23
M I C R O W A V E E A R T H R E M O T E S E N S I N G BRIGHAM YOUNG UNIVERSITY Improved Processing of the CASIE SAR Data Craig Stringham and David Long Microwave Earth Remote Sensing Laboratory Brigham Young University

Improved Processing of the CASIE SAR Data.pdf

Embed Size (px)

Citation preview

Page 1: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY

Improved Processing of the CASIE SAR Data

Craig Stringham and David Long Microwave Earth Remote Sensing Laboratory

Brigham Young University

Page 2: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY About CASIE

Characterization of Arctic Sea Ice Experiment

When: Summer of 2009

Where: Fram Strait region

Why: Investigate how well remote sensing can detect changes in sea ice

How: Using satellite and Unmanned Aircraft System(UAS) observations

Page 3: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY CASIE UAS

NASA SIERRA UAS equipped with: �  High-Res Video Camera �  Laser altimeter �  Temperature Sensors �  Pyranometers �  Spectrometers �  MicroASAR Synthetic

Aperture Radar

Page 4: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY

About the microASAR •  LFM-CW SAR •  Size: 22.1x18.5x4.6cm

weight: 2.5kg power: <35W

•  Pseudo-monostatic •  C-Band •  80-200 MHz Bandwidth •  90-1000m Operational

Altitude •  300-2500m Swath width

Page 5: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY

Image Source http://rst.gsfc.nasa.gov/Sect14/Sect14_14.html

Page 6: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY

Previous Images •  Processed using RDA •  1m Resolution •  ~1km ground swath •  Sparse motion data

collected

Page 7: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Backprojection Introduction

�  Time domain matched filter

�  Accounts for all flight conditions

�  Inherently creates georectified images

�  Allows for sub-aperture processing

�  Computationally intensive

Page 8: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Introduction to CUDA

�  Massively parallel processing

�  30 streaming multiprocessors @ 1.45 GHz �  8 single precision

processors

�  2 special function units �  1 double precision

�  16 KB shared memory

Page 9: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Initial Results RDA BP

Page 10: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY

Motion Measurement Alignment

�  Recorded GPS synchronized by a software interrupt

�  High-precision GPS aligned to SAR data by �  Interpolating GPS data to

match the PRF

�  Fine tune using minimum entropy of a small image

time(s)

rang

e(m

)

range compressed data + gps altitude

250 300 350 400

0

50

100

150

200

250

300

350

400

450

20

40

60

80

100

Page 11: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Results with Aligned GPS

RDA BP

Page 12: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Estimating the System Delay

�  System Delay �  Cable delay �  RF component delay

�  Feed-through appears in dechirped data as a single sinusoid

�  Estimating the System Delay �  Isolate the feed-through

component

�  Estimate feed-through using MUSIC algorithm

time(s)

rang

e(m

)

range compressed data + gps altitude

250 300 350 400

0

50

100

150

200

250

300

350

400

450

20

40

60

80

100

Page 13: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Estimating the System Delay

�  System Delay �  Cable delay �  RF component delay

�  Feed-through appears in dechirped data as a single sinusoid

�  Estimating the System Delay �  Isolate the feed-through

component

�  Estimate feed-through using MUSIC algorithm

time(s)

rang

e(m

)

range compressed data + gps altitude

250 300 350 400

0

50

100

150

200

250

300

350

400

450

20

40

60

80

100

Page 14: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Altitude Offset

�  The GPS altitude measurement were highly biased

�  Altitude bias varies with altitude

�  Surface height can be estimated from nadir return

time(s)

rang

e(m

)

range compressed data + gps altitude

250 300 350 400

0

50

100

150

200

250

300

350

400

450

20

40

60

80

100

Page 15: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Correcting altitude using Nadir

�  Using an initial subjective estimate of the bias select a window of RC data

Time(s)

Ran

ge(m

)

Range compressed data

250 300 350 400

100

150

200

250

300

350

400

450

Page 16: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Correcting altitude using Nadir

�  Using an initial subjective estimate of the bias select a window of RC data

�  Find the maximum in that window

Time(s)

Ran

ge(m

)

Range compressed data

250 300 350 400

100

150

200

250

300

350

400

450

Windowed maximum

Page 17: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Correcting altitude using Nadir

�  Using an initial subjective estimate of the bias select a window of RC data

�  Find the maximum in that window

�  Median filter

Time(s)

Ran

ge(m

)

Range compressed data

250 300 350 400

100

150

200

250

300

350

400

450

Windowed maximumMedian Filtered maximum

Page 18: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Correcting altitude using Nadir

�  Using an initial subjective estimate of the bias select a window of RC data

�  Find the maximum in that window

�  Median filter

�  Correct GPS altitude using linear error model

Time(s)

Ran

ge(m

)

range compressed data + gps altitude

250 300 350 400

100

150

200

250

300

350

400

450

Page 19: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY

Results with Altitude and System Delay corrections

BP without altitide correction

BP with altitude correction

Page 20: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY RDA Image (old)

Page 21: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Back-projected Image

Page 22: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Conclusions

�  Well focused images for the CASIE SAR data were obtained using an external GPS record

�  Processing of the full data set was made possible by the GPU backprojection implementation

�  Future work should be made to make images using attitude information in the backprojection processing

Page 23: Improved Processing of the CASIE SAR Data.pdf

MICR

OWAVE

EARTH

REMOTE SENSI N

G

BRIGHAM YOUNG UNIVERSITY Special Thanks to:

NASA

University of Colorado

Artemis

Brigham Young University