33
Cermet coating deposition by DC reactive co-sputtering process controlled by voltage [email protected]

Ivc 2013-1

Embed Size (px)

DESCRIPTION

Cermet coating deposition by DC reactive co-sputtering process controlled by voltage

Citation preview

Page 1: Ivc 2013-1

Cermet coating deposition byDC reactive co-sputtering process

controlled by voltage

[email protected]

Page 2: Ivc 2013-1

Cermet coating deposition by DCreactive co-sputtering processcontrolled by voltage

Beatriz Navarcorena, Julián Rodrigo, Gonzalo G. Fuentes,José A. García, Ramón Escobar, Carlos Prieto, José AngelSánchez, Eva Céspedes, J. M. Albella

IVC-19 2013 – September 9-13, Paris, FRANCE

Page 3: Ivc 2013-1

1

Introduction2

Selective coating design3

Objective

Index

Selective coating design3

Deposition and characterization4

Conclusions5

Page 4: Ivc 2013-1

1

Introduction2

Selective coating design3

Objective

Index

Selective coating design3

Deposition and characterization4

Conclusions5

Page 5: Ivc 2013-1

� To develop a solar selectivecoating for the parabolic trough solar

collectors that allows the operating temperature

Objective

collectors that allows the operating temperatureof the transfer fluid to reach 600ºC, and todevelop an application method for them (PVD).

Page 6: Ivc 2013-1

1

Introduction2

Selective coating design3

Objective

Index

Selective coating design3

Deposition and characterization4

Conclusions5

Page 7: Ivc 2013-1

Parabolic trough solar collectorParabolic trough solar collector

Introduction

Parabolic mirrorParabolic mirror Absorber tubeAbsorber tube

Page 8: Ivc 2013-1

Key component: Absorber tubeKey component: Absorber tube

Introduction

AR-coated glass tube(high solar transmittance)

AR-coated glass tube(high solar transmittance)

Selective absorber coating(high solar absorptance and low

thermal emittance)

Selective absorber coating(high solar absorptance and low

thermal emittance)

Vacuum Insulation(minimized heat convection

losses)

Vacuum Insulation(minimized heat convection

losses)

Glass-to-metal sealGlass-to-metal seal

Page 9: Ivc 2013-1

Introduction

↑ Solar absorptance ↓ Thermal emissivity

1,44 µm

Page 10: Ivc 2013-1

1

Introduction2

Selective coating design3

Objective

Index

Selective coating design3

Deposition and characterization4

Conclusions5

Page 11: Ivc 2013-1

LMVF cermet absorbing layer

Anti-reflection coating

Literature reviewLiterature review

Selective coating design

Substrate

IR-reflective metal

LMVF cermet absorbing layer

HMVF cermet absorbing layer

Page 12: Ivc 2013-1

SiO2:Mo (LMVF)

SiO2

Our stackOur stack

Selective coating design

Stainless steel

IR-reflective metal (Ag)

SiO2:Mo (LMVF)

SiO2:Mo (HMVF)

Page 13: Ivc 2013-1

Software simulationsSoftware simulations

� Dependence with the metal volume fraction� Dependence with the metal volume fraction

To optimize the optical parametersTo optimize the optical parameters

Selective coating design

� Dependence with the cermet thickness� Dependence with the cermet thickness

SiO2 64 nm

LMVF-20% 70 nm

HMVF-40% 113 nm

Ag

Page 14: Ivc 2013-1

1

Introduction2

Selective coating design3

Objective

Index

Selective coating design3

Deposition and characterization4

Conclusions5

Page 15: Ivc 2013-1

Selective coating deposition

Elemental targets: Al, Ti, Si, etc.

Reactive gases: O2, N2, etc.

DC-Reactive Magnetron SputteringDC-Reactive Magnetron Sputtering

Inert gases: Ar, etc.

HYSTERESIS EFFECT

SiO2, Al2O3, Si3N2…

Page 16: Ivc 2013-1

Selective coating deposition

The hysteresis effectThe hysteresis effect

Metallic mode

Constant power

Voltage

Reactive gas flow rate

Reactive mode

Page 17: Ivc 2013-1

Selective coating deposition

Increasing the pumping speed

Increasing the target-to–substrate distance

Control Methods

The hysteresis effectThe hysteresis effect

Increasing the target-to–substrate distance

Obstructing reactive gas flow to the cathode

Pulsed reactive gas flow

Plasma emission monitoring

Voltage control

I.Safi “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review” Surface andCoatings Technology 127 (2000) 203-219

Page 18: Ivc 2013-1

The hysteresis effectThe hysteresis effect

Selective coating deposition

Stoichiometry

K.Koski et al. “Voltage controlled reactive sputerring process for aluminium oxide thin films” Thin SolidFilms 326 (1998) 189-193

Page 19: Ivc 2013-1

The hysteresis effectThe hysteresis effect

Selective coating depositionposition

Deposition rate

K.Koski et al. “Voltage controlled reactive sputerring process for aluminium oxide thin films” Thin SolidFilms 326 (1998) 189-193

Page 20: Ivc 2013-1

Selective coating deposition

Control method used

speedflo™ Mini is a multi-

The hysteresis effectThe hysteresis effect

speedflo™ Mini is a multi-channel closed-loop controlsystem for high speedadjustment of a reactive gas formagnetron sputter processes.

Page 21: Ivc 2013-1

Selective coating deposition

The hysteresis effectThe hysteresis effect loop point of maximal deposition rate

SiO2

Power Si constant = 2000 W

Page 22: Ivc 2013-1

Selective coating deposition

Characterization by FTIR: SiO2Characterization by FTIR: SiO2

Page 23: Ivc 2013-1

Selective coating deposition

The hysteresis effectThe hysteresis effect

SiO2:Mo

In co-Sputtering, the hysteresis loop of Si targetchanges when the Mo target is on

Page 24: Ivc 2013-1

Selective coating deposition

Silicon power

(W)

Molybdenum power

(W)

Deposition rate

(nm/min)

1000

1000 23

3000 60

4000 97

2000

1000 45

2000 62

3000 83

4000 111

Page 25: Ivc 2013-1

Selective coating deposition

Characterization by ellipsometryCharacterization by ellipsometry

Si(1000W):Mo(4000W)

Page 26: Ivc 2013-1

Selective coating deposition

Optical simulations with real optical valuesOptical simulations with real optical values

Page 27: Ivc 2013-1

Selective coating deposition

Silicon power

(W)

Molybdenum power

(W)

Deposition rate

(nm/min)

1000

1000 23

3000 60

4000 97

2000

1000 45

2000 62

3000 83

4000 111

HMVF

LMVF

Page 28: Ivc 2013-1

Selective coating deposition

Layer Material MVF Thickness (nm)

IR mirror Ag - 250IR mirror Ag - 250

HMVF cermet Mo/ SiO2 0.28 100

LMVF cermet Mo/ SiO2 0.1 90

AR layer SiO2 - 50

Page 29: Ivc 2013-1

Optical characterization of the stack

UV-Vis-NIR Spectrophotometer

Range: 200 nm – 3.3 mm

FTIR dual MIR/NIR Spectrometer

Rango: NIR: 11000-3000 cm-1 (0.9 - 3.3 µm)

MIR: 4000-400 cm-1 (2.5 – 25 µm)

Page 30: Ivc 2013-1

Optical characterization of the stack

Sample Up-scaled

Temperature αααα2 εεεε2

RT 0,804 0,001

300 °°°°C 0,804 0,025

400 °°°°C 0,804 0,047

500 °°°°C 0,804 0,076

600 °°°°C 0,804 0,111

650 °°°°C 0,804 0,130

[ ]

∫ −=

2

1

2

1

)(

)(),(1

λ

λ

λ

λ

λ

λθλα

A

AR

sol( )

[ ]

∫ −=

2

1

2

1

),(

),(1),(,

λ

λ

λ

λ

λλ

λθλλθε

dTE

dRTET

S

thn

Page 31: Ivc 2013-1

1

Introduction2

Selective coating design3

Objective

Index

Selective coating design3

Deposition and characterization4

Conclusions5

Page 32: Ivc 2013-1

Conclusions

DC-reactive sputtering technique has important advantages fordepositing multipurpose oxide films controlled by voltage.

DC-reactive Magnetron process requires fast control methods in orderDC-reactive Magnetron process requires fast control methods in orderto obtain high deposition rates with the desired stoichiometry, andwith a low reactive gas flow rate.

High value CSP technology stack architecture can be achieved by co-sputtering with a previous optical simulation.

Page 33: Ivc 2013-1

Acknowledgments

The research leading to these results hasreceived funding from the European Community'sSeventh Framework Programme.

Thanks for your attention!