21
N. Z. Yussefian, P. Koshy McMaster University, Canada S. Buchholz, F. Klocke RWTH Aachen University, Germany Electro-erosion edge honing of cutting tools

Electro Erosion Edge Honing

  • Upload
    koshyp

  • View
    801

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electro Erosion Edge Honing

N. Z. Yussefian, P. KoshyMcMaster University, Canada

S. Buchholz, F. Klocke RWTH Aachen University, Germany

Electro-erosion edge honing of cutting tools

Page 2: Electro Erosion Edge Honing

2/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Edge preparation of cutting tools

toolchip

work

Influences chip formationAffects surface integrityPrecludes catastrophic tool failureEnhances tool life & coatabilityEnsures consistent tool performance

~ µm

chamferhone

X

X

nose radius

edge radius measured in X-X plane

Page 3: Electro Erosion Edge Honing

3/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

An increase in edge radius from 8 µm to 35 µmDelay in the onset of coating fractureFour-fold improvement in tool life

Bouzakis et al (2002)

Influence of edge radius on carbide inserts

Page 4: Electro Erosion Edge Honing

4/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Edge honing enhanced the life of ground tools by ~400%Existence of an optimal cutting edge radius

Enhancement in high speed steel tool life

Rech et al (2005)

Page 5: Electro Erosion Edge Honing

5/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

As high as ~50% variability in edge radius (Schimmel et al, 2000)Variability between edges as well as along the same edgeManufacturers hence generally specify edge hones in a rangeSomewhat limited when processing polycrystalline diamond tools

Edge honing processes

micro blasting

ww

w.c

omco

inc.

com

brush honing

ww

w.o

sbor

n.co

m

Page 6: Electro Erosion Edge Honing

6/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Possibility of honing cutting edges by sink EDM

tool wear in EDM

rounded edges

Edge rounding in EDM

honesharphoning

Page 7: Electro Erosion Edge Honing

7/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Honing of tools by sinking them into an appropriate counterfaceThe high level of precision in EDM could address the variability issueTools could be processed irrespective of material hardness

The relatively low material removal rate of sink EDM is

of little consequence

Conservative EDM parameters may be employed with a view to

preserving the integrity of the surface

counterface

tool

Electro-erosion edge honing

The volume of material removal associated with hone generation is

very minimal

Page 8: Electro Erosion Edge Honing

8/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Kinematic configurations

symmetric hone

tool

counterface

feed

increasing radiusalong the edge

rotation about X axis

X

Y

Z

asymmetric hone

rotation of tool about Z axis

Page 9: Electro Erosion Edge Honing

9/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Experimental

average voltage 80 V

peak current 1.8 A

polarity tool (−)

pulse on-time 0.6 µs

duty factor 50%

machining time 80 s

AISI T-15 High Speed Steel

Aluminum counterface

Finish ground SNEA 320 inserts

10 mm edge length; 90° wedge angle

Dielectric oil; no external flushing

Proof of concept & shape evolutionAssessment of tool performance & edge geometry

Page 10: Electro Erosion Edge Honing

10/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Measurement of edge radius

confocal microscope

NURBS model

100 150 200 250 300 350 400-50

0

50

100

150

X [m]

Y [

m]

Knot PointsEdge Cross SectionFitted Circle

circular regression on profile data

point cloud data

Page 11: Electro Erosion Edge Honing

11/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

cutting edge

counterface

Effect of counterface material on edge geometry

Aluminum counterfaceHoned edgeWear ratio = 0.5

Copper counterfaceChamfered edgeWear ratio = 7.5

cutting edge

counterface

cutting edge

counterface

Page 12: Electro Erosion Edge Honing

12/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Geometric simulation of electro-erosion honing

sparking across closest gap

material removal from electrodes as

per wear ratio

electrode feed to restore gap width

wear ratio = 0.10.5

2.07.515 µm

Fig. 3. Simulated effect of wear ratio on edge geometry.

Page 13: Electro Erosion Edge Honing

13/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Comparison of simulation with experiment

wear ratio = 0.10.5

2.07.515 µm

Fig. 3. Simulated effect of wear ratio on edge geometry.

cutting edge

counterface

wear ratio = 0.5

cutting edge

counterface

wear ratio = 7.5

Page 14: Electro Erosion Edge Honing

14/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

tool

counterface

Mechanism of edge generation

“high” wear ratio

“low” wear ratio

chamfer

hone

Page 15: Electro Erosion Edge Honing

15/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Concept of a threshold wear ratio

tool

counterface

s

rβfeed

β

For β = 90°, rβ = 40 µm & s = 15 µm, threshold wear ratio = 0.4

cutting edge

counterface

wear ratio = 7.5 A wear ratio much higher than the threshold results in the generation of a chamferA wear ratio much lower than the threshold results in extensive in-feed of the tool into the counterface

wear ratio = (Vt /Vc)

Page 16: Electro Erosion Edge Honing

16/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

cemented carbide

200 µm

high speed steel

ground EE-honed

Electro-erosion honed surfaces

extensive in-feed of cutting edge into counterface (wear ratio ~ 0.01)

Page 17: Electro Erosion Edge Honing

17/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Time evolution of edge geometry

Fig. 5. Profilometer traces of HSS edges showing their evolution.

-60 -40 -20 0 20 40 60-70

-60

-50

-40

-30 B D F H J N10 µm

-60 -40 -20 0 20 40 60-70

-60

-50

-40

-30 B D F H J N

-60 -40 -20 0 20 40 60-70

-60

-50

-40

-30 B D F H J N

unprepared edge

30 s (rβ = 22 µm)

60 s (32.6 µm)

120 s (40.3 µm)

circle fit (40.3 µm)

30 s (rβ = 22 µm) 60 s (rβ = 33 µm)

120 s (rβ = 40 µm)ground edge

a a b b

Greater rate of recessionon b-b compared to a-a

tool

workb b

aa

Concept of relative duty (Crookall & Fereday, 1973)

fit circle Absolute radial deviation from fit circle is ~5% of edge radius

Page 18: Electro Erosion Edge Honing

18/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Variable speed tool life test (Armarego & Brown, 1969)

Comparison of tool life

Significant increase in tool life due to:Electro-erosion edge honing offsetting the negative influence of grinding-induced micro-chippingReduction in the maximum tool temperature on account of enhanced heat transfer associated with larger contact area

20 25 30 35 40 45 501

10

100

To

ol li

fe (m

in)

Cutting speed (m/min)

EE-honed edge

ground edge

Annealed AISI 1045; dry cutting0.15 mm feed; 0.5 mm depth of cut300 µm max. flank wear tool life criterion

Page 19: Electro Erosion Edge Honing

19/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Variability in edge geometry

140 measurements over an edge length of 10 mm (edge 1 above) indicated a mean of 32.1 µm and standard deviation of 1.6 µm, which refers to a variability of ~15%This is a significant improvement over conventional processes wherein the corresponding variability could be on the order of 50% about the mean radius

1 2 3 4 5 625

30

35

40

45

Edg

e ra

dius

(µm

)

Edge number

Boxes and whiskers refer to 25/75 and 1/99 percentiles, respectively

Page 20: Electro Erosion Edge Honing

20/20

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

The application of electrical spark discharges for edge honing has been demonstratedThe counterface material plays a critical role in the geometry of the generated edgeEdge hones generated by electro-erosion honing significantly improved the life of ground toolsElectro-erosion honing corresponds to robust edge geometry generation as compared to conventional processes

Conclusions

Page 21: Electro Erosion Edge Honing

Thank you for yourkind attention!

Electro-erosion edge honing of cutting toolsN.Z. Yussefian, P. Koshy, S. Buchholz, F. Klocke

60th CIRP General AssemblyPisa, August 25, 2010

Canadian Network of Centers of Excellence

C4 Consortium of Ontario