26
DistanceBased Bias in ModelDirected Op3miza3on of Addi3vely Decomposable Problems Mar3n Pelikan and Mark W. Hauschild Missouri Es3ma3on of Distribu3on Algorithms Laboratory Department of Mathema3cs and Computer Science University of Missouri, St. Louis, MO Email: [email protected] WWW: hKp://mar3npelikan.net/ 1

Distance-based bias in model-directed optimization of additively decomposable problems

Embed Size (px)

DESCRIPTION

For many optimization problems it is possible to define a distance metric between problem variables that correlates with the likelihood and strength of interactions between the variables. For example, one may define a metric so that the dependencies between variables that are closer to each other with respect to the metric are expected to be stronger than the dependencies between variables that are further apart. The purpose of this paper is to describe a method that combines such a problem-specific distance metric with information mined from probabilistic models obtained in previous runs of estimation of distribution algorithms with the goal of solving future problem instances of similar type with increased speed, accuracy and reliability. While the focus of the paper is on additively decomposable problems and the hierarchical Bayesian optimization algorithm, it should be straightforward to generalize the approach to other model-directed optimization techniques and other problem classes. Compared to other techniques for learning from experience put forward in the past, the proposed technique is both more practical and more broadly applicable.

Citation preview

Page 1: Distance-based bias in model-directed optimization of additively decomposable problems

Distance-­‐Based  Bias    in  Model-­‐Directed  Op3miza3on    

of  Addi3vely  Decomposable  Problems  

Mar3n  Pelikan    and    Mark  W.  Hauschild    

Missouri  Es3ma3on  of  Distribu3on  Algorithms  Laboratory  Department  of  Mathema3cs  and  Computer  Science  

University  of  Missouri,  St.  Louis,  MO    

E-­‐mail:  [email protected]  WWW:  hKp://mar3npelikan.net/  

 1

Page 2: Distance-based bias in model-directed optimization of additively decomposable problems

Background  

•  Model-­‐directed  op3mizers  (MDOs)  learn  and  use  models  in  op3miza3on  to  solve  difficult  op3miza3on  problems  scalably  and  reliably.  

•  MDOs  oPen  provide  more  than  the  solu3on;  they  provide  a  set  of  models  that  reveal  informa3on  about  the  problem.  

•  Learning  from  experience:  Use  models  from  prior  runs  of  MDOs  to  introduce  bias  when  solving  problems  of  similar  type  in  future.  

2

Page 3: Distance-based bias in model-directed optimization of additively decomposable problems

Purpose  

•  Combine  prior  models  with  a  problem-­‐specific  distance  metric  to  solve  new  problem  instances  with  increased  speed,  accuracy,  reliability.  

•  Demonstrate  significant  speedups  across  a  broad  array  of  problem  domains.  

•  Focus  on  hBOA  algorithm  and  addi3vely  decomposable  func3ons,  although  the  approach  can  be  generalized  to  other  MDOs  and  other  problem  classes.  

3

Page 4: Distance-based bias in model-directed optimization of additively decomposable problems

Outline  

1.  Hierarchical  BOA  (hBOA).  2.  Distance  metric  for  ADFs.  3.  Learning  from  experience  via  distance-­‐based  

bias.  4.  Experiments.  5.  Summary  and  conclusions.  

4

Page 5: Distance-based bias in model-directed optimization of additively decomposable problems

Hierarchical  Bayesian  Op3miza3on  Algorithm  (hBOA)  

5

Current population Selection

New population

Bayesian network

[Pelikan, Goldberg, & Cantu-Paz, 2001]

Page 6: Distance-based bias in model-directed optimization of additively decomposable problems

Decision  Trees  Represent  Dependencies  

6

X1  

X2  

X3  

X4  Probability table Decision tree

(more efficient)

Dependency

Page 7: Distance-based bias in model-directed optimization of additively decomposable problems

Learning  from  Experience    (Transfer  Learning)  

•  Mo3va3on  – When  solving  a  problem,  hBOA  provides  the  user  with  a  set  of  probabilis3c  models.  

– Each  model  encodes  informa3on  about  the  problem,  such  as  dependencies  between  variables.  

– Why  not  use  this  informa3on  when  solving  new  problem  instances  of  similar  type?  

•  Example:  hBOA  solves  99  scheduling  problems;  why  not  use  the  knowledge  obtained  when  solving  the  100th  instance?  

7

Page 8: Distance-based bias in model-directed optimization of additively decomposable problems

How  to  Make  it  Work?  

•  It  is  straighborward  to  keep  sta3s3cs  from  past  hBOA  runs,  for  example,  capturing  the  number  of  dependencies  between  any  pair  of  variables.  

•  In  hBOA,  this  can  be  done  by  looking  at  the  number  of  “splits”  on  variable  Xi  in  a  decision  tree  storing  dependencies  for  variable  Xj.  

•  But  it  is  important  to  ensure  that  the  sta3s3cs  are  meaningful  with  respect  to  the  problem  being  solved,  so  that  the  sta3s3cs  help  us  solve  future  problem  instances  faster  and  beKer.  

8

Page 9: Distance-based bias in model-directed optimization of additively decomposable problems

Learning  from  Experience  via  Distance-­‐Based  Bias:  Basic  Idea  

•  Learning  from  experience  using  distance-­‐based  bias  – Define  distances  between  problem  variables.  – Mine  probabilis3c  models  from  previous  runs  for  model  regulari3es  with  respect  to  distances.  

•  Mine  models  to  es3mate  how  strongly  variables  influence  each  other  depending  on  their  distance.  – This  should  work  whenever  strength  of  dependencies  is  correlated  with  distance.  

•  Apply  idea  to  hBOA  and  addi3vely  decomposable  func3ons.  

9

Page 10: Distance-based bias in model-directed optimization of additively decomposable problems

Addi3vely  Decomposable  Func3ons  

•  Addi3vely  decomposable  func3on  (ADF):  

   

– {Si}  are  subsets  of  variables.  – {fi}  are  func3ons  defining  overall  solu3on  quality.  

•  Addi3vely  decomposable  func3ons  are  oPen  difficult  to  solve!  Many  NP-­‐complete  problems  are  ADFs  with  subproblems  of  2  or  3  variables.  

10

Page 11: Distance-based bias in model-directed optimization of additively decomposable problems

Define  Distance  Metric  for  ADFs  Using  Dependency  Graph  

•  Create  a  dependency  graph  where  variables  in  the  same  subset  Si  are  connected.  

•  Define  distance  between  variables  as  shortest  path  between  them  in  the  dependency  graph.  

•  If  there  exists  no  such  path,  set  distance  to  the  number  of  variables  (any  exis3ng  path  is  shorter).  

11 [Hauschild et al., 2008]

Page 12: Distance-based bias in model-directed optimization of additively decomposable problems

Define  Distance  Metric  for  ADFs  Using  Dependency  Graph:  Example  

12 [Hauschild et al., 2008]

Page 13: Distance-based bias in model-directed optimization of additively decomposable problems

Mo3va3ng  Example  

•  Propor3ons  of  splits  for  variables  at  various  distances  shows  evident  correla3on  between  the  two:  

13

NK landscapes 2D spin glass

Page 14: Distance-based bias in model-directed optimization of additively decomposable problems

Details  of  the  Approach  

•  Denote  by  M  the  set  of  models  from  prior  runs.  •  Record  the  number  of  splits  on  any  variable  Xi  in  any  decision  tree  Xj  in  model  m  such  that  distance  of  Xi  and  Xj  is  d        

•  Compute  probability  of  kth  split  on  variable  Xi  in  any  decision  tree  Xj  such  that  dist.  of  Xi  and  Xj  is  d  assuming  (k-­‐1)  such  splits:  

14

Page 15: Distance-based bias in model-directed optimization of additively decomposable problems

Details  of  the  Approach  

•  Set  prior  probability  of  network  structure  based  on  the  learned  probabili3es  (kappa  denotes  strength  of  bias)  

•  Evaluate  each  network  using  a  Bayesian  metric  

15

Page 16: Distance-based bias in model-directed optimization of additively decomposable problems

Test  Problems  

•  Included  in  this  paper  – NK  landscapes  with  nearest-­‐neighbor  interac3ons.  – 2D  spin  glass.  

•  Done  later  on  – 3D  spin  glass.  – Minimum  vertex  cover  for  random  graphs.  – MAXSAT  for  3-­‐CNF  formulas.  

•  Large  number  of  different  instances  for  each  problem  class  (100s  to  1000s  each).  

16

Page 17: Distance-based bias in model-directed optimization of additively decomposable problems

Experimental  Methodology  

•  10-­‐fold  crossvalida3on  – Divide  instances  into  10  sets.  – Test  bias  from  models  on  9  sets  on  remaining  1  set,  repeat  for  every  set.  

– BoKom  line:  Any  problem  instance  is  never  used  for  both  crea3ng  the  bias  and  tes3ng  it.  

•  Bisec3on  for  gemng  popula3on  sizes,  10  runs  for  each  problem  instance.  

•  Focus  on  mul3plica3ve  speedups  – How  many  3mes  faster  with  the  use  of  bias?   17

Page 18: Distance-based bias in model-directed optimization of additively decomposable problems

Results  on  NK  Landscapes  

18

Page 19: Distance-based bias in model-directed optimization of additively decomposable problems

Results  on  Minimum  Vertex  Cover  

19

Page 20: Distance-based bias in model-directed optimization of additively decomposable problems

Results  on  2D  Spin  Glass  

20

Page 21: Distance-based bias in model-directed optimization of additively decomposable problems

Results  on  3D  Spin  Glass  

21

Page 22: Distance-based bias in model-directed optimization of additively decomposable problems

Results  on  MAXSAT  

22

Page 23: Distance-based bias in model-directed optimization of additively decomposable problems

More  Results  to  be  Published  Soon  

•  Nearly  iden3cal  speedups  if  bias  is  based  on  problems  of  smaller  size.  

•  Significant  speedups  even  if  bias  is  based  on  another  class  of  ADFs  (e.g.  models  from  NK  landscapes  used  to  solve  MVC).    

•  Nearly  mul3plica3ve  speedups  in  combina3on  with  other  efficiency  enhancements  (e.g.  sporadic  model  building).  

•  So  far  not  a  single  problem  class  for  which  the  bias  does  not  yield  significant  speedups.    

23

Page 24: Distance-based bias in model-directed optimization of additively decomposable problems

Results  Applicable  in  Other  Contexts  

•  Approach  can  be  applied  to  other  model-­‐directed  op3mizers,  such  as  ECGA,  LTGA,  or  mGA.  

•  Approach  can  be  applied  to  other  problem  classes  for  which  a  distance  metric  can  be  defined,  such  as  QAP  or  scheduling  problems.  

•  This  work  demonstrates  the  poten3al,  but  more  work  to  be  done  in  future.  

24

Page 25: Distance-based bias in model-directed optimization of additively decomposable problems

Summary  and  Conclusions  

•  Proposed  a  prac3cal  approach  to  using  models  from  prior  runs  of  model-­‐directed  op3mizers  to  bias  op3miza3on  of  future  problem  instances.  

•  Demonstrated  significant  speedups  across  a  number  of  problem  domains  and  semngs,  including  a  number  scenarios  that  are  not  possible  with  related  techniques  proposed  in  the  past.  

•  Approach  is  ready  to  be  applied  in  a  different  context.  

25

Page 26: Distance-based bias in model-directed optimization of additively decomposable problems

Acknowledgments  

•  Support  was  provided  by  – NSF  grants  ECS-­‐0547013  and  IIS-­‐1115352.  –  ITS  at  the  University  of  Missouri  in  St.  Louis.  – University  of  Missouri  Bioinforma3cs  Consor3um.  

•  Get  the  papers  at  hKp://medal-­‐lab.org/files/2012001.pdf  hKp://medal-­‐lab.org/files/2012004.pdf  

26