12
Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation

N-glycosylation: one pathway, two selective constraints

Embed Size (px)

DESCRIPTION

This is a slideshow I prepared for presenting our paper published in BMC Evolutionary Biology http://www.biomedcentral.com/1471-2148/12/98/abstract Apologies if the slides are not very clear, but I prepared it quickly and just for putting them in my blog. See http://bioinfoblog.it/?p=1065 for the blog post.

Citation preview

Page 1: N-glycosylation: one pathway, two selective constraints

Distribution of events of positive selection and population differentiation in a metabolic pathway: the

case of asparagine N-glycosylation

Page 2: N-glycosylation: one pathway, two selective constraints

Our hypothesis

Selective constraints are not uniform among positions of a pathway

Genes in upstream positions, or with an higher number of interactions, should be more selectively constrained than  others

Page 3: N-glycosylation: one pathway, two selective constraints

Pathway-level analysis

Pathway databases are not yet ready for large scale analysis

Too many false positives in the annotations The same annotation can have multiple 

interpretations

So, the best approach is to focus on single pathways, one at a time

The pathway of N­Glycosylation is a good start for studying how selective constraints are related to pathway position and degree

Page 4: N-glycosylation: one pathway, two selective constraints

What is Glycosylation?

Glycosylation is a common form of post­translational protein modification

Almost 50% of the proteins in SwissProt are glycosylated 

(mostly membrane, secreted, signal proteins)

Glycosylation increases the protein's stability and is frequently used as a signal

Page 5: N-glycosylation: one pathway, two selective constraints

N-glycosylation(upstream part)

Linear pathway Produces a single sugar 

called “N­Glycan precursor”

This sugar is required for the proper folding of most membrane proteins

Adapted from Stanley, P., Schachter, H., & Taniguchi, N. (2009). N-Glycans. Essentials of Glycobiology.

Page 6: N-glycosylation: one pathway, two selective constraints

N-Glycosylation(upstream part)

The product of the upstream part of the N­Glycosylation pathway is used as a “label” for the folding status of proteins.

Folded proteins are marked with

Unfolded proteins are marked with              or

Page 7: N-glycosylation: one pathway, two selective constraints

N-Glycosylation(downstream part)

Complex pathway composed by thousands of reactions

Produces multiple sugars, important for cell­to­cell interactions

Hossler, P., Mulukutla, B. C., & Hu, W.-S. (2007). Systems analysis of N-glycan processing in mammalian cells. PloS one, 2(1), e713. doi:10.1371/journal.pone.0000713

Page 8: N-glycosylation: one pathway, two selective constraints

N-Glycosylation(downstream part)

Protein A

Surface of linfocite

Protein A

Surface of erithrocite

The products of the downstream part of the N­Glycosylation pathway are used to “decorate” proteins on the membrane

Page 9: N-glycosylation: one pathway, two selective constraints

Downstream part of Glycosylation is involved in

immunity

Protein A

Surface of host's cell

Protein A

Surface of pathogen

Page 10: N-glycosylation: one pathway, two selective constraints

Resume: structure of N-glycosylation pathway

Upstream: linear and conserved among species Downstream: complex and related to immunity Hypothesis: genetic diversity should be higher in 

the downstream part.

Page 11: N-glycosylation: one pathway, two selective constraints

Results

Signatures of high F

ST are more 

frequent in the downstream part of the pathway

iHS signals are more or less equally distributed

Page 12: N-glycosylation: one pathway, two selective constraints

My group!

● Jaume Bertranpetit (PI)● Hafid Laayouni (my 

supervisor)● Ludovica Montanucci● Pierre Luisi● Brandon Invergo● Marc Pybus● Ferran Casals● Martino Colombo

Protein A