Upload
luis-seijo
View
1.239
Download
4
Tags:
Embed Size (px)
DESCRIPTION
Lecture given at the conference: Simulations and Dynamics for Nanoscale and Byological Systems, held in Tokyo 2009, in honor of Professor Kimihiko Hirao
Ab initio studies on the luminescence Ab initio studies on the luminescence of f-elements in solidsof f-elements in solids
Luis Seijo
Departamento de QuímicaUniversidad Autónoma de Madrid
http://www.uam.es/quimica/aimp
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
• Context and motivationContext and motivation• Methodological detailsMethodological details• ResultsResults• ConclusionsConclusions• AcknowledgmentsAcknowledgments
2 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
4f4fN-1N-15d5d11 manifold manifold of heavy divalent lanthanides. of heavy divalent lanthanides.
YbYb2+2+:CsCaBr:CsCaBr33
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Context and motivationContext and motivation
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Excited states of f-elements in solidsExcited states of f-elements in solids
Lanthanides: SSL Lanthanides: SSL (Solid-State Lighting)
Actinides: ANES Actinides: ANES (Advanced Nuclear Energy Systems)
Design of phosphorsDesign of phosphors
Fundamental studiesFundamental studies
Fundamental studiesFundamental studies
CeCe3+3+:Y:Y33AlAl55OO1212
UU4+4+,Pu,Pu4+4+:UO:UO22,PuO,PuO22
Divalent lanthanidesDivalent lanthanides
4
e.g.
e.g.
e.g.
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Divalent lanthanide ions in crystalsDivalent lanthanide ions in crystals
• Difficult to stabilize and to handleDifficult to stabilize and to handle– pioneering work in 60’s (McClure)pioneering work in 60’s (McClure)– most work on Smmost work on Sm2+2+, Eu, Eu2+2+, and Yb, and Yb2+2+ in cubic hosts in cubic hosts
• Upsurge in interest since 2001 (phosphor search)Upsurge in interest since 2001 (phosphor search)• 4f4f5d excitations start at much lower energy than 5d excitations start at much lower energy than
in Lnin Ln3+3+
– near-IR, visible, near-UV; 4fnear-IR, visible, near-UV; 4fN-1N-15d5d11 states accessible states accessible• Several meta-stable 4fSeveral meta-stable 4fN-1N-15d5d11 states seem to be states seem to be
possiblepossible– several gapsseveral gaps– low vibration frequencies, low multi-phonon decayslow vibration frequencies, low multi-phonon decays– multiple spontaneous emissionmultiple spontaneous emission
• TmTm2+2+:CsCaBr:CsCaBr33 (Güdel, 2006) (Güdel, 2006)
5 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
4f4fN-1N-15d5d11 in heavy lanthanides in heavy lanthanides
• 4f4fNN 4f 4fN-1N-15d5d11 excitations of Ln excitations of Ln3+3+
– Low-intensity band on the low energy side Low-intensity band on the low energy side for N>7for N>7
• 4f4fN-1N-15d5d11 4f 4fNN emissions of Ln emissions of Ln3+3+
– Lowest energy: Slow, weekLowest energy: Slow, week– Next: Fast, strong Next: Fast, strong
• Interpretation via Hund’s rule + spinInterpretation via Hund’s rule + spin
6 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
lowest energy, spin-forbiddenspin-forbiddenhighest energy, spin-allowedspin-allowed
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
HS & LS interpretation challengedHS & LS interpretation challenged
• New Crystal-Field Theory calculations on old YbNew Crystal-Field Theory calculations on old Yb2+2+:SrCl:SrCl22 experimentsexperiments– McClure 1967: 4fMcClure 1967: 4f5d spectrum; 12 out of 18 absorptions5d spectrum; 12 out of 18 absorptions– Loh 1973: CFT based interpretation; anomalies Loh 1973: CFT based interpretation; anomalies – Tanner 2008: New CFT interpretation (parameter cooking; Tanner 2008: New CFT interpretation (parameter cooking;
reassignments)reassignments)• All the lowest 4fAll the lowest 4fN-1N-15d5d1 1 states are HSstates are HS• Their different Their different orbital character orbital character is responsible for is responsible for
the high/low intensitiesthe high/low intensities• Energy separation between HS and LS states cannot Energy separation between HS and LS states cannot
be made by inspection of spectral data. It requires be made by inspection of spectral data. It requires calculations.calculations.
7 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
A quantum chemical point of view...A quantum chemical point of view...
• Ab initio embedded cluster wave function based Ab initio embedded cluster wave function based calculations calculations
• YbYb2+2+:CsCaBr:CsCaBr33 – 4f4f1414 and 4f and 4f13135d5d11: the simplest heavy divalent lanthanide : the simplest heavy divalent lanthanide
• Two-step relativistic approachTwo-step relativistic approach– First step: scalar relativistic; accurate correlation; First step: scalar relativistic; accurate correlation; spinspin– Second step: spin-orbit coupling CI; Second step: spin-orbit coupling CI; superpositionsuperposition of spin of spin
multiplicities multiplicities • Collaborate with experimentsCollaborate with experiments
– Claudia Wickleder, Siegen (Germany)Claudia Wickleder, Siegen (Germany)
8 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
... and its goals... and its goals
• What is the nature of the lowest states of the 4fWhat is the nature of the lowest states of the 4f13135d5d11 configuration of Ybconfiguration of Yb2+2+:CsCaBr:CsCaBr33??– spin characterspin character– orbital characterorbital character
• Is the spin character or the orbital character of the Is the spin character or the orbital character of the lowest 4flowest 4f13135d5d1 1 states what molds their specific spectral states what molds their specific spectral features?features?– How?How?
• What are the details of the whole 4fWhat are the details of the whole 4f13135d5d11 manifold? manifold?• Are several spontaneous emissions possible in this Are several spontaneous emissions possible in this
material?material?
9 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Methodological detailsMethodological details
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Methodological detailsMethodological details
• YbBrYbBr664-4- cluster embedded in CsCaBr cluster embedded in CsCaBr33
• Wood-Boring based relativistic HamiltonianWood-Boring based relativistic Hamiltonian• Two-step wave function based procedureTwo-step wave function based procedure
– scalar: SA-CASSCF + MS-CASPT2scalar: SA-CASSCF + MS-CASPT2– spin-orbit: sfss-SOCI(S) spin-orbit: sfss-SOCI(S)
11 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
An embedded-cluster model of YbAn embedded-cluster model of Yb2+2+:CsCaBr:CsCaBr33
12
4 4
6 63:YbBr CsCaBr YbBrH H
221
( ) ( ) ( )Nelec Lattice Lattice Lattice
AIMP AIMP AIMPCs Ca Br
i Cs Ca Br
i i iV V V
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Embedding AIMP’sEmbedding AIMP’s
13
( 1)
ir
( )AIMPBr
iV
2rk ikk
i
C er
,i i j ji jA
occ.orb. ( 2 )c c cc
point-charge Coulomb (Madelung)
finite-size Coulomb
exchange
linear-independence (Pauli)
Out of self-Out of self-consistent HF embeddedonsistent HF embedded--ions calculations on the undoped ions calculations on the undoped solidsolid MOLCASMOLCAS MakeAIMPMakeAIMP SCEISCEI
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
YbBrYbBr664-4- cores + basis sets cores + basis sets
• Wood-Boring based relativistic core AIMP’sWood-Boring based relativistic core AIMP’s– Yb:Yb: [Kr][Kr] 4d,5s,5p,4f,5d,6s4d,5s,5p,4f,5d,6s– Br:Br: [Ar,3d][Ar,3d] 4s,4p4s,4p
• Gaussian valence basis setsGaussian valence basis sets– Yb:Yb: (14s10p10d8f3g)/[6s5p6d4f1g](14s10p10d8f3g)/[6s5p6d4f1g]– Br:Br: (9s9p4d)/[3s5p2d](9s9p4d)/[3s5p2d]– Ca sites:Ca sites: (10s7p)/[1s1p](10s7p)/[1s1p]
14
Out of relativistic Cowan-Griffin-WoodOut of relativistic Cowan-Griffin-Wood-Boring-HF all-electron atomic -Boring-HF all-electron atomic calculationscalculationsMCHF72MCHF72 MakeAIMPMakeAIMP AtBaSetsAtBaSets
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
YbBrYbBr664-4- calculations: step 1 (scalar) calculations: step 1 (scalar)
• SA-CASSCFSA-CASSCF– CAS:CAS: [4f,5d,6s][4f,5d,6s]1414 14 e14 e-- in 13 MO in 13 MO
4f: a4f: a2u2u, t, t1u1u, t, t2u2u ; 5d: t; 5d: t2g2g, e, egg; 6s: a; 6s: a1g1g
– SA:SA: 4f4f1414--11AA1g1g; ; <4f<4f1313(5d,6s)(5d,6s)11--11uu> > <4f<4f1313(5d,6s)(5d,6s)11--33uu>> 101055 conf. conf.
• MS-CASPT2MS-CASPT2– PT2:PT2: Yb 4d,5s,5p,4f,5d/6s + Br 4s,4pYb 4d,5s,5p,4f,5d/6s + Br 4s,4p 80 e80 e--
– MS:MS: as in SAas in SA
15 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
YbBrYbBr664-4- calculations: step 2 (spin-orbit) calculations: step 2 (spin-orbit)
• sfss-SOCIsfss-SOCI– Wood-Boring spin-orbit operator scaled by 0.9Wood-Boring spin-orbit operator scaled by 0.9– Basis of double-group adapted CSFsBasis of double-group adapted CSFs– MRCI(S)MRCI(S)
• MR is RAS 4fMR is RAS 4f1313(5d,6s)(5d,6s)11
• Single excitations from open-shell MOsSingle excitations from open-shell MOs– Spin-free state shiftingSpin-free state shifting
• MRCI(S) energies without spin-orbit are MS-CASPT2 energiesMRCI(S) energies without spin-orbit are MS-CASPT2 energies
16
Out of embedded-clusterOut of embedded-cluster calculations with the spin-orbit free calculations with the spin-orbit free HamiltonianHamiltonianMCHF72MCHF72 COLUMBUSCOLUMBUS EPCISOEPCISO
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
ProgramsPrograms
• Step 1: Step 1: – MOLCAS (B.O.Roos, R. Lindh, et al., Lund)MOLCAS (B.O.Roos, R. Lindh, et al., Lund)
• Step 2: Step 2: – COLUMBUS (R. M. Pitzer et al., Ohio)COLUMBUS (R. M. Pitzer et al., Ohio)– EPCISO (V. Vallet and J.-P. Flament, Lille)EPCISO (V. Vallet and J.-P. Flament, Lille)
17 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
ResultsResults
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Dynamic correlation effectsDynamic correlation effects
19
SA-CASSCF MS-CASPT2
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Nature of the lowest 4fNature of the lowest 4f13135d5d11 states states
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Spin-orbit coupling effectsSpin-orbit coupling effects
21 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
MS-CASPT2 sfss-SOCI
1T1u
ED allowedT1u
ED forbidden Low-spin?High-spin?
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
States’ character. 4States’ character. 4ff1313[7/2][7/2]5d(t5d(t2g2g))11 manifold manifold
22
State 1A1g f102 Term analysis (%)3T1u
3T2u3Eu
3A1u1T1u
1T2u1Eu
1 2 3 1 2 1 2 1 1 2 3 1 11T2u 23890 90
1Eu 23900 90 6
1T1u 26560 0.273 9 38 12 34
2T1u 26600 1.260 32 12 6 14 7 15 10
2T2u 26720 22 10 32 34...
3T1u 27200 0.030 24 12 9 4 1 45...
4T1u 28360 0.000 32 47 9...
5T1u 29070 0.084 6 16 12 21 8 28...
6T1u 29880 0.489 5 43 5 39 4 2 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Nature of the lowest 4fNature of the lowest 4f13135d5d11 states of states of YbYb2+2+:CsCaBr:CsCaBr33
• The first of them (1TThe first of them (1T2u2u,1E,1Euu) are ) are isolatedisolated and almost and almost pure high-spin pure high-spin statesstates (S=1) (S=1)– in agreement with Hund’s rulein agreement with Hund’s rule– transitions from and to GS (transitions from and to GS (11AA1g1g) can be labeled ) can be labeled spin-forbiddenspin-forbidden
• Then, there is a gap Then, there is a gap – of around 2500 cmof around 2500 cm-1-1
• The next are a bunch of The next are a bunch of mixed-spin statesmixed-spin states (65% of high-spin (65% of high-spin terms)terms)– spin-orbit coupling breaks HS/LS partitionspin-orbit coupling breaks HS/LS partition– strong mixture results from quasidegeneracies due to f-d spin-pairing strong mixture results from quasidegeneracies due to f-d spin-pairing
and f-f redistribution energies being similarand f-f redistribution energies being similar• Some, with a contribution of spin-enabling character (35% Some, with a contribution of spin-enabling character (35% 11TT1u1u))
– which provides intensity to their absorption/emission transitions, which provides intensity to their absorption/emission transitions, which could be labeled which could be labeled spin-enabledspin-enabled
23 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
4f4fN-1N-15d5d11 HS and LS of heavy Ln HS and LS of heavy Ln2+2+ in solids in solids
24
4f4fN-1N-15d5d11
4f4fNN
Low-spin statesLow-spin states
Low-spin ground stateLow-spin ground state
gapgap
spin-forbiddenspin-forbiddenspin-allowedspin-allowed
High-spin statesHigh-spin states
Bunch of mixed-spin statesBunch of mixed-spin states
Low-spin ground stateLow-spin ground state
gapgap
spin-forbiddenspin-forbiddenspin-enabledspin-enabled
Isolated Isolated pure high-spin statespure high-spin states
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
4f4fN-1N-15d5d11 HS and LS of heavy Ln HS and LS of heavy Ln2+2+ in solids in solids
25
4f4fN-1N-15d5d11
4f4fNN
Low-spin statesLow-spin states
Low-spin ground stateLow-spin ground state
gapgap
spin-forbiddenspin-forbiddenspin-allowedspin-allowed
High-spin statesHigh-spin states
Bunch of mixed-spin statesBunch of mixed-spin states
Low-spin ground stateLow-spin ground state
gapgap
spin-forbiddenspin-forbiddenspin-enabledspin-enabled
Isolated Isolated pure high-spin statespure high-spin states
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
4f4f13135d(t5d(t2g2g))11 manifold of Yb manifold of Yb2+2+:CsCaBr:CsCaBr33
26
LS
HS
MS
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
4f4f5d(t5d(t2g2g) ED-allowed absorption spectrum) ED-allowed absorption spectrum
27 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
spin-forbidden spin-forbidden transitions to
high-spin stateshigh-spin statesInte
nsity
(arb
itrar
y un
its)
spin-enabled spin-enabled transitions to
mixed-spin statesmixed-spin states
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Lowest 5d(tLowest 5d(t2g2g))4f ED-allowed emission of 4f ED-allowed emission of YbYb2+2+:CsCaBr:CsCaBr33
• ExperimentExperiment– C. Wickleder, U. SiegenC. Wickleder, U. Siegen– 77 K77 K
• CalculationCalculation– assignmentsassignments– 2000 cm2000 cm-1-1 too high (8%) too high (8%)– 200 cm200 cm-1-1 too narrow (20%) too narrow (20%)– HS/MS gap 900 cmHS/MS gap 900 cm-1-1 too wide too wide
(50%)(50%)
28
25000240002300022000
27000260002500024000Energy (cm-1)
2
13 1
141
(7 / 2) ( )4 5
4 1g
g
tf d
f A
21 ,1u uT E
11,2 uT
HS
MS
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Details of the whole 4fDetails of the whole 4f13135d5d11 manifold. manifold.Several emissions?Several emissions?
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
4f4f13135d5d11 and 4f and 4f13136s6s11 manifolds of Yb manifolds of Yb2+2+:CsCaBr:CsCaBr33
30 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
MS-CASPT2 sfss-SOCIwithout spin-orbit with spin-orbit
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Full 4fFull 4f5d ED-allowed absorption spectrum5d ED-allowed absorption spectrum
31 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
27 / 2, gt 25 / 2, gt
7 / 2, ge
5 / 2, 7 / 2,ge s
5 / 2, ge
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Potentially emitting levelsPotentially emitting levels
32 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
27 / 2, gt 25 / 2, gt
7 / 2, ge
5 / 2, 7 / 2,ge s
5 / 2, ge
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
Potentially emitting levelsPotentially emitting levels
33
configuration levelspin
charactergap calculation experimenttransition
27 / 2, gt 21 ,1u uT E HS23900 128 spin-forbidden 23900 23000max
gap
27 / 2, gt 11,2 uT MS2600 13 spin-enabled 26500 24500
25 / 2, gt 13 uA HS4600 24 spin-forbidden 346007 / 2, ge 8 uE HS4000 22 spin-forbidden 439005 / 2, ge 16 uA HS5200 30 spin-forbidden 53900 in CB
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
ConclusionsConclusions
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
ConclusionsConclusions
• The lowest state of the 4fThe lowest state of the 4fN-1N-15d5d11 configuration of Yb configuration of Yb2+2+:CsCaBr:CsCaBr33 is a is a high-spinhigh-spin state state– Emission to the low-spin ground state is Emission to the low-spin ground state is spin-forbiddenspin-forbidden (as well as the (as well as the
corresponding absorption)corresponding absorption)• After a gap, a bunch of After a gap, a bunch of mixed-spinmixed-spin states exist states exist
– Emissions from some of them to the ground state are Emissions from some of them to the ground state are spin-enabledspin-enabled (as well as the corresponding absorptions) (as well as the corresponding absorptions)
• These conclusions are expected to be transferred to all heavy These conclusions are expected to be transferred to all heavy divalent lanthanidesdivalent lanthanides
• The whole 4fThe whole 4fN-1N-15d5d11 manifold has been calculated manifold has been calculated– The lowest emissions compare reasonably well with experimentThe lowest emissions compare reasonably well with experiment– Two additional potentially emitting levels Two additional potentially emitting levels are predicted are predicted – A third meta-stable level (of significant 6s character) is predicted to be A third meta-stable level (of significant 6s character) is predicted to be
immerse in the conduction band of the host immerse in the conduction band of the host
35 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
AcknowledgementsAcknowledgements
• Ministry of Science and Innovation, Spain, MAT2008-05379Ministry of Science and Innovation, Spain, MAT2008-05379• Universidad Autónoma de MadridUniversidad Autónoma de Madrid
36
Goar Sánchez
Goar Sánchez
José Luis Pascual
José Luis Pascual
Ana Belén Muñoz
Ana Belén Muñoz
Noèmi Barros
Noèmi Barros
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
U n
i v
e r
s i d
a d
A
u t
ó n
o m
a
d e
M a
d r
i d
Simulations and Dynamics for Nanoscale and Biological Systems, Tokyo 09. In honor of Prof. K. Hirao
DedicatoryDedicatory
This paper is dedicated by Zoila Barandiarán and myself to This paper is dedicated by Zoila Barandiarán and myself to our friend, our friend, Professor Kimihiko HiraoProfessor Kimihiko Hirao, on the occasion of his , on the occasion of his retirement. retirement. In this way, we express our special admiration of him as a In this way, we express our special admiration of him as a scientist and as a person. scientist and as a person.
37