

9.2

9.3

9.5

10.0

10.45

10.510.5510.6

10.68

10.7

11.7

12.2

12.7

12.75

13.2513.4

13.7514.0

14.2

14.4

14.4714.514.7145

15.1365

15.35

15.415.43

15.6315.716.6

17.1

17.217.317.717.818.318.618.8

19.319.7

20.120.221.2

21.422.022.2122.5

22.55

23.55

23.6

24.0

24.05

24.2524.45

24.65

24.75

25.05

25.2525.527.0

27.5

29.5

29.9

30.0

ISM – 2450.0 ± 50 M

Hz

30.0

31.0

31.3

31.8

32.032.3

33.033.4

36.0

37.0

37.6

38.0

38.6

39.5

40.0

40.5

41.0

42.5

43.5

45.5

46.9

47.0

47.2

48.2

50.2

50.4

51.4

52.6

54.2555.7856.957.0

58.2

59.0

59.3

64.0

65.0

66.0

71.0

74.0

75.5

76.077.077.578.0

81.0

84.0

86.0

92.0

95.0

100.0

102.0

105.0

116.0

119.98

120.02

126.0

134.0

142.0144.0

149.0

150.0

151.0

164.0

168.0

170.0

174.5

176.5

182.0

185.0

190.0

200.0

202.0

217.0

231.0

235.0

238.0

241.0

248.0

250.0

252.0

265.0

275.0

300.0

ISM – 5.8 ± .075 G

Hz

ISM – 915.0 ± 13 M

Hz

INTER-SATELLITE RADIOLOCATIONSATELLITE (E-S)

AERONAUTICALRADIONAV.

PL

EA

SE

NO

TE

: THE

SP

AC

ING

ALLO

TTED

THE

SE

RV

ICE

S IN

THE

SP

EC

-TR

UM

SEGM

ENTS SH

OW

N IS N

OT PR

OPO

RTIO

NAL TO

THE AC

TUAL AM

OU

NT

OF SPEC

TRU

M O

CC

UPIED

.

AERONAUTICALMOBILE

AERONAUTICALMOBILE SATELLITE

AERONAUTICALRADIONAVIGATION

AMATEUR

AMATEUR SATELLITE

BROADCASTING

BROADCASTINGSATELLITE

EARTH EXPLORATIONSATELLITE

FIXED

FIXED SATELLITE

INTER-SATELLITE

LAND MOBILE

LAND MOBILESATELLITE

MARITIME MOBILE

MARITIME MOBILESATELLITE

MARITIMERADIONAVIGATION

METEOROLOGICALAIDS

METEOROLOGICALSATELLITE

MOBILE

MOBILE SATELLITE

RADIO ASTRONOMY

RADIODETERMINATIONSATELLITE

RADIOLOCATION

RADIOLOCATION SATELLITE

RADIONAVIGATION

RADIONAVIGATIONSATELLITE

SPACE OPERATION

SPACE RESEARCH

STANDARD FREQUENCYAND TIME SIGNAL

STANDARD FREQUENCYAND TIME SIGNAL SATELLITE

RADIO ASTRONOMY

FIXE

D

MA

RITIM

E M

OB

ILE

FIXE

D

MA

RITIM

EM

OB

ILEA

eronauticalM

obile

STANDARD FREQ. AND TIME SIGNAL (60 kHz)FIXED Mobile*

STAND. FREQ. & TIME SIG.

MET. AIDS(Radiosonde)

Space Opn. (S-E)

MOBILE.SAT. (S-E)

Fixed

StandardFreq. and

Time SignalSatellite (E-S)

FIXED

STANDARD FREQ. AND TIME SIGNAL (20 kHz)

Amateur

MOBILE

FIXED SAT. (E-S)

SpaceResearch

ALLO

CA

TION

US

AG

E D

ES

IGN

ATIO

N

SE

RV

ICE

EX

AM

PL

ED

ES

CR

IPT

ION

Prim

aryFIX

ED

Capital

Letters

Secondary

Mobile

1st Capital w

ith lower case letters

U.S

. DE

PA

RT

ME

NT

OF

CO

MM

ER

CE

Natio

nal T

ele

co

mm

un

icatio

ns a

nd

Info

rmatio

n A

dm

inis

tratio

nO

ffice of Spectrum

Managem

ent

October 2003

MOBILE BROADCASTING

TRAVELER

S INFO

RM

ATION

STATION

S (G) AT 1610 kH

z

59-64 GHz IS DESIG

NATED FOR

UNLICENSED DEVICES

Fixed

AERONAUTICALRADIONAVIGATION

SPACE RESEARCH (Passive)

* EXCEPT AER

O M

OBILE (R

)

** EXCEPT AER

O M

OBILE

WAVELENGTH

BANDDESIGNATIONS

ACTIVITIES

FREQUENCY

3 x 107m

3 x 106m

3 x 105m

30,000 m3,000 m

300 m30 m

3 m30 cm

3 cm0.3 cm

0.03 cm3 x 10

5Å3 x 10

4Å3 x 10

3Å3 x 10

2Å3 x 10Å

3Å3 x 10

-1Å3 x 10

-2Å3 x 10

-3Å3 x 10

-4Å3 x 10

-5Å3 x 10

-6Å 3 x 10

-7Å

010 Hz

100 Hz1 kHz

10 kHz100 kHz

1 MHz

10 MHz

100 MHz

1 GHz10 GHz

100 GHz1 THz

1013Hz

1014Hz

1015Hz

1016Hz

1017Hz

1018Hz

1019Hz

1020Hz

1021Hz

1022Hz

1023Hz

1024Hz

1025Hz

THE RADIO SPECTRUMMAGNIFIED ABOVE

3 kHz300 GHz

VERY LOW

FREQUENCY (VLF)

Audible Range AM

Broadcast FM

Broadcast Radar

Sub-Millim

eter Visible

Ultraviolet Gam

ma-ray

Cosmic-ray

Infra-sonicsSonics

Ultra-sonicsM

icrowavesInfrared

PL

SX

CRadarBands

LF M

F HF

VHF UHF

SHF EHF

INFRARED VISIBLE

ULTRAVIOLET

X-RAY G

AMM

A-RAY CO

SMIC-RAY

X-ray

ALLO

CA

TIO

NS

FR

EQ

UE

NC

Y

BROADCASTINGFIXEDMOBILE*

BROADCASTINGFIXED BROADCASTING FIXED Mobile

FIXED BROADCASTING

BROADCASTINGFIXED

FIXED

BROADCASTING

FIXEDBROADCASTINGFIXED

BROADCASTINGFIXED

BROADCASTING

FIXEDBROADCASTINGFIXED

BROADCASTINGFIXED

FIXED

FIXED

FIXEDFIXED

FIXED

LANDMOBILE

FIXED

AERONAUTICAL MOBILE (R)

AMATEUR SATELLITEAMATEUR

MOBILE SATELLITE (E-S)

F I X E D

F i x e d M o b i l e R a d i o -l o c a t i o n

F I X E D M O B I L E

LAND MOBILE MARITIME MOBILE

FIXED LAND MOBILE

FIXED

LAND MOBILE

RADIONAV-SATELLITE

FIXED MOBILE

FIXED LAND MOBILE

MET. AIDS(Radio-sonde)

SPACE OPN. (S-E)

Earth Expl Sat(E-S)

Met-Satellite (E-S)

MET-SAT. (E-S)

EARTH EXPLSAT. (E-S)

Earth Expl Sat(E-S)

Met-Satellite (E-S)

EARTH EXPLSAT. (E-S)

MET-SAT. (E-S)

LAND MOBILELAND MOBILEFIXED

LAND MOBILEFIXED

FIXED

FIXED LAND MOBILE

LAND MOBILEFIXED LAND MOBILE

LAND MOBILE LAND MOBILE

LAND MOBILE

MOBILEFIXED

MOBILEFIXED

BROADCASTMOBILEFIXED

MOBILEFIXED

FIXEDLAND MOBILE

LAND MOBILEFIXEDLAND MOBILE

AERONAUTICAL MOBILE

AERONAUTICAL MOBILEFIXEDLAND MOBILE

LAND MOBILELAND MOBILE FIXED

LAND MOBILE FIXEDMOBILE FIXED

FIXEDFIXED

MOBILEFIXED

FIXEDFIXED

BROADCAST

LAND MOBILELAND MOBILE

FIXEDLAND MOBILE

METEOROLOGICALAIDS

FXSpace res.Radio AstE-Expl SatFIXEDMOBILE**

MOBILE SATELLITE (S-E)RADIODETERMINATION SAT. (S-E)

RadiolocationMOBILEFIXED

AmateurRadiolocation

AMATEUR

FIXEDMOBILE

B-SATFXMOBFixedMobileRadiolocat ion

R A D I O L O C A T I O N

MOBILE **

Fixed (TLM)LAND MOBILEFIXED (TLM)LAND MOBILE (TLM)

FIXED-SAT (S-E) FIXED (TLM)

MOBILE

MOBILE SAT.(Space to Earth)Mobile **

MOBILE** FIXED

MOBILE

MOBILE SATELLITE (E-S)

SPACE OP.(E-S)(s-s)

EARTH EXPL.SAT. (E-S)(s-s)

SPACE RES.(E-S)(s-s) FX.MOB.

MOBILEFIXED

Mobile

R- LOC.

BCST-SATELLITEFixedRadio-location

B-SATR- LOC.FXMOBFixedMobileRadiolocat ionFIXEDMOBILE**Amateur RADIOLOCATION

SPACE RES..(S-E)

MOBILEFIXEDMOBILE SATELLITE (S-E)

MARITIME MOBILE

Mobile

FIXED

FIXED

BROADCASTMOBILEFIXED

MOBILE SATELLITE (E-S)

FIXED

FIXED MARITIME MOBILE FIXED

FIXEDMOBILE**

FIXED MOBILE**

FIXED SAT (S-E)AERO. RADIONAV.

FIXEDSATELLITE (E-S)

Amateur- sat (s-e)

AmateurMOBILE FIXED SAT(E-S)

F IXEDFIXED SATELLITE (S-E)(E-S)

FIXEDFIXED SAT (E-S)MOBILE

Radio-location

RADIO-LOCATION

FIXED SAT.(E-S)

Mobile**

Fixed Mobile FX SAT.(E-S) L M Sat(E-S)

AERO RADIONAV FIXED SAT (E-S)

AERONAUTICAL RADIONAVIGATIONRADIOLOCATION

Space Res.(act.)

RADIOLOCATION Radiolocation

Radioloc.RADIOLOC.Earth Expl Sat Space Res.RadiolocationBCST SAT.

F IXEDFIXED SATELLITE (S-E)FIXED SATELLITE (S-E)

EARTH EXPL. SAT.FX SAT (S-E)SPACE RES.

FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E) MOBILE SAT. (S-E)

FX SAT (S-E) MOBILE SATELLITE (S-E)FX SAT (S-E)STD FREQ. & TIME MOBILE SAT (S-E)

EARTH EXPL. SAT.MOBILEF IXEDSPACE RES.

F IXED MOBILEMOBILE**F IXED

EARTH EXPL. SAT.F IXEDMOBILE**R A D . A S TS P A C ER E S .

F IXEDMOBILE

INTER-SATELLITE

F IXED

RADIO ASTRONOMY SPACE RES.(Passive)

AMATEUR AMATEUR SATELLITE

Radio-location

AmateurRADIO-LOCATION

Earth Expl.S a t e l l i t e(Active)

F IXED

INTER-SATELLITERADIONAVIGATION

RADIOLOCATION SATELLITE (E-S)INTER-SATELLITE

F IXEDSATELLITE

(E-S)RADIONAVIGATION

F IXEDSATELLITE

(E-S)F IXED

MOBILE SATELLITE (E-S)FIXED SATELLITE (E-S)

MOBILEF IXEDEarth ExplorationSatellite (S-S)

std freq & time e-e-sat (s-s) MOBILEF IXED

e-e-sat MOBILE

SPACERESEARCH (deep space)

RADIONAVIGATIONINTER- SATSPACE RES.

F IXED MOBILE SPACE RESEARCH(space-to-Earth)

SPACERES.

F IXEDSAT. (S-E)

MOBILE F IXED

FIXED-SATELLITE

MOBILEF IXEDF IXEDSATELLITE

MOBILESAT.

F IXEDS A T

MOBILESAT.

EARTHEXPL

SAT (E-S)

EarthExpl.

Sat (s - e)SPACE

RES. (E-S)

FX-SAT(S-E)

FIXED MOBILE BROAD-CASTING

B C S TSAT.

RADIOASTRONOMY F IXED MOBILE* * FIXED

SATELLITE (E-S)

MOBILESATELLITE (E-S)

F IXEDSATELLITE (E-S)

MOBILERADIONAV.SATELLITE

F IXEDMOBILEMOB. SAT(E-S)RADIONAV.SAT.

MOBILESAT (E-S).

F IXED MOBILE F XSAT(E-S)

MOBILEF IXED

INTER- SAT EARTH EXPL-SAT (Passive)SPACE RES.

INTER- SAT SPACE RES. EARTH-ES

INTER- SATEARTH-ESSPACE RES.M O B I L EF IXEDEARTH

EXPLORATIONSAT. (Passive)

S P A C E RES.

M O B I L E F IXED INTER- SAT

F IXEDM O B I L E

INTER-SAT

RADIO-LOC.M O B I L EF IXEDEARTH

EXPLORATIONSAT. (Passive)

MOBILEF IXED

INTER-SATELLITEF IXEDMOBILE**

MOBILE* *INTER-

SATELLITE

M O B I L EINTER-

SATELLITE

RADIOLOC. Amateur

Amateur Sat.AmateurRADIOLOC.AMATEUR SATAMATEURRADIOLOC.

SPACERESEARCH

(Passive)

EARTHEXPL SAT.

(Passive)

F IXED MOBILE INTER-SATELLITE

SPACERESEARCH

(Passive)

EARTHEXPL SAT.

(Passive)

AmatuerF IXED M O -BILE

INTER-SAT.

SPACERES.

E A R T H EXPL . SAT

INTER-SATELLITE

INTER-SAT.INTER-SAT.

MOBILEFIXED

FX-SAT (S - E)BCST - SAT.B- SAT.MOB** FX-SAT

SPACE RESEARCH

SPACERES..

This chart is a graphic single-point-in-tim

e portrayal of the Table of F

requency Allocations used by the

FC

C and N

TIA

. As such, it does not com

pletely reflect all aspects, i.e., footnotes and recent changesm

ade to the Table of F

requency Allocations. T

herefore, for complete inform

ation, users should consult theT

able to determine the current status of U

.S. allocations.

3

CS1

44, Stan

ford

University

U.S

. DEPA

RTM

EN

T O

F C

OM

MER

CE

NATIONAL TELECOM

M

UN

ICA

TIO

NS &

INF

OR

MA

TION A D M IN ISTRATI O

N

MOBILE (AERONAUTICAL TELEMETERING)

S)

5.685.735.90

5.95

6.2

6.525

6.6856.765

7.0

7.1

7.37.35

8.18.195

8.815

8.9659.040

9.4

9.5

9.99.99510.00310.00510.110.15

11.17511.27511.411.611.65

12.05

12.10

12.23

13.213.2613.3613.4113.5713.613.813.8714.014.2514.35

14.99015.00515.01015.10

15.615.8

16.36

17.4117.4817.55

17.917.9718.0318.06818.16818.7818.919.02

19.6819.8019.99019.99520.00520.010

21.0

21.4521.8521.92422.0

22.85523.023.223.35

24.8924.9925.005

25.0125.0725.2125.3325.5525.6726.126.17526.4826.9526.9627.2327.4127.5428.0

29.729.829.8929.9130.0

UN

ITE

D

STA

TE

S

TH

E R

AD

IO S

PE

CT

RU

M

NON-GOVERNMENT EXCLUSIVE

GOVERNMENT/NON-GOVERNMENT SHAREDGOVERNMENT EXCLUSIVE

RA

DIO

SE

RV

ICE

S C

OLO

R LE

GE

ND

AC

TIVITY

CO

DE

NO

T ALLO

CA

TED

RA

DIO

NA

VIG

ATIO

NFIX

ED

MA

RITIM

E M

OB

ILEFIX

ED

MA

RITIM

E M

OB

ILE

FIXE

D

MA

RITIM

E M

OB

ILE

Radiolocation

RADIONAVIG

ATION

FIXE

D

MA

RITIM

EM

OB

ILE

Radiolocation

FIXE

D

MA

RITIM

EM

OB

ILEFIX

ED

MA

RITIM

EM

OB

ILE

AE

RO

NA

UTIC

AL

RA

DIO

NA

VIG

ATIO

N

AERONAUTICALRADIONAVIGATION

AeronauticalMobile

MaritimeRadionavigation(Radio Beacons)

MARITIMERADIONAVIGATION(RADIO BEACONS)

AeronauticalRadionavigation(Radio Beacons)

3

9

14

19.95

20.05

30

30

59

61

70

90

110

130

160

190

200

275

285

300

3 k

Hz

300 k

Hz

300 k

Hz

3 M

Hz

3 M

Hz

30 M

Hz

30 M

Hz

300 M

Hz

3 G

Hz

300 G

Hz

300 M

Hz

3 G

Hz

30 G

Hz

AeronauticalRadionavigation(Radio Beacons)

MARITIM

ERADIO

NAVIGATIO

N(RADIO

BEACONS)

AeronauticalMobile

MaritimeRadionavigation(Radio Beacons)

AERONAUTICALRADIONAVIGATION(RADIO BEACONS)

AERONAUTICAL

RADIONAVIG

ATION

(RADIO BEACO

NS)

AeronauticalM

obile

Aeronautical Mobile RADIONAVIGATION

AERONAUTICALRADIONAVIGATION

MARITIMEMOBILE

AeronauticalRadionavigation

MOBILE (DISTRESS AND CALLING)

MARITIME MOBILE

MARITIMEMOBILE

(SHIPS ONLY)

MOBILE

AERONAUTICALRADIONAVIGATION(RADIO BEACONS)

AERONAUTICALRADIONAVIGATION(RADIO BEACONS)

BROADCASTING

(AM RADIO

)

MARITIME MOBILE (TELEPHONY)

MARITIME MOBILE (TELEPHONY) MOBILE (DISTRESS AND CALLING)

MARITIM

EM

OBILE

LAND MO

BILE

MO

BILE

FIXED

STANDARD FREQ. AND TIME SIGNAL (2500kHz)

STANDARD FREQ. AND TIME SIGNAL

Space Research

MARITIM

EM

OBILE

LAND MO

BILE

MO

BILE

FIXED

AERONAUTICALMOBILE (R)

STANDARD FREQ.

AERONAUTICAL MOBILE (R)

AERONAUTICALMOBILE (OR)

AERONAUTICALMOBILE (R)

FIXED

MO

BILE**

Radio-location

FIXEDMOBILE*

AMATEUR

FIXED

FIXED

FIXED

FIXED

FIXED

MARITIM

EM

OBILE

MOBILE*

MOBILE*

MOBILE

STANDARD FREQ. AND TIME SIGNAL (5000 KHZ)

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)

STANDARD FREQ. Space Research

MO

BILE**

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)FIXEDMOBILE*

BROADCASTING

MARITIME MOBILE

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)

FIXEDMobile

AMATEUR SATELLITEAMATEUR

AMATEUR

FIXED

Mobile

MARITIME MOBILE

MARITIM

EM

OBILE

AERONAUTICAL MOBILE (R)AERONAUTICAL MOBILE (OR)

FIXED

BROADCASTING

FIXEDSTANDARD FREQ. AND TIME SIGNAL (10,000 kHz)STANDARD FREQ. Space Research

AERONAUTICAL MOBILE (R)AMATEUR

FIXED

Mobile*

AERONAUTICAL MOBILE (R)AERONAUTICAL MOBILE (OR)

FIXED

FIXED

BROADCASTING

MARITIMEMOBILE

AERONAUTICAL MOBILE (R)

AERONAUTICAL MOBILE (OR)

RADIO ASTRONOMY

Mobile*

AMATEUR

BROADCASTING

AMATEUR AMATEUR SATELLITE

Mobile*FIXED

BROADCASTING

STANDARD FREQ. AND TIME SIGNAL (15,000 kHz)STANDARD FREQ. Space Research

FIXED

AERONAUTICAL MOBILE (OR)

MARITIMEMOBILE

AERONAUTICAL MOBILE (OR)AERONAUTICAL MOBILE (R)

FIXED

FIXED

BROADCASTING

STANDARD FREQ. Space Research

FIXED

MARITIME MOBILE

MobileFIXED

AMATEUR AMATEUR SATELLITE

BROADCASTINGFIXED

AERONAUTICAL MOBILE (R)

MARITIME MOBILE

FIXEDFIXED

FIXED

Mobile*

MOBILE**

FIXED

STANDARD FREQ. AND TIME SIGNAL (25,000 kHz)

STANDARD FREQ. Space Research

LAND MOBILEMARITIME MOBILE

LAND MOBILE MOBILE**

RADIO ASTRONOMYBROADCASTING

MARITIME MOBILE LAND MOBILE

FIXED MOBILE**FIXED

MOBILE**

MOBILE

FIXED

FIXED

FIXEDFIXED

FIXED

LAND MOBILE

MOBILE**

AMATEUR AMATEUR SATELLITE

MOBILE

LAND MOBILE

MOBILE

MOBILE

FIXED

FIXED

MOBILE

MOBILE

FIXED

FIXED

LANDMOBILE

LANDMOBILE

LANDMOBILE

LAND MOBILERadio Astronomy

RADIO ASTRONOMYLAND MOBILE

FIXEDFIXED

MOBILEMOBILE

MO

BILE

LAND MOBILE

FIXED

LANDMOBILE

FIXED

FIXED

MOBILE

MOBILE

LANDM

OBILE

AMATEUR

BROADCASTING

(TV CHANNELS 2-4)

FIXED MOBILE

FIXED MOBILE

FIXED MOBILEFIXED MOBILE

AERONAUTICAL RADIONAVIGATION

BROADCASTING

(TV CHANNELS 5-6)BRO

ADCASTING(FM

RADIO)

AERONAUTICAL

RADIONAVIG

ATION

AERONAUTICALMOBILE (R)

AERONAUTICAL MOBILEAERONAUTICAL MOBILE

AERONAUTICALMOBILE (R)

AERONAUTICALMOBILE (R)

AERONAUTICAL MOBILE (R)

MOBILEFIXEDAMATEUR

BROADCASTING

(TV CHANNELS 7-13)

MO

BILE

FIXED

MO

BILE

FIXED

MO

BILE SATELLITE

FIXED

MO

BILESATELLITE

MO

BILE

FIXED

MO

BILESATELLITE

MO

BILE

FIXED MOBILE

AERONAUTICAL RADIONAVIGATION

STD. FREQ. & TIME SIGNAL SAT. (400.1 MHz)MET. SAT.

(S-E)SPACE RES.

(S-E)

Earth Expl.Satellite (E-S)

MOBILE SATELLITE (E-S)

FIXED MOBILERADIOASTRONOMY

RADIOLOCATION Amateur

LAND MOBILE

Meteorological

Satellite (S-E)

LAND MOBILEBROADCASTING

(TV CHANNELS 14 - 20)

BROADCASTING

(TV CHANNELS 21-36)TV BRO

ADCASTING

RADIO ASTRONOMY

RADIOLOCATION

FIXED

Amateur

AERONAUTICAL

RADIONAVIG

ATION

MOBILE**FIXED

AERONAUTICALRADIONAVIGATION

Radiolocation

RadiolocationMARITIMERADIONAVIGATION

MARITIMERADIONAVIGATION

Radiolocation

Radiolocation

Radiolocation

RADIO-

LOCATIO

NRADIO

-LO

CATION

Amateur

AERONAUTICALRADIONAVIGATION

(Ground)

RADIO-LOCATION

Radio-location

AERO. RADIO-NAV.(Ground)

FIXED SAT. (S-E)

RADIO-LOCATION

Radio-location

FIXED

FIXEDSATELLITE

(S-E)

FIXED

AERONAUTICAL RADIONAVIGATION

MOBILE

FIXED MOBILE

RADIO ASTRONOMY Space Research (Passive)

AERONAUTICAL RADIONAVIGATION

RADIO-LOCATION

Radio-location

RADIONAVIGATION

Radiolocation

RADIOLOCATION Radiolocation

Radiolocation

Radiolocation

RADIOLOCATIONRADIO-

LOCATION

MARITIMERADIONAVIGATION

MARITIMERADIONAVIGATION

METEOROLOGICALAIDS

Amateur

Amateur

FIXED

FIXEDSATELLITE (E-S) MOBILE

FIXEDSATELLITE (E-S)

FIXEDSATELLITE (E-S)MOBILE

FIXED

FIXED

FIXED

FIXED

MOBILE

FIXED SPACE RESEARCH (E-S)FIXED

FixedMOBILESATELLITE (S-E)FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E)

FIXEDSATELLITE (S-E)

FIXEDSATELLITE (S-E)

FIXEDSATELLITE (E-S)

FIXEDSATELLITE (E-S)

FIXEDSATELLITE

(E-S)FIXED

SATELLITE(E-S)

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

MET.SATELLITE (S-E)

MobileSatellite (S-E)Mobile

Satellite (S-E)

MobileSatellite (E-S)(no airborne)

Mobile Satellite(E-S)(no airborne)

Mobile Satellite (S-E)

MobileSatellite (E-S)

MOBILESATELLITE (E-S)

EARTH EXPL.SATELLITE(S-E)

EARTH EXPL.SAT. (S-E)

EARTH EXPL.SATELLITE (S-E)

MET.SATELLITE

(E-S)

FIXED

FIXED

SPACE RESEARCH (S-E)(deep space only)

SPACE RESEARCH (S-E)

AERONAUTICALRADIONAVIGATION

RADIOLOCATION Radiolocation

Radiolocation

Radiolocation

Radiolocation

MARITIMERADIONAVIGATION

MeteorologicalAidsRADIONAVIGATION

RADIOLOCATION Radiolocation

RADIO-LOCATION

Radiolocation

Radiolocation Amateur

Amateur AmateurSatellite

RADIOLOCATIONFIXED

FIXED

FIXED

F IXED

FIXEDSATELLITE

(S-E)

FIXEDSATELLITE

(S-E)

Mobile **

SPACE RESEARCH(Passive)

EARTH EXPL.SAT. (Passive)

RADIOASTRONOMY

SPACERESEARCH (Passive)

EARTH EXPL.SATELLITE (Passive)

RADIOASTRONOMY

BROADCASTINGSATELLITE

AERONAUTICAL RADIONAV. Space Research (E-S)

SpaceResearch

Land MobileSatellite (E-S)

Radio-location

RADIO-LOCATION

RADIONAVIGATION

F IXEDSATELLITE (E-S)

Land MobileSatellite (E-S)

Land MobileSatellite (E-S)Fixed Mobile FIXED

SAT. (E-S)

FixedMobileFIXED

MobileFIXED

MOBILESpace Research

Space Research

Space Research

SPACE RESEARCH(Passive)RADIO ASTRONOMY EARTH EXPL. SAT.

(Passive)

RadiolocationRADIOLOCATION Radiolocation

FX SAT (E-S)FIXED SATELLITE (E-S) F IXED

FIXED

F IXED MOBILE

EARTH EXPL.SAT. (Passive)

MOBILE

Earth Expl.Satellite (Active)

StandardFrequency and

Time SignalSatellite (E-S)

EarthExploration

Satellite(S-S)

MOBILEFIXED

MOBILE

F IXEDEarth

ExplorationSatellite (S-S)

F IXED MOBILE F IXEDSAT (E-S)

FIXED SATELLITE (E-S) MOBILE SATELLITE (E-S)

FIXEDSATELLITE

(E-S)

MOBILESATELLITE

(E-S)

StandardFrequency and

Time SignalSatellite (S-E)

Stand. Frequencyand Time SignalSatellite (S-E)

FIXED MOBILE

RADIOASTRONOMY

SPACERESEARCH

(Passive)

EARTHEXPLORATIONSAT. (Passive)

RADIONAVIGATION

RADIONAVIGATION INTER-SATELLITE

RADIONAVIGATION

RADIOLOCATION Radiolocation

SPACE RE..(Passive)

EARTH EXPL.SAT. (Passive)F IXED MOBILE

F IXED MOBILE

F IXED MOBILE

MobileFixed

FIXEDSATELLITE (S-E)

BROAD-CASTING

B C S TSAT.

FIXED MOBILE

F XSAT(E-S)MOBILEF IXED

EARTHEXPLORATION

SATELLITEFI XED

SATELLITE (E-S)MOBILE

SATELLITE (E-S)

M O B I L EF IXED

SPACERESEARCH

(Passive)

EARTHEXPLORATION

SATELLITE(Passive)

EARTHEXPLORATIONSAT. (Passive)

SPACERESEARCH

(Passive)

INTER-SATELLITE

RADIO-LOCATION

SPACERESEARCH F IXED

MO

BILE

FIXE

D

MO

BILE

SATELLITE(E-S)

MOBILESATELLITE

RADIONAVIGATION

RADIO-NAVIGATIONSATELLITE

EARTHEXPLORATION

SATELLITE

FIXE

DSATELLITE

(E-S)

MOBILEFIXEDFIXEDSATELLITE (E-S)

AMATEUR AMATEUR SATELLITE

AMATEUR AMATEUR SATELLITE

AmateurSatelliteAmateur

RADIO-LOCATION

MOBILEFIXEDMOBILE

SATELLITE(S-E)

FIXEDSATELLITE

(S-E)

MOBILEFIXEDBROAD-CASTING

SATELLITE

BROAD-CASTING

SPACERESEARCH

(Passive)

RADIOASTRONOM

Y

EARTHEXPLORATION

SATELLITE(Passive)

MOBILE

F IXED

MOBILEFIXED RADIO-LOCATION

FIXEDSATELLITE

(E-S)

MOBILE

SATELLITE

RADIO-NAVIGATIONSATELLITE

RADIO-NAVIGATION

Radio-location

EARTH EXPL.SATELLITE (Passive)

SPACE RESEARCH(Passive)

F IXEDF IXED

SATELLITE(S-E)

SPACERESEARCH

(Passive)

RADIOASTRONOM

Y

EARTHEXPLORATION

SATELLITE(Passive)

FIXED

MOBILE

MOBILEINTER-

SATELLITE

RADIO-LOCATION

INTER-SATELLITE

Radio-location

MOBILE

MOBILE

SATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

AMATEUR AMATEUR SATELLITE

Amateur Amateur SatelliteRADIO-LOCATION

MOBILEFIXED FIXEDSATELLITE (S-E)

MOBILEFIXEDFIXED

SATELLITE(S-E)

EARTHEXPLORATION

SATELLITE (Passive)SPACE RES.

(Passive)

SPACE RES.(Passive)

RADIOASTRONOMY

FIXEDSATELLITE

(S-E)

FIXED

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

SPACE RESEARCH(Passive)

RADIOASTRONOMY

EARTHEXPLORATION

SATELLITE (Passive)

EARTHEXPLORATIONSAT. (Passive)

SPACERESEARCH

(Passive)INTER-

SATELLITE

INTER-SATELLITE

INTER-SATELLITE

INTER-SATELLITE

MOBILE

MOBILE

MOBILE

MOBILE

SATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

FIXEDSATELLITE

(E-S)

FIXED

FIXEDEARTH

EXPLORATION SAT.(Passive)

SPACE RES.(Passive)

SPACERESEARCH

(Passive)

RADIOASTRONOM

Y

EARTHEXPLORATION

SATELLITE(Passive)

MOBILEFIXED

MOBILEFIXED

MOBILEFIXED

FIXEDSATELLITE (S-E)

FIXEDSATELLITE(S-E)

FIXEDSATELLITE (S-E)

EARTH EXPL.SAT. (Passive)

SPACE RES.(Passive)

Radio-location

Radio-location

RADIO-LOCATION

AMATEURAMATEUR SATELLITE

AmateurAmateur Satellite

EARTH EXPLORATIONSATELLITE (Passive)SPACE RES. (Passive)

MOBILE

MOBILE

SATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

MOBILE

MOBILE

FIXED

RADIO-ASTRONOMY

FIXEDSATELLITE

(E-S)

FIXED

3.03.025

3.155

3.230

3.4

3.5

4.0

4.063

4.438

4.654.7

4.75

4.85

4.9955.0035.0055.060

5.45

MARITIM

EM

OBILE

AMATEURAMATEUR SATELLITEFIXEDMobile

MARITIME MOBILE

STANDARD FREQUENCY & TIME SIGNAL (20,000 KHZ)Space Research

AERONAUTICAL MOBILE (OR)

AMATEUR SATELLITE AMATEUR

MET. SAT. (S-E)MOB. SAT. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)MET. SAT. (S-E)Mob. Sat. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)MET. SAT. (S-E)MOB. SAT. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)MET. SAT. (S-E)Mob. Sat. (S-E) SPACE RES. (S-E) SPACE OPN. (S-E)

MO

BILE

FIXED

FIXED Land Mobile

FIXED MOBILE

LAND MOBILE

LAND MOBILE

MARITIME MOBILE MARITIME MOBILE

MARITIME MOBILE

MARITIME MOBILE

LAND MOBILE

FIXED MOBILEMOBILE SATELLITE (E-S)

RadiolocationRadiolocation

LAND MOBILEAMATEUR

MOBILE SATELLITE (E-S) RADIONAVIGATION SATELLITE

MET. AIDS(Radiosonde)

METEOROLOGICAL AIDS (RADIOSONDE)

SPACE RESEARCH (S-S)FIXED MOBILE

LAND MOBILEFIXED

LAND MOBILE

FIXEDFIXED

RADIO ASTRONOMY

RADIO ASTRONOMY METEOROLOGICALAIDS (RADIOSONDE)

METEOROLOGICALAIDS (Radiosonde)

METEOROLOGICALSATELLITE (s-E)

Fixed

FIXED

MET. SAT.(s-E)

FIXED

FIXED

AERONAUTICAL MOBILE SATELLITE (R) (space to Earth)

AERONAUTICAL RADIONAVIGATION RADIONAV. SATELLITE (Space to Earth)

AERONAUTICAL MOBILE SATELLITE (R)(space to Earth) Mobile Satellite (S- E)

RADIO DET. SAT. (E-S) M O B I L E S A T ( E - S )AERO. RADIONAVIGATIONAERO. RADIONAV.AERO. RADIONAV.

RADIO DET. SAT. (E-S)

RADIO DET. SAT. (E-S)MOBILE SAT. (E-S)MOBILE SAT. (E-S) Mobile Sat. (S-E)

RADIO ASTRONOMY

RADIO ASTRONOMY MOBILE SAT. (E-S)

FIXED MOBILE

FIXED

FIXED(LOS) MOBILE

(LOS)SPACE

RESEARCH(s-E)(s-s)

SPACEOPERATION

(s-E)(s-s)EARTH

EXPLORATIONSAT. (s-E)(s-s)

Amateur

MOBILE FixedRADIOLOCATION

AMATEUR

RADIO ASTRON. SPACE RESEARCH EARTH EXPL SAT

FIXED SAT. (S-E)

FIXED

MO

BILE

FIXEDSATELLITE (S-E)

FIXEDMOBILEFIXED

SATELLITE (E-S)

FIXEDSATELLITE

(E-S)MOBILE FIXED

SPACERESEARCH (S-E)

(Deep Space)

AERONAUTICAL RADIONAVIGATION

EARTHEXPL. SAT.(Passive)

300

325

335

405

415

435

495

505510

525

535

16051615

1705

1800

1900

2000

2065

2107

21702173.52190.52194

2495

2501

25022505

2850

3000

RADIO-

LOCATIO

N

BROADCASTING

FIXED

MO

BILE

AMATEUR

RADIOLOCATION

MOBILE FIXED MARITIMEMOBILE

MARITIME MOBILE (TELEPHONY)

MARITIMEMOBILE

LANDMOBILEMOBILEFIXED

30.0

30.56

32.0

33.0

34.0

35.0

36.0

37.037.538.038.25

39.0

40.0

42.0

43.69

46.647.0

49.6

50.0

54.0

72.0

73.0

74.674.875.275.476.0

88.0

108.0

117.975

121.9375123.0875123.5875

128.8125

132.0125

136.0

137.0137.025137.175137.825138.0

144.0146.0148.0149.9150.05

150.8152.855

154.0

156.2475157.0375157.1875157.45161.575161.625161.775162.0125

173.2173.4174.0

216.0

220.0222.0225.0

235.0

300

ISM – 6.78 ± .015 M

HzISM

– 13.560 ± .007 MHz

ISM – 27.12 ± .163 M

Hz

ISM – 40.68 ± .02 M

Hz

ISM – 24.125 ± 0.125 G

Hz30 G

Hz

ISM – 245.0 ± 1G

HzISM

– 122.5 ± .500 GHz

ISM – 61.25 ± .250 G

Hz

300.0

322.0

328.6

335.4

399.9

400.05400.15

401.0

402.0

403.0406.0406.1

410.0

420.0

450.0454.0455.0456.0

460.0462.5375462.7375467.5375467.7375470.0

512.0

608.0614.0

698

746

764

776

794

806

821824849851866869894896901901902

928929930931932935940941944960

1215

1240

1300

1350

139013921395

2000

2020

2025

2110

2155

21602180

2200

22902300230523102320

2345

2360

238523902400

24172450

2483.52500265526902700

2900

3000

140014271429.5

1430143214351525

1530

1535

1544

1545

1549.5

1558.5155916101610.61613.81626.5

16601660.51668.4

1670

1675

1700

1710

1755

1850

MARITIME MOBILE SATELLITE(space to Earth) MOBILE SATELLITE (S-E)

RADIOLOCATIONRADIONAVIGATION

SATELLITE (S-E)

RADIOLOCATION Amateur

RadiolocationAERONAUTICAL

RADIONAVIGATION

SPA CE RESEARCH ( Passive)EARTH EXPL SAT (Passive)RADIO ASTRONOMY

MOBILEMOBILE ** FIXED-SAT (E-S)FIXED

FIXED

FIXED**

LAND MOBILE (TLM)

MOBILE SAT.(Space to Earth)

MARITIME MOBILE SAT.(Space to Earth)

Mobile(Aero. TLM)

MOBILE SATELLITE (S-E)

MOBILE SATELLITE(Space to Earth)

AERONAUTICAL MOBILE SATELLITE (R)(space to Earth)

3.0

3.1

3.3

3.5

3.6

3.65

3.7

4.2

4.4

4.5

4.8

4.94

4.99

5.0

5.155.25

5.35

5.465.47

5.6

5.65

5.83

5.855.925

6.425

6.525

6.706.875

7.0257.075

7.125

7.197.2357.25

7.30

7.45

7.55

7.75

7.90

8.025

8.175

8.215

8.4

8.45

8.5

9.0

9.2

9.3

9.5

10.0

10.45

10.510.5510.6

10.68

10.7

11.7

12.2

12.7

12.75

13.2513.4

13.7514.0

14.2

14.4

14.4714.514.7145

15.1365

15.35

15.415.43

15.6315.716.6

17.1

17.217.317.717.818.318.618.8

19.319.7

20.120.221.2

21.422.022.2122.5

22.55

23.55

23.6

24.0

24.05

24.2524.45

24.65

24.75

25.05

25.2525.527.0

27.5

29.5

29.9

30.0

ISM – 2450.0 ± 50 M

Hz

30.0

31.0

31.3

31.8

32.032.3

33.033.4

36.0

37.0

37.6

38.0

38.6

39.5

40.0

40.5

41.0

42.5

43.5

45.5

46.9

47.0

47.2

48.2

50.2

50.4

51.4

52.6

54.2555.7856.957.0

58.2

59.0

59.3

64.0

65.0

66.0

71.0

74.0

75.5

76.077.077.578.0

81.0

84.0

86.0

92.0

95.0

100.0

102.0

105.0

116.0

119.98

120.02

126.0

134.0

142.0144.0

149.0

150.0

151.0

164.0

168.0

170.0

174.5

176.5

182.0

185.0

190.0

200.0

202.0

217.0

231.0

235.0

238.0

241.0

248.0

250.0

252.0

265.0

275.0

300.0

ISM – 5.8 ± .075 G

Hz

ISM – 915.0 ± 13 M

Hz

INTER-SATELLITE RADIOLOCATIONSATELLITE (E-S)

AERONAUTICALRADIONAV.

PL

EA

SE

NO

TE

: THE

SP

AC

ING

ALLO

TTED

THE

SE

RV

ICE

S IN

THE

SP

EC

-TR

UM

SEGM

ENTS SH

OW

N IS N

OT PR

OPO

RTIO

NAL TO

THE AC

TUAL AM

OU

NT

OF SPEC

TRU

M O

CC

UPIED

.

AERONAUTICALMOBILE

AERONAUTICALMOBILE SATELLITE

AERONAUTICALRADIONAVIGATION

AMATEUR

AMATEUR SATELLITE

BROADCASTING

BROADCASTINGSATELLITE

EARTH EXPLORATIONSATELLITE

FIXED

FIXED SATELLITE

INTER-SATELLITE

LAND MOBILE

LAND MOBILESATELLITE

MARITIME MOBILE

MARITIME MOBILESATELLITE

MARITIMERADIONAVIGATION

METEOROLOGICALAIDS

METEOROLOGICALSATELLITE

MOBILE

MOBILE SATELLITE

RADIO ASTRONOMY

RADIODETERMINATIONSATELLITE

RADIOLOCATION

RADIOLOCATION SATELLITE

RADIONAVIGATION

RADIONAVIGATIONSATELLITE

SPACE OPERATION

SPACE RESEARCH

STANDARD FREQUENCYAND TIME SIGNAL

STANDARD FREQUENCYAND TIME SIGNAL SATELLITE

RADIO ASTRONOMY

FIXE

D

MA

RITIM

E M

OB

ILE

FIXE

D

MA

RITIM

EM

OB

ILEA

eronauticalM

obile

STANDARD FREQ. AND TIME SIGNAL (60 kHz)FIXED Mobile*

STAND. FREQ. & TIME SIG.

MET. AIDS(Radiosonde)

Space Opn. (S-E)

MOBILE.SAT. (S-E)

Fixed

StandardFreq. and

Time SignalSatellite (E-S)

FIXED

STANDARD FREQ. AND TIME SIGNAL (20 kHz)

Amateur

MOBILE

FIXED SAT. (E-S)

SpaceResearch

ALLO

CA

TION

US

AG

E D

ES

IGN

ATIO

N

SE

RV

ICE

EX

AM

PL

ED

ES

CR

IPT

ION

Prim

aryFIX

ED

Capital

Letters

Secondary

Mobile

1st Capital w

ith lower case letters

U.S

. DE

PA

RT

ME

NT

OF

CO

MM

ER

CE

Natio

nal T

ele

co

mm

un

icatio

ns a

nd

Info

rmatio

n A

dm

inis

tratio

nO

ffice of Spectrum

Managem

ent

October 2003

MOBILE BROADCASTING

TRAVELER

S INFO

RM

ATION

STATION

S (G) AT 1610 kH

z

59-64 GHz IS DESIG

NATED FOR

UNLICENSED DEVICES

Fixed

AERONAUTICALRADIONAVIGATION

SPACE RESEARCH (Passive)

* EXCEPT AER

O M

OBILE (R

)

** EXCEPT AER

O M

OBILE

WAVELENGTH

BANDDESIGNATIONS

ACTIVITIES

FREQUENCY

3 x 107m

3 x 106m

3 x 105m

30,000 m3,000 m

300 m30 m

3 m30 cm

3 cm0.3 cm

0.03 cm3 x 10

5Å3 x 10

4Å3 x 10

3Å3 x 10

2Å3 x 10Å

3Å3 x 10

-1Å3 x 10

-2Å3 x 10

-3Å3 x 10

-4Å3 x 10

-5Å3 x 10

-6Å 3 x 10

-7Å

010 Hz

100 Hz1 kHz

10 kHz100 kHz

1 MHz

10 MHz

100 MHz

1 GHz10 GHz

100 GHz1 THz

1013Hz

1014Hz

1015Hz

1016Hz

1017Hz

1018Hz

1019Hz

1020Hz

1021Hz

1022Hz

1023Hz

1024Hz

1025Hz

THE RADIO SPECTRUMMAGNIFIED ABOVE

3 kHz300 GHz

VERY LOW

FREQUENCY (VLF)

Audible Range AM

Broadcast FM

Broadcast Radar

Sub-Millim

eter Visible

Ultraviolet Gam

ma-ray

Cosmic-ray

Infra-sonicsSonics

Ultra-sonicsM

icrowavesInfrared

PL

SX

CRadarBands

LF M

F HF

VHF UHF

SHF EHF

INFRARED VISIBLE

ULTRAVIOLET

X-RAY G

AMM

A-RAY CO

SMIC-RAY

X-ray

ALLO

CA

TIO

NS

FR

EQ

UE

NC

Y

BROADCASTINGFIXEDMOBILE*

BROADCASTINGFIXED BROADCASTING FIXED Mobile

FIXED BROADCASTING

BROADCASTINGFIXED

FIXED

BROADCASTING

FIXEDBROADCASTINGFIXED

BROADCASTINGFIXED

BROADCASTING

FIXEDBROADCASTINGFIXED

BROADCASTINGFIXED

FIXED

FIXED

FIXEDFIXED

FIXED

LANDMOBILE

FIXED

AERONAUTICAL MOBILE (R)

AMATEUR SATELLITEAMATEUR

MOBILE SATELLITE (E-S)

F I X E D

F i x e d M o b i l e R a d i o -l o c a t i o n

F I X E D M O B I L E

LAND MOBILE MARITIME MOBILE

FIXED LAND MOBILE

FIXED

LAND MOBILE

RADIONAV-SATELLITE

FIXED MOBILE

FIXED LAND MOBILE

MET. AIDS(Radio-sonde)

SPACE OPN. (S-E)

Earth Expl Sat(E-S)

Met-Satellite (E-S)

MET-SAT. (E-S)

EARTH EXPLSAT. (E-S)

Earth Expl Sat(E-S)

Met-Satellite (E-S)

EARTH EXPLSAT. (E-S)

MET-SAT. (E-S)

LAND MOBILELAND MOBILEFIXED

LAND MOBILEFIXED

FIXED

FIXED LAND MOBILE

LAND MOBILEFIXED LAND MOBILE

LAND MOBILE LAND MOBILE

LAND MOBILE

MOBILEFIXED

MOBILEFIXED

BROADCASTMOBILEFIXED

MOBILEFIXED

FIXEDLAND MOBILE

LAND MOBILEFIXEDLAND MOBILE

AERONAUTICAL MOBILE

AERONAUTICAL MOBILEFIXEDLAND MOBILE

LAND MOBILELAND MOBILE FIXED

LAND MOBILE FIXEDMOBILE FIXED

FIXEDFIXED

MOBILEFIXED

FIXEDFIXED

BROADCAST

LAND MOBILELAND MOBILE

FIXEDLAND MOBILE

METEOROLOGICALAIDS

FXSpace res.Radio AstE-Expl SatFIXEDMOBILE**

MOBILE SATELLITE (S-E)RADIODETERMINATION SAT. (S-E)

RadiolocationMOBILEFIXED

AmateurRadiolocation

AMATEUR

FIXEDMOBILE

B-SATFXMOBFixedMobileRadiolocat ion

R A D I O L O C A T I O N

MOBILE **

Fixed (TLM)LAND MOBILEFIXED (TLM)LAND MOBILE (TLM)

FIXED-SAT (S-E) FIXED (TLM)

MOBILE

MOBILE SAT.(Space to Earth)Mobile **

MOBILE** FIXED

MOBILE

MOBILE SATELLITE (E-S)

SPACE OP.(E-S)(s-s)

EARTH EXPL.SAT. (E-S)(s-s)

SPACE RES.(E-S)(s-s) FX.MOB.

MOBILEFIXED

Mobile

R- LOC.

BCST-SATELLITEFixedRadio-location

B-SATR- LOC.FXMOBFixedMobileRadiolocat ionFIXEDMOBILE**Amateur RADIOLOCATION

SPACE RES..(S-E)

MOBILEFIXEDMOBILE SATELLITE (S-E)

MARITIME MOBILE

Mobile

FIXED

FIXED

BROADCASTMOBILEFIXED

MOBILE SATELLITE (E-S)

FIXED

FIXED MARITIME MOBILE FIXED

FIXEDMOBILE**

FIXED MOBILE**

FIXED SAT (S-E)AERO. RADIONAV.

FIXEDSATELLITE (E-S)

Amateur- sat (s-e)

AmateurMOBILE FIXED SAT(E-S)

F IXEDFIXED SATELLITE (S-E)(E-S)

FIXEDFIXED SAT (E-S)MOBILE

Radio-location

RADIO-LOCATION

FIXED SAT.(E-S)

Mobile**

Fixed Mobile FX SAT.(E-S) L M Sat(E-S)

AERO RADIONAV FIXED SAT (E-S)

AERONAUTICAL RADIONAVIGATIONRADIOLOCATION

Space Res.(act.)

RADIOLOCATION Radiolocation

Radioloc.RADIOLOC.Earth Expl Sat Space Res.RadiolocationBCST SAT.

F IXEDFIXED SATELLITE (S-E)FIXED SATELLITE (S-E)

EARTH EXPL. SAT.FX SAT (S-E)SPACE RES.

FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E) MOBILE SAT. (S-E)

FX SAT (S-E) MOBILE SATELLITE (S-E)FX SAT (S-E)STD FREQ. & TIME MOBILE SAT (S-E)

EARTH EXPL. SAT.MOBILEF IXEDSPACE RES.

F IXED MOBILEMOBILE**F IXED

EARTH EXPL. SAT.F IXEDMOBILE**R A D . A S TS P A C ER E S .

F IXEDMOBILE

INTER-SATELLITE

F IXED

RADIO ASTRONOMY SPACE RES.(Passive)

AMATEUR AMATEUR SATELLITE

Radio-location

AmateurRADIO-LOCATION

Earth Expl.S a t e l l i t e(Active)

F IXED

INTER-SATELLITERADIONAVIGATION

RADIOLOCATION SATELLITE (E-S)INTER-SATELLITE

F IXEDSATELLITE

(E-S)RADIONAVIGATION

F IXEDSATELLITE

(E-S)F IXED

MOBILE SATELLITE (E-S)FIXED SATELLITE (E-S)

MOBILEF IXEDEarth ExplorationSatellite (S-S)

std freq & time e-e-sat (s-s) MOBILEF IXED

e-e-sat MOBILE

SPACERESEARCH (deep space)

RADIONAVIGATIONINTER- SATSPACE RES.

F IXED MOBILE SPACE RESEARCH(space-to-Earth)

SPACERES.

F IXEDSAT. (S-E)

MOBILE F IXED

FIXED-SATELLITE

MOBILEF IXEDF IXEDSATELLITE

MOBILESAT.

F IXEDS A T

MOBILESAT.

EARTHEXPL

SAT (E-S)

EarthExpl.

Sat (s - e)SPACE

RES. (E-S)

FX-SAT(S-E)

FIXED MOBILE BROAD-CASTING

B C S TSAT.

RADIOASTRONOMY F IXED MOBILE* * FIXED

SATELLITE (E-S)

MOBILESATELLITE (E-S)

F IXEDSATELLITE (E-S)

MOBILERADIONAV.SATELLITE

F IXEDMOBILEMOB. SAT(E-S)RADIONAV.SAT.

MOBILESAT (E-S).

F IXED MOBILE F XSAT(E-S)

MOBILEF IXED

INTER- SAT EARTH EXPL-SAT (Passive)SPACE RES.

INTER- SAT SPACE RES. EARTH-ES

INTER- SATEARTH-ESSPACE RES.M O B I L EF IXEDEARTH

EXPLORATIONSAT. (Passive)

S P A C E RES.

M O B I L E F IXED INTER- SAT

F IXEDM O B I L E

INTER-SAT

RADIO-LOC.M O B I L EF IXEDEARTH

EXPLORATIONSAT. (Passive)

MOBILEF IXED

INTER-SATELLITEF IXEDMOBILE**

MOBILE* *INTER-

SATELLITE

M O B I L EINTER-

SATELLITE

RADIOLOC. Amateur

Amateur Sat.AmateurRADIOLOC.AMATEUR SATAMATEURRADIOLOC.

SPACERESEARCH

(Passive)

EARTHEXPL SAT.

(Passive)

F IXED MOBILE INTER-SATELLITE

SPACERESEARCH

(Passive)

EARTHEXPL SAT.

(Passive)

AmatuerF IXED M O -BILE

INTER-SAT.

SPACERES.

E A R T H EXPL . SAT

INTER-SATELLITE

INTER-SAT.INTER-SAT.

MOBILEFIXED

FX-SAT (S - E)BCST - SAT.B- SAT.MOB** FX-SAT

SPACE RESEARCH

SPACERES..

This chart is a graphic single-point-in-tim

e portrayal of the Table of F

requency Allocations used by the

FC

C and N

TIA

. As such, it does not com

pletely reflect all aspects, i.e., footnotes and recent changesm

ade to the Table of F

requency Allocations. T

herefore, for complete inform

ation, users should consult theT

able to determine the current status of U

.S. allocations.

4

CS144, Stanford University

Wireless Is Different

r

• Wireless transmission medium is not a wire

• Radiates over space▶ Signal weakens with distance: r2 or faster

▶ Intermediate links

• Uncontrolled medium▶ Signal strength changes over time

▶ Interference from other transmitters

5

CS144, Stanford University

Signal Strength

• Obstructions can further weaken signal

• Wireless signals can reflect▶ Multipath: can receive signal in multiple paths/reflections, with different delays

(analogy: echoes in a canyon)

• There is no perfectly uniform antenna

• The world is continuously changing

6

CS144, Stanford University

Changing Over Time

2 4 6 8 10Time in secs

-92-90-88-86-84-82-80

RSSI

0.0

0.2

0.4

0.6

0.8

1.0

PR

RReceived Signal

Strength Indicator

Packet Reception Ratio

7

CS144, Stanford University

A Real Network: SWAN

The Stanford Wireless Access Network (SWAN) is an 802.11b/g testbed at Stanford. It is part of a research collaboration with King Abdullah University of Science and Technology (KAUST).

2.5 secondsGates Packard

8

CS1

44, Stan

ford

University

MOBILE (AERONAUTICAL TELEMETERING)

S)

300 M

Hz

3 G

Hz

AERONAUTICALMOBILE

AERONAUTICAL AERONAUTICAL

AERONAUTICALMOBILE

AERONAUTICALMOBILE

AERONAUTICAL

FIXEDAMATEUR

FIXED

FIXED

MOBILE**FIXED

AERONAUTICALRADIONAVIGATION

Radiolocation

RadiolocationMARITIMERADIONAVIGATION

F IXED

FIXEDSATELLITE

(S-E)

Mobile **

BROADCASTINGSATELLITE

AERONAUTICAL RADIONAV. Space Research (E-S)

SpaceResearch

Land MobileSatellite (E-S)

Radio-location

RADIO-LOCATION

RADIONAVIGATION

F IXEDSATELLITE (E-S)

Land MobileSatellite (E-S)

Land MobileSatellite (E-S)Fixed Mobile FIXED

SAT. (E-S)

FixedMobileFIXED

MobileFIXED

MOBILESpace Research

Space Research

Space Research

SPACE RESEARCH(Passive)RADIO ASTRONOMY EARTH EXPL. SAT.

(Passive)

RadiolocationRADIOLOCATION Radiolocation

FX SAT (E-S)FIXED SATELLITE (E-S) F IXED

FIXED

F IXED MOBILE

EARTH EXPL.SAT. (Passive)

MOBILE

Earth Expl.Satellite (Active)

StandardFrequency and

Time SignalSatellite (E-S)

EarthExploration

Satellite(S-S)

MOBILEFIXED

MOBILE

F IXEDEarth

ExplorationSatellite (S-S)

F IXED MOBILE F IXEDSAT (E-S)

FIXED SATELLITE (E-S) MOBILE SATELLITE (E-S)

MOB. SAT. (S-E) SPACE Mob. Sat. (S-E) SPACE MOB. SAT. (S-E) SPACE Mob. Sat. (S-E) SPACE

FIXED

FIXED

FIXED

M M

MARITIME MOBI

M

MOBILE SATELLITE (E-S)

LAND MOBILEAMATEUR

RADIO ASTRONOMY

RADIO ASTRONOMY METEOROLOGICALAIDS (RADIOSONDE)

METEOROLOGICALAIDS (Radiosonde)

METEOROLOGICALSATELLITE (s-E)

Fixed

FIXED

MET. SAT.(s-E)

FIXED

FIXED

AERONAUTICAL MOBILE SATELLITE (R) (space to Earth)

AERONAUTICAL RADIONAVIGATION RADIONAV. SATELLITE (Space to Earth)

AERONAUTICAL MOBILE SATELLITE (R)(space to Earth) Mobile Satellite (S- E)

RADIO DET. SAT. (E-S) M O B I L E S A T ( E - S )AERO. RADIONAVIGATIONAERO. RADIONAV.AERO. RADIONAV.

RADIO DET. SAT. (E-S)

RADIO DET. SAT. (E-S)MOBILE SAT. (E-S)MOBILE SAT. (E-S) Mobile Sat. (S-E)

RADIO ASTRONOMY

RADIO ASTRONOMY MOBILE SAT. (E-S)

FIXED MOBILE

FIXED

FIXED(LOS) MOBILE

(LOS)SPACE

RESEARCH(s-E)(s-s)

SPACEOPERATION

(s-E)(s-s)EARTH

EXPLORATIONSAT. (s-E)(s-s)

Amateur

MOBILE FixedRADIOLOCATION

AMATEUR

RADIO ASTRON. SPACE RESEARCH EARTH EXPL SAT

FIXEDMOBILEFIXED

SATELLITE (E-S)

FIXEDSATELLITE

(E-S)MOBILE FIXED

SPACERESEARCH (S-E)

(Deep Space)

AERONAUTICAL RADIONAVIGATION

ISM – 24.125 ± 0.125 G

Hz30 G

Hz

1300

1350

139013921395

2000

2020

2025

2110

2155

21602180

2200

22902300230523102320

2345

2360

238523902400

24172450

2483.52500265526902700

2900

3000

140014271429.5

1430143214351525

1530

1535

1544

1545

1549.5

1558.5155916101610.61613.81626.5

16601660.51668.4

1670

1675

1700

1710

1755

1850

MARITIME MOBILE SATELLITE(space to Earth) MOBILE SATELLITE (S-E)

RadiolocationAERONAUTICAL

RADIONAVIGATION

SPA CE RESEARCH ( Passive)EARTH EXPL SAT (Passive)RADIO ASTRONOMY

MOBILEMOBILE ** FIXED-SAT (E-S)FIXED

FIXED

FIXED**

LAND MOBILE (TLM)

MOBILE SAT.(Space to Earth)

MARITIME MOBILE SAT.(Space to Earth)

Mobile(Aero. TLM)

MOBILE SATELLITE (S-E)

MOBILE SATELLITE(Space to Earth)

AERONAUTICAL MOBILE SATELLITE (R)(space to Earth)

12.2

12.7

12.75

13.2513.4

13.7514.0

14.2

14.4

14.4714.514.7145

15.1365

15.35

15.415.43

15.6315.716.6

17.1

17.217.317.717.818.318.618.8

19.319.7

20.120.221.2

21.422.022.2122.5

22.55

23.55

23.6

24.0

24.05

24.2524.45

24.65

24.75

25.05

25.2525.527.0

27.5

29.5

29.9

30.0

ISM – 2450.0 ± 50 M

Hz

119.98

120.02

126.0

134.0

142.0144.0

149.0

150.0

151.0

164.0

168.0

170.0

174.5

176.5

182.0

185.0

190.0

200.0

202.0

217.0

231.0

235.0

238.0

241.0

248.0

250.0

252.0

265.0

275.0

300.0

INTER-SATELLITE RADIOLOCATIONSATELLITE (E-S)

StandardFreq. and

Time SignalSatellite (E-S)

FIXEDMOBILE

FIXED SAT. (E-S)

SpaceResearch

SPACE RESEARCH (Passive)

AERONAUTICAL

F I X E D

F i x e d M o b i l e R a d i o -l o c a t i o n

MARITIME MOBI

FIXED

FIXED

LAND

RADIONAV-SATELLITE

FIXED

FIXED

FIXEDLAND MOBILE

METEOROLOGICALAIDS

FXSpace res.Radio AstE-Expl SatFIXEDMOBILE**

MOBILE SATELLITE (S-E)RADIODETERMINATION SAT. (S-E)

RadiolocationMOBILEFIXED

AmateurRadiolocation

AMATEUR

FIXEDMOBILE

B-SATFXMOBFixedMobileRadiolocat ion

R A D I O L O C A T I O N

MOBILE **

Fixed (TLM)LAND MOBILEFIXED (TLM)LAND MOBILE (TLM)

FIXED-SAT (S-E) FIXED (TLM)

MOBILE

MOBILE SAT.(Space to Earth)Mobile **

MOBILE** FIXED

MOBILE

MOBILE SATELLITE (E-S)

SPACE OP.(E-S)(s-s)

EARTH EXPL.SAT. (E-S)(s-s)

SPACE RES.(E-S)(s-s) FX.MOB.

MOBILEFIXED

Mobile

R- LOC.

BCST-SATELLITEFixedRadio-location

B-SATR- LOC.FXMOBFixedMobileRadiolocat ionFIXEDMOBILE**Amateur RADIOLOCATION

SPACE RES..(S-E)

MOBILEFIXEDMOBILE SATELLITE (S-E)

MOBILE SATELLITE (E-S)

Radio-location

RADIO-LOCATION

FIXED SAT.(E-S)

Mobile**

Fixed Mobile FX SAT.(E-S) L M Sat(E-S)

AERO RADIONAV FIXED SAT (E-S)

AERONAUTICAL RADIONAVIGATIONRADIOLOCATION

Space Res.(act.)

RADIOLOCATION Radiolocation

Radioloc.RADIOLOC.Earth Expl Sat Space Res.RadiolocationBCST SAT.

F IXEDFIXED SATELLITE (S-E)FIXED SATELLITE (S-E)

EARTH EXPL. SAT.FX SAT (S-E)SPACE RES.

FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E)

FIXED SATELLITE (S-E) MOBILE SAT. (S-E)

FX SAT (S-E) MOBILE SATELLITE (S-E)FX SAT (S-E)STD FREQ. & TIME MOBILE SAT (S-E)

EARTH EXPL. SAT.MOBILEF IXEDSPACE RES.

F IXED MOBILEMOBILE**F IXED

EARTH EXPL. SAT.F IXEDMOBILE**R A D . A S TS P A C ER E S .

F IXEDMOBILE

INTER-SATELLITE

F IXED

RADIO ASTRONOMY SPACE RES.(Passive)

AMATEUR AMATEUR SATELLITE

Radio-location

AmateurRADIO-LOCATION

Earth Expl.S a t e l l i t e(Active)

F IXED

INTER-SATELLITERADIONAVIGATION

RADIOLOCATION SATELLITE (E-S)INTER-SATELLITE

F IXEDSATELLITE

(E-S)RADIONAVIGATION

F IXEDSATELLITE

(E-S)F IXED

MOBILE SATELLITE (E-S)FIXED SATELLITE (E-S)

MOBILEF IXEDEarth ExplorationSatellite (S-S)

std freq & time e-e-sat (s-s) MOBILEF IXED

e-e-sat MOBILE

INTER-SATELLITE

INTER-SAT.INTER-SAT.

MOBILEFIXED

FX-SAT (S - E)BCST - SAT.B- SAT.MOB** FX-SAT

Interferen

ce

9

CS144, Stanford University

Interference

10

CS144, Stanford University

Overview

• Wireless networks are increasingly the last hop for personal communications▶ But generally don’t work as well

• Wireless behaves very differently from wired: many complex behaviors!▶ Signal weakens over distance

▶ Signal affected by environment

▶ Intermediate links

▶ External interference

• Different behavior leads to different protocols and algorithms

11

CS144, Stanford University

Wireless Media Access Control

1

CS144, Stanford University

Basic MAC Goals

• Arbitrate control of the channel so that:▶ One node should be able to use 100%

▶ Multiple nodes should receive a fair share

▶ High utilization under contention

2

CS144, Stanford University

Ethernet CSMA/CD

• On transmission:▶ Set n=0

▶ If channel is idle, transmit

▶ If channel is busy, wait until channel is idle for 96 bit times, transmit

• During transmission:▶ If no collision detected, wait 96 bit times, accept next frame for transmission

▶ If collision detected- Send a jam signal

- Choose a time t = (0, 2n) * 512 bit times

- Increment n

- Check channel again at time t

3

CS144, Stanford University

Problem with CSMA/CD in Wireless

• On transmission:▶ Set n=0

▶ If channel is idle, transmit

▶ If channel is busy, wait until channel is idle for 96 bit times, transmit

• During transmission:▶ If no collision detected, wait 96 bit times, accept next frame for transmission

▶ If collision detected- Send a jam signal

- Choose a time t = (0, 2n) * 512 bit times

- Increment n

- Check channel again at time t

4

CS144, Stanford University

Not a Shared Medium

A B C

5

CS144, Stanford University

Wireless: CSMA/CACarrier sense multiple access/collision avoidance

1

CS144, Stanford University

Link Layer Acknowledgments

A B C

2

CS144, Stanford University

CSMA/CA

• Pick random backoff

• Sense local channel, transmit after backoff

• If packet not acknowledged, backoff again, retry

• If packet acknowledged, accept next packet for transmission

3

CS144, Stanford University

802.11 CSMA/CA

• Pick a random initial wait period t

• Periodically check channel, if idle, decrement t

• When t=0, try to transmit▶ If packet received successfully (acknowledged), accept next packet for transmission

▶ If packet not received successfully, double t

▶ If t >= T, drop packet

B1, TX B2, ACKS

4

CS144, Stanford University

Problem 1: Hidden Terminals

A B C

5

CS144, Stanford University

Problem 2: Exposed Terminals

A B C D

6

CS144, Stanford University

Problem 3: Collision or Low SNR?

7

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

The IP Service 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

CS144, Stanford University 

CS144, Stanford University  2 

The Internet Protocol (IP) 

TCP 

IP 

Data  Hdr 

Data  Hdr 

TCP Segment 

IP Datagram Network 

Link 

Transport 

Applica/on 

The IP Service Model 

3 CS144, Stanford University 

Property  Behavior 

Datagram  Individually routed packets. 

Hop‐by‐hop rou/ng. 

Unreliable  Packets might be dropped. 

Best effort  …but only if necessary. 

Connec4onless  No per‐flow state. 

Packets might be mis‐sequenced. 

The IP Service Model (Details) 

•  Tries to prevent packets looping forever. 

•  Will fragment packets if they are too long. 

•  Uses a checksum to reduce chances of delivering 

to wrong des/na/on. 

•  Allows for new versions of IP –  Currently IPv4 with 32 bit addresses 

–  And IPv6 with 128 bit addresses 

•  Allows for new op/ons to be added to header. 

4 CS144, Stanford University 

IPv4 Datagram 

5 CS144, Stanford University 

Flags 

Version 

Time to Live 

“TTL” 

Type of 

Service 

Checksum 

Header 

Length Total Packet Length 

Packet ID  Fragment Offset 

Protocol ID 

Source IP Address 

Des/na/on IP Address 

(OPTIONS)  (PAD) 

Bit 0 

Data 

Bit 31 

The Hourglass Model of IP 

CS144, Stanford University  6 

IP 

TCP  UDP  … 

h`p  smtp  ssh  … 

Ethernet  WiFi  DSL  … 

Summary 

We use IP every /me we send and receive 

Internet packets. 

It provides a deliberately simple service: 

–  Datagram 

–  Unreliable 

–  Best‐effort 

–  Connec/onless 

CS144, Stanford University  7 

<The End> 

8 CS144, Stanford University 

CS144, Stanford University

Wireless: RTS/CTSRequest-to-send/Clear-to-send

1

CS144, Stanford University

RTS/CTS

A B C1.

A B C2.

A B C3.

A B C4.

2

CS144, Stanford University

Problems with CSMA/CA

• Problem 1: Hidden terminals

• Problem 2: Exposed terminals

• Problem 3: Collision or low SNR?

3

CS144, Stanford University

Problem with RTS/CTS: Overhead

A B C

How long do these packets take?

Bitrate CSMA RTS/CTS Overhead

1 Mbps 0.79 0.76 4.0%

2 Mbps 1.44 1.35 6.6%

5.5 Mbps 3.36 2.89 14.1%

11 Mbps 5.89 4.42 25.1%4

CS144, Stanford University

Problem with RTS/CTS: Overhead

A B C

Bitrate CSMA RTS/CTS Overhead

1 Mbps 0.79 0.76 4.0%

2 Mbps 1.44 1.35 6.6%

5.5 Mbps 3.36 2.89 14.1%

11 Mbps 5.89 4.42 25.1%5

CS144, Stanford University

802.11 Format and Overhead

1

CS144, Stanford University

Example 802.11n

MCS

Data Rate (Mta Rate (Mbps)

MCSIndex

SpatialStreams Modulation Coding

20MHz ChaHz Channel 40 MHz ChaMHz ChannelMCSIndex

SpatialStreams Modulation Coding 800ns GI 400ns GI 800ns GI 400ns GI

0 1 BPSK 1/2 6.5 7.2 13.5 15.0

1 1 QPSK 1/2 13.0 14.4 27.0 30.0

2 1 QPSK 3/4 19.5 21.7 40.5 45.0

3 1 16-QAM 1/2 26 28.9 54.0 60.0

4 1 16-QAM 3/4 39 43.3 81.0 90.0

5 1 64-QAM 2/3 52 57.8 108.0 120.0

6 1 64-QAM 3/4 58.5 65.0 121.5 135.0

7 1 64-QAM 5/6 65 72.2 135.0 150.0

2

CS144, Stanford University

802.11 (WiFi)

Basic challenge: support wide range and extensible bitrates

3

CS144, Stanford University

802.11 (WiFi)

Physical

Link

Network

Transport

Session

Presentation

Application

Basic challenge: support a wide range of and extensible bitrates

4

CS144, Stanford University

802.11b PHY

sync SFD signal service length link frame

128 16 8 8 16

bits

1111... ...0000

CRC

16

Physical

Link

Network

Transport

Session

Presentation

Application

Scrambled by PHY

5

CS144, Stanford University

802.11 MAC

Physical

Link

Network

Transport

Session

Presentation

Application

Scrambled by PHY

frame control duration addr 1 addr 2 addr 3 network data

2 2 6 6 6

seq no.

6

FCS

4

addr 4

2

bytes

sync SFD signal service length link frame

128 16 8 8 16

bits

1111... ...0000

CRC

16

6

CS144, Stanford University

Virtual Carrier Sense

Physical

Link

Network

Transport

Session

Presentation

Application

Scrambled by PHY

frame control duration addr 1 addr 2 addr 3 network data

2 2 6 6 6

seq no.

6

FCS

4

addr 4

2

bytes

sync SFD signal service length link frame

128 16 8 8 16

bits

1111... ...0000

CRC

16

7

CS144, Stanford University

Virtualizing a Link

frame control duration addr 1 addr 2 addr 3 network data

2 2 6 6 6

seq no.

6

FCS

4

addr 4

2

bytes

8

CS144, Stanford University

802.11 Overhead

sync SFD signal service length link frame

128 16 8 8 16

bits

1111... ...0000

CRC

16

Physical

Link

Network

Transport

Session

Presentation

Application

Scrambled by PHY

1Mbps 600Mbps

9

CS144, Stanford University

802.11 Summary

• Basic MAC format to work on top of many physical layers

• Needs backwards compatibility▶ Use time, rather than bytes

• MAC control (virtual carrier sense) specified in terms of duration

• Virtualizes the link▶ Embed additional addresses

• Don’t be fooled by 600Mbps!

10

CS144, Stanford University

Network Address Translation

1

CS144, Stanford University

Strong End-to-End

• “The network's job is to transmit datagrams as efficiently and flexibly as possible. Everything else should be done at the fringes.”

171.64.15.55 157.166.226.26

Internet

2

CS144, Stanford University

Network Address Translator (NAT)RFC1631

171.64.15.55 157.166.226.26

Internet

3

CS144, Stanford University

NAT Example

10.1.1.9

NAT(128.34.22.8)

NAT(76.18.117.20)

10.0.0.101

A B

18.181.0.31

S

sshd (22)

4

CS144, Stanford University

How a NAT Works

NAT(128.34.22.8)

10.0.0.101

A

18.181.0.31

S

5

CS144, Stanford University

Types of NATs

6

CS144, Stanford University

NAT Internal Mapping

NAT(128.34.22.8)

10.0.0.101

A18.181.0.31

S

10.0.0.101

4512

18.181.0.31

10.0.0.101

80 4512

18.181.0.31

128.34.22.8

80 6641

128.34.22.8

6641

7

CS144, Stanford University

Two Questions

• What packets does a NAT allow to traverse mappings?

• How and when does a NAT assign mappings?

• NAT terminology/classification in RFC3489

8

CS144, Stanford University

Full Cone NAT

NAT(128.34.22.8)

10.0.0.101

A18.181.0.31

S

10.0.0.101

4512

18.181.0.31

10.0.0.101

80 4512

18.181.0.31

128.34.22.8

80 6641

128.34.22.8

6641

9

CS144, Stanford University

Restricted Cone NAT

NAT(128.34.22.8)

10.0.0.101

A18.181.0.31

S

18.181.0.31

10.0.0.101

80 4512

18.181.0.31

128.34.22.8

80 6641

10.0.0.101

4512

18.181.0.31

128.34.22.8

6641

10

CS144, Stanford University

Port Restricted NAT

NAT(128.34.22.8)

10.0.0.101

A18.181.0.31

S

10.0.0.101

4512

18.181.0.31

128.34.22.8

80 6641

18.181.0.31

10.0.0.101

80 4512

18.181.0.31

128.34.22.8

80 6641

11

CS144, Stanford University

Symmetric NAT

NAT(128.34.22.8)

10.0.0.101

A

18.181.0.31

S10.0.0.101

4512

18.181.0.31

10.0.0.101

3311 4512

18.181.0.31

128.34.22.8

3311 6641

18.181.0.32

S’18.181.0.32

128.34.22.8

3311 9821

10.0.0.101

4512

12

CS144, Stanford University

NAT Behavioral Recommendations

• More complications: static mappings, triggers, more complex behaviors

• TCP recommendations: RFC5382

• UDP recommendations: RFC4787

• Hairpinning: packet from internal address to external address translated properly (internal mapped to external)

13

CS144, Stanford University

Hairpinning Example

10.0.0.101

A

10.0.0.99

B

NAT(128.34.22.8)

switch

10.0.0.101

4512

128.34.22.8

6641

14

CS144, Stanford University

NAT Implications

15

CS144, Stanford University

Applications: Incoming Connections

NAT(128.34.22.8)

10.0.0.101

A18.181.0.31

S

10.0.0.101

4512

18.181.0.31

10.0.0.101

80 4512

18.181.0.31

128.34.22.8

80 6641

128.34.22.8

6641

18.181.0.32

B

sshd

16

CS144, Stanford University

Connection Reversal

10.0.0.101

A

192.168.2.5

B

18.181.0.31

R

NAT

17

CS144, Stanford University

Relays

10.0.0.101

A

192.168.2.5

B

18.181.0.31

R

NAT NAT

18

CS144, Stanford University

Applications: NAT Hole-Punching

NAT(128.34.22.8)

NAT(76.18.117.20)

Server(18.181.0.31)

Client A(10.0.0.101)

Client B(10.1.1.9)

19

CS144, Stanford University

Transport: No New Transport!

NAT(128.34.22.8)

10.0.0.101

A18.181.0.31

S

10.0.0.101

4512

18.181.0.31

10.0.0.101

80 4512

18.181.0.31

128.34.22.8

80 6641

128.34.22.8

6641

20

CS144, Stanford University

NAT Debate

• Tremendously useful▶ Reuse addresses

▶ Security (not opening connections can be good!)

• Tremendously painful▶ Large complication to application development

▶ Speak Freely (pre-Skype VoIP!)

• Debate interesting but pointless: NATs are here to stay

21

CS144, Stanford University

The New Hourglass

IP

ICMP TCP UDP

Link and Below

Session and Above

22

CS144, Stanford University

NAT Operation Details

23

CS144, Stanford University

NAT Internal Mapping

NAT(128.34.22.8)

10.0.0.101

A18.181.0.31

S

10.0.0.101

4512

18.181.0.31

10.0.0.101

80 4512

18.181.0.31

128.34.22.8

80 6641

128.34.22.8

6641

24

CS144, Stanford University

UDP

• RFC4787

25

CS144, Stanford University

TCP

• RFC5382

26

1 1 1 

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

The TCP and UDP Service Models 

CS144, Stanford University 

Nick McKeown 

Professor of Electrical Engineering  and Computer Science, Stanford University 

2 2 2 

Outline 

TCP Service Model 

UDP Service Model 

CS144, Stanford University 

3 3 3 

Transmission Control Protocol (TCP) 

Network 

Link 

Transport 

Applica/on 

TCP  Data  Hdr  TCP Segment 

Bytes 

4 4 4 

Peer layers communicate 

CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Network 

Link 

B A 

5 5 5 

The TCP Service Model 

CS144, Stanford University 

Property  Behavior 

Stream of bytes  Byte delivery service. 

Connec0on oriented  3‐way handshake for connec/on setup. 

Reliable delivery  1.  Acknowledgments indicate delivery. 

2.  Checksums detect corrupted data. 

3.  Sequence numbers detect missing data.  

4.  Flow‐control prevents overrunning 

receiver. 

In‐sequence  Data delivered to applica/on in sequence 

transmiTed. 

(Conges0on Control  Controls network conges/on.) 

6 6 6 

TCP “stream of bytes” service 

Byte 0 Byte 1 Byte 2 Byte 3 

Byte 0 Byte 1 Byte 2 Byte 3 

Byte 80 

Byte 80 

7 7 7 

…emulated using TCP “segments” 

Byte 0 Byte 1 Byte 2 Byte 3 

Byte 0 Byte 1 Byte 2 Byte 3 

Byte 80 

Byte 80 

8 8 8 

The TCP Segment Format 

IP Hdr 

IP Data 

TCP Hdr TCP Data 

Source port 

Sequence # (of first byte) 

Acknowledgment  Sequence # Flags 

Checksum 

HLEN  RSVD 

URG 

ACK 

PSH 

RST 

SYN 

FIN  Window Size 

Urgent Pointer 

(TCP Op/ons) 

TCP Data 

Bit 0  Bit 31 

Des/na/on port 

9 9 9 

Connec/on oriented: 

3‐way handshake 

Connec/on Setup 

3‐way handshake 

Client  Server 

Syn 

Syn + Ack 

Ack 

Connec/on Close/Teardown 

2 x 2‐way handshake 

Client  Server 

Fin 

(Data +) Ack 

Fin 

Ack 

10 10 10 

TCP: Port Demul/plexing 

Web  

client 

Web 

Server 

Mail 

Server 

A B

TCP 

IP 

Mail 

client 

11 11 11 

Ini/al Sequence Numbers 

Connec/on Setup 

3‐way handshake 

Client  Server 

Syn +ISNA 

Syn + Ack +ISNB 

Ack 

12 12 12 

Sequence Numbers 

ISN (ini/al sequence number) 

TCP Data 

TCP Data 

TCP  

HDR 

TCP  

HDR 

Sequence number 

= 1st byte  Ack sequence 

number = next 

expected byte 

13 13 13 

TCP Sliding Window 

We will learn about several features of TCP in 

later lectures: 

– Window‐based flow control 

– Conges/on control 

– Retransmission and /meouts 

14 14 14 

Outline 

TCP Service Model 

UDP Service Model 

CS144, Stanford University 

15 15 15 

User Datagram Protocol (UDP) 

Property  Behavior 

Connec0onless 

Datagram Service 

No connec/on established. 

Packets may show up in any order. 

Self contained 

datagrams 

Unreliable delivery  1.  No acknowledgments. 

2.  Checksum covers header, not data. 

3.  No mechanism to detect missing or mis‐

sequenced data.  

4.  No flow control. 

16 16 16 

The UDP Datagram Format 

IP Hdr 

IP Data 

UDP Hdr UDP Data 

Source port 

Checksum  Length 

UDP Data 

Bit 0  Bit 31 

Des/na/on port 

17 17 17 

UDP: Port Demul/plexing 

Process 

A B

UDP 

IP 

Process 

Process 

Process 

18 18 18 

Summary 

TCP provides in‐order, reliable delivery of a 

stream of bytes between applica/on processes. 

UDP provides a simpler, datagram delivery 

service between applica/on processes. 

CS144, Stanford University 

19 19 19 

<The End> 

CS144, Stanford University 

1 1 1 

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

The Internet Control Message Protocol 

(ICMP) Service Model 

CS144, Stanford University 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

2 2 2 

Making the Network Layer Work 

1.  The Internet Protocol (IP)  

–  The crea/on of IP datagrams. 

–  Hop‐by‐hop delivery from end to end. 

2.  Rou/ng Tables 

–  Algorithms to populate router forwarding tables  

3.  Internet Control Message Protocol (ICMP) 

–  Communicates network layer informa/on 

between end hosts and routers 

–  Reports error condi/ons 

–  Helps us diagnose problems CS144, Stanford University 

3 3 3 

ICMP runs above the Network Layer 

Network 

Link 

Transport 

Applica/on 

ICMP  Data  Hdr  ICMP Message 

Informa/on about the 

network layer 

4 4 4 

An example 

CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

B A 

5 5 5 

The ICMP Service Model 

CS144, Stanford University 

Property  Behavior 

Repor&ng Message  Self‐contained message repor/ng error. 

Unreliable  Simple datagram service – no retries. 

6 6 6 

(Some) ICMP Message Types 

ICMP Type  ICMP Code  Descrip<on 

0  0  Echo Reply (used by ping) 

3  0  Des/na/on Network Unreachable 

3  1  Des/na/on Host Unreachable 

3  3  Des/na/on Port Unreachable 

8  0  Echo Request (used by ping) 

11  0  TTL Expired (used by traceroute) 

CS144, Stanford University 

RFC 792 

7 7 7 

How “ping” uses ICMP 

A  B 

8 8 8 

How “traceroute” uses ICMP 

A  B 

9 9 9 

Summary 

ICMP provides informa/on about the network 

layer to end hosts and routers. 

It sits above IP and is therefore strictly a 

transport layer mechanism. 

The commonly used tools “ping” and 

“traceroute” both rely on ICMP. 

CS144, Stanford University 

10 10 10 CS144, Stanford University 

CS144, Stanford University

Network Application Examples

1

CS144, Stanford University

Network Applications

• Read and write data over network▶ Web browser, web server

▶ Skype clients

▶ BitTorrent clients

• Dominant model: TCP byte stream▶ One side writes, other reads

2

Internet

CS144, Stanford University

Byte Stream Model

3

Internet

CS144, Stanford University

World Wide Web (HTTP)

4

Internet

Client Server

CS144, Stanford University

Skype

5

Internet

Client Client

CS144, Stanford University

Skype with Complications

6

Internet

Client ClientNAT

CS144, Stanford University

Skype with Complications

7

Internet

Client Client

Rendezvous

NAT

CS144, Stanford University

Skype with More Complications

8

Internet

Client ClientNATNAT

CS144, Stanford University

Skype with More Complications

9

Internet

Client ClientNATNAT

Relay

CS144, Stanford University

BitTorrent

10

Internet

Client

Tracker

ClientClient Client

Client

Client

CS144, Stanford University

Byte Stream Model

• Building block of most applications today▶ Other models exist: datagrams, real-time data streams

• Abstracts away entire Internet -- just a pipe between two processes▶ Does so on top of unreliable, “best effort” Internet

• In the Internet, almost always Transmission Control Protocol (TCP)

• Application level controls communication pattern and payloads▶ World Wide Web (HTTP)

▶ Skype

▶ BitTorrent

11

CS144, Stanford University

More Reading

• Skype: “An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol.” Salman A. Baset and Henning G. Schulzrinne

• BitTorrent: Wikipedia, also http://wiki.theory.org/BitTorrentSpecification

12

CS144, Stanford University

Life of a Packet

1

CS144, Stanford University

Byte Stream Model

2

Internet

CS144, Stanford University

Byte Stream Model

• Building block of most applications today▶ Other models exist: datagrams, real-time data streams

• Abstracts away entire Internet -- just a pipe between two processes▶ Does so on top of unreliable, “best effort” Internet

• In the Internet, almost always Transmission Control Protocol (TCP)

• Application level controls communication pattern and payloads▶ World Wide Web (HTTP)

▶ Skype

▶ BitTorrent

3

CS144, Stanford University

TCP Byte Stream

4

Internet

Client Server

CS144, Stanford University

TCP Byte Stream

5

Internet

Client Server

address: 171.67.76.157port: 23946

address: 74.125.127.103port: 80

CS144, Stanford University

Inside the Stream

6

Client Server

Routers

address: 171.67.76.157port: 23946

address: 74.125.127.103port: 80

CS144, Stanford University

Inside Each Hop

7

dest linkdefault 1171.33.x.x 523.x.x.x 228.33.5.x 4171.32.x.x 267.x.x.x 6216.x.x.x 1

④ ③

address: 216.239.47.186

CS144, Stanford University

Under the Hood

• Request web page from www.cs.brown.edu

• Use wireshark to see TCP byte stream establishment and data exchange

• Use traceroute to see route packets take through Internet

8

CS144 

An Introduc/on to Computer Networks 

What the Internet is 

4 Layer Model 

Nick McKeown 

Professor of Electrical Engineering  

and Computer Science, Stanford University 

CS144, Stanford University 

The 4 Layer Internet Model 

Network 

Link 

Transport 

Applica/on 

CS144, Stanford University 

Peer layers communicate 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Network 

Link 

CS144, Stanford University 

B A 

Encapsula/on 

CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

Peer layers communicate 

Network 

Link 

Transport 

Applica/on 

Network 

Link 

CS144, Stanford University 

A few last words… 

6 CS144, Stanford University 

Where do the different layers run? 

7 CS144, Stanford University 

Network 

Link 

Transport 

Applica/on 

Why is the Network Layer oPen 

called “Layer 3”? 

CS144, Stanford University 

Applica/on 

Presenta/on 

Session 

Transport 

Network 

Link 

Physical 

The 7‐layer OSI Model 

Network 

Link 

Transport 

The 4‐layer Internet model 

Applica/on h-p 

ASCII 

IP 

TCP 

Ethernet 

<The End> 

9 CS144, Stanford University