50
1 April 2012 Dereverberation in the STFT and log mel-frequency feature domains Takuya Yoshioka

Dereverberation in the stft and log mel frequency feature domains

Embed Size (px)

Citation preview

1 April 2012

Dereverberation in the STFT and

log mel-frequency feature domains

Takuya Yoshioka

Dereverberation is necessaryfor many speech applications“ ”

0

10

20

30

0.2 0.3 0.4 0.5 0.6

ASR (connected digit recognition)

T60 in seconds

Word

err

or

rate

in %

ASR (LVCSR using WSJ-20K)

0

20

40

60

80

100

Clean training +MLLR Multi-style training

Word

err

or

rate

in

%

Source separation

T60=0.3 s T60=0.5 s0

2

4

6

8

10

12S

NR

in

dB

And others…

• Source localization

• Adaptive beamforming

• VAD

Dereverberation is necessaryfor many speech applications“ ”

Acoustic feature extraction process

STFT

| ・ |2

Mel FB

Log compression

DCT

Δ, ΔΔ

Microphone

Decoder

Acoustic feature extraction process

STFT

| ・ |2

Mel FB

Log compression

DCT

Δ, ΔΔ

Microphone

Decoder

STFT coefficients

Fully benefit fromthe use of

microphone arrays

Acoustic feature extraction process

STFT

| ・ |2

Mel FB

Log compression

DCT

Δ, ΔΔ

Microphone

Decoder

Power spectra

Easy to combinewith noise suppressors

Acoustic feature extraction process

STFT

| ・ |2

Mel FB

Log compression

DCT

Δ, ΔΔ

Microphone

Decoder

Log mel-frequencyfeatures

Efficient for reducingthe acoustic mismatchbetween observations

and training data

n: frame index

ny: corrupted vector

nx: clean vector

nx̂: estimate of xn

Notations

Optimal estimation in the MMSE sense

nn xx̂ ),,|(p 1nnYY,|X pastyyx ndx

nn xx̂ ),,|(p 1nnYY,|X pastyyx ndx

),,,|(p 11-nnnYX,|Y pastyyxy )(p nX x

×

Clean speech modelReverberation model

Generative approach (using Bayes rule)

nn xx̂ ),,|(p 1nnYY,|X pastyyx ndx

),,,|(p 11-nnnYX,|Y pastyyxy )(p nX x

×

Clean speech modelReverberation model

Generative approach (using Bayes rule)

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

Linear prediction

VTS

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

n: frame index

ny :corrupted complex-valued spectrum(consisting of 257 bins)

nx: clean complex-valued spectrum

nx̂: estimate of xn

Notations

j

Xjn,jn,CNnX,nX )λ;0,(xf)Λ;(p x

Clean STFT coefficients: normally distributed

XJn,

Xn,1 λ,...,λ

XnP1,...,p

Xpn, σ,)(a 2

p

piωXpn,

XnX

jn,jea1

σλ

All-pole model

No model

Model Form Parameters

Clean PSD

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

1-source 1-microphone case: multi-step LP

Δpjp,njp,jn,jn, ygxy

1,2,...njn, )(y

1,2,...njn, )(x

1-source 1-microphone case: multi-step LP

Δpjp,njp,jn,jn, ygxy

1,2,...njn, )(y

1,2,...njn, )(x

)xygδ (y

)Λ;y,,y,x|(yp

jn,jn,p jp,jn,

Rj1,j1,-njn,jn,YX,|Y past

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

When model parameters are known

jn,p jp,jn,jn, ygyx ˆˆ

)ygyδ (x jn,p jp,jn,jn, ˆ

)Λ,Λ;y,y|(xp RXj1,jn,jn,YY,|X past

ˆˆ

Inverse filtering

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

ML for parameter estimation

j n

RXj1,j1,-njn,Y|YRX )Λ,Λ;y,y|(ylogp)Λ,L(Λpast

ML for parameter estimation

j n

RXj1,j1,-njn,Y|YRX )Λ,Λ;y,y|(ylogp)Λ,L(Λpast

×

)xygδ (y

)Λ;y,,y,x|(yp

jn,jn,p jp,jn,

Rj1,j1,-njn,jn,YX,|Y past

j

Xjn,jn,CN

nX,nX

)λ;0,(xf

)Λ;(p x

ML for parameter estimation

j n

RXj1,j1,-njn,Y|YRX )Λ,Λ;y,y|(ylogp)Λ,L(Λpast

j n

Xjn,

2

p jp,njp,jn,Xjn, λ

|ygy|)log(λ

ML for parameter estimation

j n

RXj1,j1,-njn,Y|YRX )Λ,Λ;y,y|(ylogp)Λ,L(Λpast

j n

Xjn,

2

p jp,njp,jn,Xjn, λ

|ygy|)log(λ

n

Xjn,

2

p jp,njp,jn,

ΛjR,

λ

|ygy|argminΛ

jR,ˆ

ˆ

If is knownXjn,λ̂

Iterative optimization

Initializing ΛR

Inverse filtering

Updating ΛR

Convergent?

Updating ΛR

RΛ̂

RΛ̂

XΛ̂

Why LP model for reverberation?Chain rule is applicable to derive the likelihood function

Drawback

Non-minimum phase terms cannot be accurately modeled

“ ”Solution: using extra microphones

Extensions

• Integration with source separation

• Integration with additive noise reduction

• Adaptive inverse filtering – Using an RLS-like algorithm

• Application to music signals– Using a clean source model accounting for

strong harmonic structures

• Exploiting prior knowledge on room properties

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

n: frame index

ny :corrupted log mel-frequency feature(consisting of 24 coefficients)

nx: clean log mel-frequency feature

nx̂: estimate of xn

Notations

k

Xk

XknNkXnX ),;(fπ)Λ;(p Σμxx

Clean features: pre-trained GMM

)Λk;|(p XnK|X xDenoted by

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

Reverberation model

Early reflections

Late reverberation

Directsound

Reverberation model

Early reflections

Late reverberation

HnY nX nR

Directsound

Reverberation model

Early reflections

Late reverberation

*Clean speech RIR > 50ms

HnY nX nR

Directsound

Reverberation model

Early reflections

Late reverberation

),,(

))--exp(log(1

nn

nnnn

hrxg

hxrhxy

)),,(δ ()Λ;,|(p nnnRnnnRX,|Y hrxgyrxy

Directsound

Reverberation model

)),,(δ ()Λ;,|(p nnnRnnnRX,|Y hrxgyrxy

);( RR-nnNR11-nnY|R ,f)Λ;,,|(p

pastΣβyryyr

∫×

Reverberation model

),;(f)Λk;,,,,|(p X|Ykn,

X|Ykn,nNR11-nnnK,YX,|Y past

Σμyyyxy

),,(

))(,,(R

ΔnXk

Xkn

RΔn

Xk

X|Ykn,

hβyμg

μxhβyμGμ

R2RΔn

Xk

X|Ykn, )),,(( ΣhβyμGIΣ

STFT domain

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Clean speech model

Reverberation model

Posterior distribution

Parameter estimation

Log mel-frequency feature domain

pastY|RpK|Xpg

KR,|YpK,YX,|Y pastp

pastY|YpK,Y|Y pastp

pastYY,|Kp

K,YY,|X pastp K,YY,|R past

p

pastYY,|Xpkπ

Relationship among pdfs

Connected digit recognition

• 1024-component GMM for VTS

• Clean complex back-end defined in Aurora2

• Evaluation data set consisting of 4004 reverberant utterances– Simulated data

– Impulse responses measured in a varechoic room

– Speaker-microphone distance = 3.5 m

– T60 = 0.2~0.6 sec

0

5

10

15

20

25

30

35

0.2 0.3 0.4 0.5 0.6

Unprocessed

Dereverberated

Dereverberated(lower bound)

Word

err

or

rate

in %

T60 in seconds

Concluding remarks

• Dereverberation can be performed in different domains

• Reverberation model must accounts for the strong statistical dependencies between consecutive observation frames