36
A Multiple-Conclusion Calculus for First-Order Gödel Logic Arnon Avron Ori Lahav Tel Aviv University CSR June 2011

Csr2011 june18 15_45_avron

  • View
    274

  • Download
    0

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Csr2011 june18 15_45_avron

A Multiple-Conclusion Calculus forFirst-Order Gödel Logic

Arnon Avron Ori Lahav

Tel Aviv University

CSR June 2011

Page 2: Csr2011 june18 15_45_avron

Gödel Logic

In 1933, Gödel introduced a sequence {Gn} of n-valuedmatrices and used them to show some importantproperties of intuitionistic logic.In 1959, Dummett embedded all the Gns in aninfinite-valued matrix Gω.Gω is equivalent to G[0,1], a natural matrix for thetruth-values [0,1].The logic of G[0,1] is called Gödel logic.Gödel logic is perhaps the most important intermediatelogic.Nowadays, Gödel logic is also recognized as one of thethree most basic fuzzy logics.

Page 3: Csr2011 june18 15_45_avron

Many-Valued Semantics

A structure M consists of:Non-empty domain DAn interpretation I:

I[c] ∈ D for every constantI[f ] ∈ Dn → D for every n-ary functionI[p] ∈ Dn → [0, 1] for every n-ary predicate

An M-evaluation is a function e:Assigning an element of D for every free variableNaturally extended to all terms (according to I)

Page 4: Csr2011 june18 15_45_avron

Many-Valued Semantics

A structure M consists of:Non-empty domain DAn interpretation I:

I[c] ∈ D for every constantI[f ] ∈ Dn → D for every n-ary functionI[p] ∈ Dn → [0, 1] for every n-ary predicate

An M-evaluation is a function e:Assigning an element of D for every free variableNaturally extended to all terms (according to I)

Page 5: Csr2011 june18 15_45_avron

Many-Valued Semantics

‖ • ‖Me is defined as follows:

‖p(t1, . . . , tn)‖Me = I[p][e[t1], . . . ,e[tn]]

‖⊥‖Me = 0

‖ψ1 ∨ ψ2‖Me = max{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ∧ ψ2‖Me = min{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ⊃ ψ2‖Me =

{1 ‖ψ1‖M

e ≤ ‖ψ2‖Me

‖ψ2‖Me otherwise

‖∀xψ‖Me = inf{‖ψ‖M

e[x :=d ]| d ∈ D}

‖∃xψ‖Me = sup{‖ψ‖M

e[x :=d ]| d ∈ D}

M is a model of a formula if ϕ if ‖ϕ‖Me = 1 for every e

Page 6: Csr2011 june18 15_45_avron

Many-Valued Semantics

‖ • ‖Me is defined as follows:

‖p(t1, . . . , tn)‖Me = I[p][e[t1], . . . ,e[tn]]

‖⊥‖Me = 0

‖ψ1 ∨ ψ2‖Me = max{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ∧ ψ2‖Me = min{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ⊃ ψ2‖Me =

{1 ‖ψ1‖M

e ≤ ‖ψ2‖Me

‖ψ2‖Me otherwise

‖∀xψ‖Me = inf{‖ψ‖M

e[x :=d ]| d ∈ D}

‖∃xψ‖Me = sup{‖ψ‖M

e[x :=d ]| d ∈ D}

M is a model of a formula if ϕ if ‖ϕ‖Me = 1 for every e

Page 7: Csr2011 june18 15_45_avron

Many-Valued Semantics

‖ • ‖Me is defined as follows:

‖p(t1, . . . , tn)‖Me = I[p][e[t1], . . . ,e[tn]]

‖⊥‖Me = 0

‖ψ1 ∨ ψ2‖Me = max{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ∧ ψ2‖Me = min{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ⊃ ψ2‖Me =

{1 ‖ψ1‖M

e ≤ ‖ψ2‖Me

‖ψ2‖Me otherwise

‖∀xψ‖Me = inf{‖ψ‖M

e[x :=d ]| d ∈ D}

‖∃xψ‖Me = sup{‖ψ‖M

e[x :=d ]| d ∈ D}

M is a model of a formula if ϕ if ‖ϕ‖Me = 1 for every e

Page 8: Csr2011 june18 15_45_avron

Many-Valued Semantics

‖ • ‖Me is defined as follows:

‖p(t1, . . . , tn)‖Me = I[p][e[t1], . . . ,e[tn]]

‖⊥‖Me = 0

‖ψ1 ∨ ψ2‖Me = max{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ∧ ψ2‖Me = min{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ⊃ ψ2‖Me =

{1 ‖ψ1‖M

e ≤ ‖ψ2‖Me

‖ψ2‖Me otherwise

‖∀xψ‖Me = inf{‖ψ‖M

e[x :=d ]| d ∈ D}

‖∃xψ‖Me = sup{‖ψ‖M

e[x :=d ]| d ∈ D}

M is a model of a formula if ϕ if ‖ϕ‖Me = 1 for every e

Page 9: Csr2011 june18 15_45_avron

Many-Valued Semantics

‖ • ‖Me is defined as follows:

‖p(t1, . . . , tn)‖Me = I[p][e[t1], . . . ,e[tn]]

‖⊥‖Me = 0

‖ψ1 ∨ ψ2‖Me = max{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ∧ ψ2‖Me = min{‖ψ1‖M

e , ‖ψ2‖Me }

‖ψ1 ⊃ ψ2‖Me =

{1 ‖ψ1‖M

e ≤ ‖ψ2‖Me

‖ψ2‖Me otherwise

‖∀xψ‖Me = inf{‖ψ‖M

e[x :=d ]| d ∈ D}

‖∃xψ‖Me = sup{‖ψ‖M

e[x :=d ]| d ∈ D}

M is a model of a formula if ϕ if ‖ϕ‖Me = 1 for every e

Page 10: Csr2011 june18 15_45_avron

Kripke-Style Semantics

A frame is a tupleW = 〈W ,≤,D, I, {Iw}w∈W 〉 where:W - nonempty set of worlds≤ - linear order on WD - non-empty (constant) domainI - interpretation of constants and functions

Iw - is a predicate interpretation for every w ∈W :Iw [p] ⊆ Dn for every n-ary predicate pPersistence: Iu[p] ⊆ Iw [p] if u ≤ w

Page 11: Csr2011 june18 15_45_avron

Kripke-Style Semantics

A frame is a tupleW = 〈W ,≤,D, I, {Iw}w∈W 〉 where:W - nonempty set of worlds≤ - linear order on WD - non-empty (constant) domainI - interpretation of constants and functionsIw - is a predicate interpretation for every w ∈W :

Iw [p] ⊆ Dn for every n-ary predicate pPersistence: Iu[p] ⊆ Iw [p] if u ≤ w

Page 12: Csr2011 june18 15_45_avron

Kripke-Style Semantics

Satisfaction relation for a frame, a world, and an evaluationof the free variables:

W,w ,e � p(t1, . . . , tn) iff 〈e[t1], . . . ,e[tn]〉 ∈ Iw [p]W,w ,e 6� ⊥

W,w ,e � ψ1 ∨ ψ2 iffW,w ,e � ψ1 orW,w ,e � ψ2W,w ,e � ψ1 ∧ ψ2 iffW,w ,e � ψ1 andW,w ,e � ψ2W,w ,e � ψ1 ⊃ ψ2 iff for every u ≥ w :

W,u,e 6� ψ1 orW,u,e � ψ2W,w ,e � ∀xψ iffW,w ,e[x :=d ] � ψ for every d ∈ DW,w ,e � ∃xψ iffW,w ,e[x :=d ] � ψ for some d ∈ D

W is a model of a formula if ϕ ifW,w ,e � ϕ for every wand e

Page 13: Csr2011 june18 15_45_avron

Kripke-Style Semantics

Satisfaction relation for a frame, a world, and an evaluationof the free variables:

W,w ,e � p(t1, . . . , tn) iff 〈e[t1], . . . ,e[tn]〉 ∈ Iw [p]W,w ,e 6� ⊥W,w ,e � ψ1 ∨ ψ2 iffW,w ,e � ψ1 orW,w ,e � ψ2W,w ,e � ψ1 ∧ ψ2 iffW,w ,e � ψ1 andW,w ,e � ψ2

W,w ,e � ψ1 ⊃ ψ2 iff for every u ≥ w :W,u,e 6� ψ1 orW,u,e � ψ2

W,w ,e � ∀xψ iffW,w ,e[x :=d ] � ψ for every d ∈ DW,w ,e � ∃xψ iffW,w ,e[x :=d ] � ψ for some d ∈ D

W is a model of a formula if ϕ ifW,w ,e � ϕ for every wand e

Page 14: Csr2011 june18 15_45_avron

Kripke-Style Semantics

Satisfaction relation for a frame, a world, and an evaluationof the free variables:

W,w ,e � p(t1, . . . , tn) iff 〈e[t1], . . . ,e[tn]〉 ∈ Iw [p]W,w ,e 6� ⊥W,w ,e � ψ1 ∨ ψ2 iffW,w ,e � ψ1 orW,w ,e � ψ2W,w ,e � ψ1 ∧ ψ2 iffW,w ,e � ψ1 andW,w ,e � ψ2W,w ,e � ψ1 ⊃ ψ2 iff for every u ≥ w :

W,u,e 6� ψ1 orW,u,e � ψ2

W,w ,e � ∀xψ iffW,w ,e[x :=d ] � ψ for every d ∈ DW,w ,e � ∃xψ iffW,w ,e[x :=d ] � ψ for some d ∈ D

W is a model of a formula if ϕ ifW,w ,e � ϕ for every wand e

Page 15: Csr2011 june18 15_45_avron

Kripke-Style Semantics

Satisfaction relation for a frame, a world, and an evaluationof the free variables:

W,w ,e � p(t1, . . . , tn) iff 〈e[t1], . . . ,e[tn]〉 ∈ Iw [p]W,w ,e 6� ⊥W,w ,e � ψ1 ∨ ψ2 iffW,w ,e � ψ1 orW,w ,e � ψ2W,w ,e � ψ1 ∧ ψ2 iffW,w ,e � ψ1 andW,w ,e � ψ2W,w ,e � ψ1 ⊃ ψ2 iff for every u ≥ w :

W,u,e 6� ψ1 orW,u,e � ψ2W,w ,e � ∀xψ iffW,w ,e[x :=d ] � ψ for every d ∈ DW,w ,e � ∃xψ iffW,w ,e[x :=d ] � ψ for some d ∈ D

W is a model of a formula if ϕ ifW,w ,e � ϕ for every wand e

Page 16: Csr2011 june18 15_45_avron

Kripke-Style Semantics

Satisfaction relation for a frame, a world, and an evaluationof the free variables:

W,w ,e � p(t1, . . . , tn) iff 〈e[t1], . . . ,e[tn]〉 ∈ Iw [p]W,w ,e 6� ⊥W,w ,e � ψ1 ∨ ψ2 iffW,w ,e � ψ1 orW,w ,e � ψ2W,w ,e � ψ1 ∧ ψ2 iffW,w ,e � ψ1 andW,w ,e � ψ2W,w ,e � ψ1 ⊃ ψ2 iff for every u ≥ w :

W,u,e 6� ψ1 orW,u,e � ψ2W,w ,e � ∀xψ iffW,w ,e[x :=d ] � ψ for every d ∈ DW,w ,e � ∃xψ iffW,w ,e[x :=d ] � ψ for some d ∈ D

W is a model of a formula if ϕ ifW,w ,e � ϕ for every wand e

Page 17: Csr2011 june18 15_45_avron

Proof Theory

Sonobe 1975 - first cut-free Gentzen-type sequent calculusOther calculi have been proposed later by Corsi, Avelloneet al., Dyckhoff and othersAll of them use some ad-hoc rules of a nonstandard formA. 1991 - hypersequent calculus with standard rules: HGExtended to first-order Gödel logic by Baaz and Zach in2000: HIF

Page 18: Csr2011 june18 15_45_avron

Hypersequents

A sequent (Gentzen 1934) is an object of the formϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm

Intuition: ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψmSingle-conclusion sequent: m ≤ 1

A hypersequent is an object of the form s1 | . . . | sn wherethe si ’s are sequents

Intuition: s1 ∨ . . . ∨ snSingle-conclusion hypersequent consists ofsingle-conclusion sequents only

Page 19: Csr2011 june18 15_45_avron

Hypersequents

A sequent (Gentzen 1934) is an object of the formϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm

Intuition: ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψmSingle-conclusion sequent: m ≤ 1

A hypersequent is an object of the form s1 | . . . | sn wherethe si ’s are sequents

Intuition: s1 ∨ . . . ∨ snSingle-conclusion hypersequent consists ofsingle-conclusion sequents only

Page 20: Csr2011 june18 15_45_avron

HG Single-Conclusion Hypersequent SystemStructural Rules

ϕ⇒ ϕ (EW )H

H | Γ⇒ E

(IW ⇒)H | Γ⇒ E

H | Γ, ψ ⇒ E(⇒ IW )

H | Γ⇒H | Γ⇒ ψ

(cut)H1 | Γ1 ⇒ ϕ H2 | Γ2, ϕ⇒ E

H1 | H2 | Γ1, Γ2 ⇒ E

(com)H1 | Γ1, Γ

′1 ⇒ E1 H2 | Γ2, Γ

′2 ⇒ E2

H1 | H2 | Γ1, Γ′2 ⇒ E1 | Γ2, Γ

′1 ⇒ E2

Page 21: Csr2011 june18 15_45_avron

HG Single-Conclusion Hypersequent SystemStructural Rules

ϕ⇒ ϕ (EW )H

H | Γ⇒ E

(IW ⇒)H | Γ⇒ E

H | Γ, ψ ⇒ E(⇒ IW )

H | Γ⇒H | Γ⇒ ψ

(cut)H1 | Γ1 ⇒ ϕ H2 | Γ2, ϕ⇒ E

H1 | H2 | Γ1, Γ2 ⇒ E

(com)H1 | Γ1, Γ

′1 ⇒ E1 H2 | Γ2, Γ

′2 ⇒ E2

H1 | H2 | Γ1, Γ′2 ⇒ E1 | Γ2, Γ

′1 ⇒ E2

Page 22: Csr2011 june18 15_45_avron

HG Single-Conclusion Hypersequent SystemStructural Rules

ϕ⇒ ϕ (EW )H

H | Γ⇒ E

(IW ⇒)H | Γ⇒ E

H | Γ, ψ ⇒ E(⇒ IW )

H | Γ⇒H | Γ⇒ ψ

(cut)H1 | Γ1 ⇒ ϕ H2 | Γ2, ϕ⇒ E

H1 | H2 | Γ1, Γ2 ⇒ E

(com)H1 | Γ1, Γ

′1 ⇒ E1 H2 | Γ2, Γ

′2 ⇒ E2

H1 | H2 | Γ1, Γ′2 ⇒ E1 | Γ2, Γ

′1 ⇒ E2

Page 23: Csr2011 june18 15_45_avron

HG Single-Conclusion Hypersequent SystemLogical Rules

(∨ ⇒)H1 | Γ1, ψ1 ⇒ E H2 | Γ2, ψ2 ⇒ E

H1 | H2 | Γ1, Γ2, ψ1 ∨ ψ2 ⇒ E

(⇒ ∨1)H | Γ⇒ ψ1

H | Γ⇒ ψ1 ∨ ψ2(⇒ ∨2)

H | Γ⇒ ψ2H | Γ⇒ ψ1 ∨ ψ2

(⊃⇒)H1 | Γ1 ⇒ ψ1 H2 | Γ2, ψ2 ⇒ EH1 | H2 | Γ1, Γ2, ψ1 ⊃ ψ2 ⇒ E

(⇒⊃)H | Γ, ψ1 ⇒ ψ2

H | Γ⇒ ψ1 ⊃ ψ2

Page 24: Csr2011 june18 15_45_avron

HG Single-Conclusion Hypersequent SystemLogical Rules

(∨ ⇒)H1 | Γ1, ψ1 ⇒ E H2 | Γ2, ψ2 ⇒ E

H1 | H2 | Γ1, Γ2, ψ1 ∨ ψ2 ⇒ E

(⇒ ∨1)H | Γ⇒ ψ1

H | Γ⇒ ψ1 ∨ ψ2(⇒ ∨2)

H | Γ⇒ ψ2H | Γ⇒ ψ1 ∨ ψ2

(⊃⇒)H1 | Γ1 ⇒ ψ1 H2 | Γ2, ψ2 ⇒ EH1 | H2 | Γ1, Γ2, ψ1 ⊃ ψ2 ⇒ E

(⇒⊃)H | Γ, ψ1 ⇒ ψ2

H | Γ⇒ ψ1 ⊃ ψ2

Page 25: Csr2011 june18 15_45_avron

HIF Single-Conclusion Hypersequent System

(∀ ⇒)H | Γ, ϕ{t/x} ⇒ E

H | Γ, ∀xϕ⇒ E

(⇒ ∀)H | Γ⇒ ϕ{y/x}

H | Γ⇒ ∀xϕ

where y doesn’t occur free in any component of the conclusion.

similar rules for ∃

Page 26: Csr2011 june18 15_45_avron

HIF Single-Conclusion Hypersequent System

(∀ ⇒)H | Γ, ϕ{t/x} ⇒ E

H | Γ, ∀xϕ⇒ E

(⇒ ∀)H | Γ⇒ ϕ{y/x}

H | Γ⇒ ∀xϕ

where y doesn’t occur free in any component of the conclusion.

similar rules for ∃

Page 27: Csr2011 june18 15_45_avron

Cut-Admissibility

(cut)H1 | Γ1 ⇒ ϕ H2 | Γ2, ϕ⇒ E

H1 | H2 | Γ1, Γ2 ⇒ E

One of the most important properties of a (hyper)sequentcalculus, provides the key for proof-searchTraditional syntactic cut-admissibility proofs are notoriouslyprone to errors, especially (but certainly not only) in thecase of hypersequent systems

the first proof of cut-elimination for HIF was erroneous

A semantic proof is usually more reliable and easier tocheckA semantic proof usually provides also a proof ofcompleteness as well as strong cut-admissibility

Page 28: Csr2011 june18 15_45_avron

Cut-Admissibility

(cut)H1 | Γ1 ⇒ ϕ H2 | Γ2, ϕ⇒ E

H1 | H2 | Γ1, Γ2 ⇒ E

One of the most important properties of a (hyper)sequentcalculus, provides the key for proof-searchTraditional syntactic cut-admissibility proofs are notoriouslyprone to errors, especially (but certainly not only) in thecase of hypersequent systems

the first proof of cut-elimination for HIF was erroneous

A semantic proof is usually more reliable and easier tocheckA semantic proof usually provides also a proof ofcompleteness as well as strong cut-admissibility

Page 29: Csr2011 june18 15_45_avron

MCG Multiple-Conclusion Hypersequent SystemStructural Rules

ϕ⇒ ϕ (EW )H

H | Γ⇒ ∆

(IW ⇒)H | Γ⇒ ∆

H | Γ, ψ ⇒ ∆(⇒ IW )

H | Γ⇒ ∆

H | Γ⇒ ∆, ψ

(cut)H1 | Γ1 ⇒ ∆1, ϕ H2 | Γ2, ϕ⇒ ∆2

H1 | H2 | Γ1, Γ2 ⇒ ∆1,∆2

(com)H1 | Γ1, Γ

′1 ⇒ ∆1 H2 | Γ2, Γ

′2 ⇒ ∆2

H1 | H2 | Γ1, Γ′2 ⇒ ∆1 | Γ2, Γ

′1 ⇒ ∆2

(split)H | Γ⇒ ∆1,∆2

H | Γ⇒ ∆1 | Γ⇒ ∆2

Page 30: Csr2011 june18 15_45_avron

MCG Multiple-Conclusion Hypersequent SystemStructural Rules

ϕ⇒ ϕ (EW )H

H | Γ⇒ ∆

(IW ⇒)H | Γ⇒ ∆

H | Γ, ψ ⇒ ∆(⇒ IW )

H | Γ⇒ ∆

H | Γ⇒ ∆, ψ

(cut)H1 | Γ1 ⇒ ∆1, ϕ H2 | Γ2, ϕ⇒ ∆2

H1 | H2 | Γ1, Γ2 ⇒ ∆1,∆2

(com)H1 | Γ1, Γ

′1 ⇒ ∆1 H2 | Γ2, Γ

′2 ⇒ ∆2

H1 | H2 | Γ1, Γ′2 ⇒ ∆1 | Γ2, Γ

′1 ⇒ ∆2

(split)H | Γ⇒ ∆1,∆2

H | Γ⇒ ∆1 | Γ⇒ ∆2

Page 31: Csr2011 june18 15_45_avron

MCG Multiple-Conclusion Hypersequent SystemLogical Rules

(⊃⇒)H1 | Γ1 ⇒ ∆1, ψ1 H2 | Γ2, ψ2 ⇒ ∆2

H1 | H2 | Γ1, Γ2, ψ1 ⊃ ψ2 ⇒ ∆1,∆2(⇒⊃)

H | Γ, ψ1 ⇒ ψ2

H | Γ⇒ ψ1 ⊃ ψ2

(∀ ⇒)H | Γ, ϕ{t/x} ⇒ ∆

H | Γ, ∀xϕ⇒ ∆(⇒ ∀)

H | Γ⇒ ∆, ϕ{y/x}H | Γ⇒ ∆, ∀xϕ

Page 32: Csr2011 june18 15_45_avron

Results

MCG is strongly sound and complete with respect to theKripke semantics of the standard first-order Gödel logic

MCG admits strong cut-admissibility:for every set H of hypersequents closed under substitutionand a hypersequent H:H ` H iff there exists a proof of H from H in which thecut-formula of every application of the cut rule is in frm[H]

As a corollary, we obtain the same results for HIF, theoriginal single-conclusion calculus

Page 33: Csr2011 june18 15_45_avron

Results

MCG is strongly sound and complete with respect to theKripke semantics of the standard first-order Gödel logicMCG admits strong cut-admissibility:

for every set H of hypersequents closed under substitutionand a hypersequent H:H ` H iff there exists a proof of H from H in which thecut-formula of every application of the cut rule is in frm[H]

As a corollary, we obtain the same results for HIF, theoriginal single-conclusion calculus

Page 34: Csr2011 june18 15_45_avron

Results

MCG is strongly sound and complete with respect to theKripke semantics of the standard first-order Gödel logicMCG admits strong cut-admissibility:for every set H of hypersequents closed under substitutionand a hypersequent H:H ` H iff there exists a proof of H from H in which thecut-formula of every application of the cut rule is in frm[H]

As a corollary, we obtain the same results for HIF, theoriginal single-conclusion calculus

Page 35: Csr2011 june18 15_45_avron

Results

MCG is strongly sound and complete with respect to theKripke semantics of the standard first-order Gödel logicMCG admits strong cut-admissibility:for every set H of hypersequents closed under substitutionand a hypersequent H:H ` H iff there exists a proof of H from H in which thecut-formula of every application of the cut rule is in frm[H]

As a corollary, we obtain the same results for HIF, theoriginal single-conclusion calculus

Page 36: Csr2011 june18 15_45_avron

Thank you!