28
GEOSYNTHETICS FOR FILTERS AND DRAINS Faculty: Samirsinh .P.Parmar Department of Civil Engineering Faculty of Technology, Dharmasinh Desai University, Nadiad, Gujarat, INDIA Mail Add: [email protected] 1

Lec 11 re for filter & drain

Embed Size (px)

Citation preview

Page 1: Lec 11 re for filter & drain

1

GEOSYNTHETICS FOR FILTERS AND DRAINS

Faculty: Samirsinh .P.ParmarDepartment of Civil EngineeringFaculty of Technology, Dharmasinh Desai University,Nadiad, Gujarat, INDIAMail Add: [email protected]

Page 2: Lec 11 re for filter & drain

2

FOLLOWING FUNCTIONS MUST BE FULFILLED

Maintain adequate permeability Prevent significant washout of soil particles Avoid accumulation of soil particles within

the geosynthetic structure Survive the installation stresses and any

other long-term mechanical, biological or chemical degradation impacts for the lifetime of the structure

Page 3: Lec 11 re for filter & drain

3

WHILE ESTABLISHING GEOSYNTHETIC FILTER CRITERIA FOR DRAINAGE APPLICATIONS, THE FOLLOWING BASIC FILTRATION CONCEPTS ARE KEPT IN MIND:

If the largest pore size in the geotextile filter is smaller than the larger particles of soil, then the filter will retain the soil.

If the smaller openings in the geotextile are sufficiently large enough to allow smaller particles of soil to pass through the filter, then the geotextile will not blind or clog.

A large number of openings should be present in the geotextile so that proper flow can be maintained even if some of the openings later become clogged.

Page 4: Lec 11 re for filter & drain

4

THE PERMEABILITY CRITERIA OF GEOTEXTILE FILTERS, COMMONLY SUGGESTED, ARE IN THE FOLLOWING FORM:

where kn is the coefficient of the cross-plane

permeability of the geotextile; ks is the coefficient of permeability of the

protected soil; and A is a dimensionless factor varying over a wide

range, say 0.1 to 100.

Page 5: Lec 11 re for filter & drain

5

FOR GEOTEXTILE FILTERS, TYPICAL PERMEABILITY CRITERIA FOR SOME SPECIFIC APPLICATIONS

For a standard drainage trench:

For a typical dam-toe drain:

For dam clay cores:

It must be noted that the critical applications may require the design of even higher kn/ks ratio values, due to the high gradient that can occur in the filter vicinities.

Page 6: Lec 11 re for filter & drain

6

FEDERAL HIGHWAY ADMINISTRATION (FHWA) ALSO ESTABLISHED THE FOLLOWING PERMITTIVITY REQUIREMENTS FOR SUBSURFACE DRAINAGE APPLICATIONS (HOLTZ ET AL., 1997):

For < 15% passing 75 μm:

For 15–50% passing 75 μm:

For > 50% passing 75 μm:

•Retention criteria govern the upper (piping) filtration limit for filters and ensure that the soil to be protected is not continually piped through the geotextile filter and into the drainage medium.

•Failure to adopt appropriate retention criteria for filter design can have costly and potential catastrophic consequences.

Page 7: Lec 11 re for filter & drain

7

THE RETENTION CRITERIA OF GEOTEXTILE FILTER COMMONLY SUGGESTED ARE IN THE FOLLOWING FORM:

Where: • Of is a certain characteristic opening size of geotextile filter; • Ds is a certain characteristic particle diameter of the soil to be protected, it indicates particle diameter, such that s%, by weight, of the soil particles are smaller than •Ds and B is a dimensionless factor varying over a certain range.The magnitude of B depends on a number of

factors, including soil types, hydraulic gradient, allowable amount of soil to be initially piped, the test method to determine Of and Ds, and state of loading (confined and unconfined)

Page 8: Lec 11 re for filter & drain

8

(a) General procedure for determining the piping limit

(b) determination of piping limit for Hong Kong Completely Decomposed Granite (CDG) soils

The piping limit conventionally is established as the maximum stable ratio of O95/D85 below which soil is not continually piped through the geotextilefilter.

Page 9: Lec 11 re for filter & drain

9

To overcome the time element associated with permeameter testing of individual soil types, standard retention criteria have been developed over a wide range of groups in the past.

Page 10: Lec 11 re for filter & drain

10

THE SIMPLIFIED DESIGN PROCEDURES FOR A GEOTEXTILE FILTER FOR STABLE SOILS IN SUBSURFACE DRAINAGE SYSTEMS

Step 1: Evaluate the soil to be filtered (the retained soil). As a minimum, this should include:

● visual classification ● consistency limits ● particle size distribution analysis. Step 2: Determine the minimum survivability requirements. Step 3: Determine the minimum permeability using the

permeability criterion. Step 4: Determine the maximum opening size using the

retention criterion as well as clogging criterion. Step 5: Select the geotextile in accordance with Steps 2, 3, and

4. Step 6: Perform a filtration test to meet the requirements of

retention and anti-clogging criterion, if the application is critical.

Page 11: Lec 11 re for filter & drain

11

IF GEOCOMPOSITE DRAINS ARE BEING USED FOR DRAINAGE APPLICATIONS, THEN THEIR DESIGN MUST SATISFY THE FOLLOWING CRITERIA (CORBET, 1992):

1. The core must resist the applied loads (normal and shear) without collapsing.

2. Under sustained load the core must not reduce significantly in thickness (compression creep).

3. The core must allow the expected water flow to reach the discharge point without the buildup of water pressure in the core.

4. The core must support the geotextile filter.

Page 12: Lec 11 re for filter & drain

12

GEOTEXTILE FOR DRAIN AND BEHIND RETAINING WALL

Page 13: Lec 11 re for filter & drain

13

COMPARISON OF GEOTEXTILE WITH GRANULAR FILL

Page 14: Lec 11 re for filter & drain

14

GUIDELINES FOR EVALUATING CRITICAL / SEVERE NATURE (ADOPTED FROM GEOSYNTHETICS ENGINEERING – AUGUST 2008)

Page 15: Lec 11 re for filter & drain

15

For less critical applications and less severe conditions,

For critical applications and severe conditions,

Page 16: Lec 11 re for filter & drain

16

PERMITTIVITY

Page 17: Lec 11 re for filter & drain

17

TRANSMISSIVITY

Page 18: Lec 11 re for filter & drain

18

Page 19: Lec 11 re for filter & drain

19

GT FILTER FIELD INSTALLATION PROBLEMS

Lack of intimate contact (GT-to-soil) generally occurs with fabric vertical or

inclined can also occur by uplifted horizontal fabric wrinkles and folds generally not problematic many reported problems from the field

Page 20: Lec 11 re for filter & drain

20

Page 21: Lec 11 re for filter & drain

21

Page 22: Lec 11 re for filter & drain

22

FACTORS TO BE CONSIDERED FOR GT FILTER DESIGN: Define Soil Particle-Size Distribution Define Soil Atterberg Limits Determine the Maximum Allowable

Geotextile Opening Size (O95) Define the Soil Hydraulic Conductivity (ks) Define the Hydraulic Gradient for the

Application (is) Determine the Minimum Allowable Geotextile

Permeability (kg)

Page 23: Lec 11 re for filter & drain

23

IN PLANE PERMEABILITY FILTER

Page 24: Lec 11 re for filter & drain

24

TYPES OF GEOTEXTILES USED AS FILTER FABRICS

Woven Slit (Spilt) Film

Woven Monofilament

Nonwoven Heat Bonded

Nonwoven Needle Punched

Page 25: Lec 11 re for filter & drain

25

SILT FENCES BY GEOTEXTILES

GT used as silt fences!

Page 26: Lec 11 re for filter & drain

26

Page 27: Lec 11 re for filter & drain

27

GT FILTER IN EARTH DAM

Page 28: Lec 11 re for filter & drain

28

QUESTIONS ?